SPM: Introduce Secure Partition Manager

A Secure Partition is a software execution environment instantiated in
S-EL0 that can be used to implement simple management and security
services. Since S-EL0 is an unprivileged exception level, a Secure
Partition relies on privileged firmware e.g. ARM Trusted Firmware to be
granted access to system and processor resources. Essentially, it is a
software sandbox that runs under the control of privileged software in
the Secure World and accesses the following system resources:

- Memory and device regions in the system address map.
- PE system registers.
- A range of asynchronous exceptions e.g. interrupts.
- A range of synchronous exceptions e.g. SMC function identifiers.

A Secure Partition enables privileged firmware to implement only the
absolutely essential secure services in EL3 and instantiate the rest in
a partition. Since the partition executes in S-EL0, its implementation
cannot be overly complex.

The component in ARM Trusted Firmware responsible for managing a Secure
Partition is called the Secure Partition Manager (SPM). The SPM is
responsible for the following:

- Validating and allocating resources requested by a Secure Partition.
- Implementing a well defined interface that is used for initialising a
  Secure Partition.
- Implementing a well defined interface that is used by the normal world
  and other secure services for accessing the services exported by a
  Secure Partition.
- Implementing a well defined interface that is used by a Secure
  Partition to fulfil service requests.
- Instantiating the software execution environment required by a Secure
  Partition to fulfil a service request.

Change-Id: I6f7862d6bba8732db5b73f54e789d717a35e802f
Co-authored-by: Douglas Raillard <douglas.raillard@arm.com>
Co-authored-by: Sandrine Bailleux <sandrine.bailleux@arm.com>
Co-authored-by: Achin Gupta <achin.gupta@arm.com>
Co-authored-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
diff --git a/services/std_svc/spm/spm_main.c b/services/std_svc/spm/spm_main.c
new file mode 100644
index 0000000..1b40d81
--- /dev/null
+++ b/services/std_svc/spm/spm_main.c
@@ -0,0 +1,452 @@
+/*
+ * Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <arch_helpers.h>
+#include <assert.h>
+#include <bl31.h>
+#include <context_mgmt.h>
+#include <debug.h>
+#include <errno.h>
+#include <platform.h>
+#include <runtime_svc.h>
+#include <secure_partition.h>
+#include <smcc.h>
+#include <smcc_helpers.h>
+#include <spinlock.h>
+#include <spm_svc.h>
+#include <utils.h>
+#include <xlat_tables_v2.h>
+
+#include "spm_private.h"
+
+/* Lock used for SP_MEMORY_ATTRIBUTES_GET and SP_MEMORY_ATTRIBUTES_SET */
+static spinlock_t mem_attr_smc_lock;
+
+/*******************************************************************************
+ * Secure Partition context information.
+ ******************************************************************************/
+static secure_partition_context_t sp_ctx;
+unsigned int sp_init_in_progress;
+
+/*******************************************************************************
+ * Replace the S-EL1 re-entry information with S-EL0 re-entry
+ * information
+ ******************************************************************************/
+void spm_setup_next_eret_into_sel0(cpu_context_t *secure_context)
+{
+	assert(secure_context == cm_get_context(SECURE));
+
+	cm_set_elr_spsr_el3(SECURE, read_elr_el1(), read_spsr_el1());
+}
+
+/*******************************************************************************
+ * This function takes an SP context pointer and:
+ * 1. Applies the S-EL1 system register context from sp_ctx->cpu_ctx.
+ * 2. Saves the current C runtime state (callee-saved registers) on the stack
+ *    frame and saves a reference to this state.
+ * 3. Calls el3_exit() so that the EL3 system and general purpose registers
+ *    from the sp_ctx->cpu_ctx are used to enter the secure payload image.
+ ******************************************************************************/
+static uint64_t spm_synchronous_sp_entry(secure_partition_context_t *sp_ctx_ptr)
+{
+	uint64_t rc;
+
+	assert(sp_ctx_ptr != NULL);
+	assert(sp_ctx_ptr->c_rt_ctx == 0);
+	assert(cm_get_context(SECURE) == &sp_ctx_ptr->cpu_ctx);
+
+	/* Apply the Secure EL1 system register context and switch to it */
+	cm_el1_sysregs_context_restore(SECURE);
+	cm_set_next_eret_context(SECURE);
+
+	VERBOSE("%s: We're about to enter the Secure partition...\n", __func__);
+
+	rc = spm_secure_partition_enter(&sp_ctx_ptr->c_rt_ctx);
+#if ENABLE_ASSERTIONS
+	sp_ctx_ptr->c_rt_ctx = 0;
+#endif
+
+	return rc;
+}
+
+
+/*******************************************************************************
+ * This function takes a Secure partition context pointer and:
+ * 1. Saves the S-EL1 system register context tp sp_ctx->cpu_ctx.
+ * 2. Restores the current C runtime state (callee saved registers) from the
+ *    stack frame using the reference to this state saved in
+ *    spm_secure_partition_enter().
+ * 3. It does not need to save any general purpose or EL3 system register state
+ *    as the generic smc entry routine should have saved those.
+ ******************************************************************************/
+static void __dead2 spm_synchronous_sp_exit(
+			secure_partition_context_t *sp_ctx_ptr, uint64_t ret)
+{
+	assert(sp_ctx_ptr != NULL);
+	/* Save the Secure EL1 system register context */
+	assert(cm_get_context(SECURE) == &sp_ctx_ptr->cpu_ctx);
+	cm_el1_sysregs_context_save(SECURE);
+
+	assert(sp_ctx_ptr->c_rt_ctx != 0);
+	spm_secure_partition_exit(sp_ctx_ptr->c_rt_ctx, ret);
+
+	/* Should never reach here */
+	assert(0);
+}
+
+/*******************************************************************************
+ * This function passes control to the Secure Partition image (BL32) for the
+ * first time on the primary cpu after a cold boot. It assumes that a valid
+ * secure context has already been created by spm_setup() which can be directly
+ * used. This function performs a synchronous entry into the Secure payload.
+ * The SP passes control back to this routine through a SMC.
+ ******************************************************************************/
+int32_t spm_init(void)
+{
+	entry_point_info_t *secure_partition_ep_info;
+	uint64_t rc;
+
+	VERBOSE("%s entry\n", __func__);
+
+	/*
+	 * Get information about the Secure Partition (BL32) image. Its
+	 * absence is a critical failure.
+	 */
+	secure_partition_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
+	assert(secure_partition_ep_info);
+
+	/*
+	 * Initialise the common context and then overlay the S-EL0 specific
+	 * context on top of it.
+	 */
+	cm_init_my_context(secure_partition_ep_info);
+	secure_partition_setup();
+
+	/*
+	 * Arrange for an entry into the secure payload.
+	 */
+	sp_init_in_progress = 1;
+	rc = spm_synchronous_sp_entry(&sp_ctx);
+	assert(rc == 0);
+	sp_init_in_progress = 0;
+	VERBOSE("SP_MEM_ATTRIBUTES_SET_AARCH64 availability has been revoked\n");
+
+	return rc;
+}
+
+/*******************************************************************************
+ * Given a secure payload entrypoint info pointer, entry point PC & pointer to
+ * a context data structure, this function will initialize the SPM context and
+ * entry point info for the secure payload
+ ******************************************************************************/
+void spm_init_sp_ep_state(struct entry_point_info *sp_ep_info,
+			  uint64_t pc,
+			  secure_partition_context_t *sp_ctx_ptr)
+{
+	uint32_t ep_attr;
+
+	assert(sp_ep_info);
+	assert(pc);
+	assert(sp_ctx_ptr);
+
+	cm_set_context(&sp_ctx_ptr->cpu_ctx, SECURE);
+
+	/* initialise an entrypoint to set up the CPU context */
+	ep_attr = SECURE | EP_ST_ENABLE;
+	if (read_sctlr_el3() & SCTLR_EE_BIT)
+		ep_attr |= EP_EE_BIG;
+	SET_PARAM_HEAD(sp_ep_info, PARAM_EP, VERSION_1, ep_attr);
+
+	sp_ep_info->pc = pc;
+	/* The SPM payload runs in S-EL0 */
+	sp_ep_info->spsr = SPSR_64(MODE_EL0,
+				   MODE_SP_EL0,
+				   DISABLE_ALL_EXCEPTIONS);
+
+	zeromem(&sp_ep_info->args, sizeof(sp_ep_info->args));
+}
+
+/*******************************************************************************
+ * Secure Partition Manager setup. The SPM finds out the SP entrypoint if not
+ * already known and initialises the context for entry into the SP for its
+ * initialisation.
+ ******************************************************************************/
+int32_t spm_setup(void)
+{
+	entry_point_info_t *secure_partition_ep_info;
+
+	VERBOSE("%s entry\n", __func__);
+
+	/*
+	 * Get information about the Secure Partition (BL32) image. Its
+	 * absence is a critical failure.
+	 */
+	secure_partition_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
+	if (!secure_partition_ep_info) {
+		WARN("No SPM provided by BL2 boot loader, Booting device"
+			" without SPM initialization. SMCs destined for SPM"
+			" will return SMC_UNK\n");
+		return 1;
+	}
+
+	/*
+	 * If there's no valid entry point for SP, we return a non-zero value
+	 * signalling failure initializing the service. We bail out without
+	 * registering any handlers
+	 */
+	if (!secure_partition_ep_info->pc) {
+		return 1;
+	}
+
+	spm_init_sp_ep_state(secure_partition_ep_info,
+			      secure_partition_ep_info->pc,
+			      &sp_ctx);
+
+	/*
+	 * All SPM initialization done. Now register our init function with
+	 * BL31 for deferred invocation
+	 */
+	bl31_register_bl32_init(&spm_init);
+
+	VERBOSE("%s exit\n", __func__);
+
+	return 0;
+}
+
+/*
+ * Attributes are encoded using a different format in the SMC interface than in
+ * the Trusted Firmware, where the mmap_attr_t enum type is used. This function
+ * converts an attributes value from the SMC format to the mmap_attr_t format by
+ * setting MT_RW/MT_RO, MT_USER/MT_PRIVILEGED and MT_EXECUTE/MT_EXECUTE_NEVER.
+ * The other fields are left as 0 because they are ignored by the function
+ * change_mem_attributes().
+ */
+static mmap_attr_t smc_attr_to_mmap_attr(unsigned int attributes)
+{
+	mmap_attr_t tf_attr = 0;
+
+	unsigned int access = (attributes & SP_MEM_ATTR_ACCESS_MASK)
+			      >> SP_MEM_ATTR_ACCESS_SHIFT;
+
+	if (access == SP_MEM_ATTR_ACCESS_RW) {
+		tf_attr |= MT_RW | MT_USER;
+	} else if (access ==  SP_MEM_ATTR_ACCESS_RO) {
+		tf_attr |= MT_RO | MT_USER;
+	} else {
+		/* Other values are reserved. */
+		assert(access ==  SP_MEM_ATTR_ACCESS_NOACCESS);
+		/* The only requirement is that there's no access from EL0 */
+		tf_attr |= MT_RO | MT_PRIVILEGED;
+	}
+
+	if ((attributes & SP_MEM_ATTR_NON_EXEC) == 0) {
+		tf_attr |= MT_EXECUTE;
+	} else {
+		tf_attr |= MT_EXECUTE_NEVER;
+	}
+
+	return tf_attr;
+}
+
+/*
+ * This function converts attributes from the Trusted Firmware format into the
+ * SMC interface format.
+ */
+static int smc_mmap_to_smc_attr(mmap_attr_t attr)
+{
+	int smc_attr = 0;
+
+	int data_access;
+
+	if ((attr & MT_USER) == 0) {
+		/* No access from EL0. */
+		data_access = SP_MEM_ATTR_ACCESS_NOACCESS;
+	} else {
+		if ((attr & MT_RW) != 0) {
+			assert(MT_TYPE(attr) != MT_DEVICE);
+			data_access = SP_MEM_ATTR_ACCESS_RW;
+		} else {
+			data_access = SP_MEM_ATTR_ACCESS_RO;
+		}
+	}
+
+	smc_attr |= (data_access & SP_MEM_ATTR_ACCESS_MASK) << SP_MEM_ATTR_ACCESS_SHIFT;
+
+	if (attr & MT_EXECUTE_NEVER) {
+		smc_attr |= SP_MEM_ATTR_NON_EXEC;
+	}
+
+	return smc_attr;
+}
+
+static int spm_memory_attributes_get_smc_handler(uintptr_t base_va)
+{
+	spin_lock(&mem_attr_smc_lock);
+
+	mmap_attr_t attributes;
+	int rc = get_mem_attributes(secure_partition_xlat_ctx_handle,
+				     base_va, &attributes);
+
+	spin_unlock(&mem_attr_smc_lock);
+
+	/* Convert error codes of get_mem_attributes() into SPM ones. */
+	assert(rc == 0 || rc == -EINVAL);
+
+	if (rc == 0) {
+		return smc_mmap_to_smc_attr(attributes);
+	} else {
+		return SPM_INVALID_PARAMETER;
+	}
+}
+
+static int spm_memory_attributes_set_smc_handler(u_register_t page_address,
+					u_register_t pages_count,
+					u_register_t smc_attributes)
+{
+	uintptr_t base_va = (uintptr_t) page_address;
+	size_t size = (size_t) (pages_count * PAGE_SIZE);
+	unsigned int attributes = (unsigned int) smc_attributes;
+
+	INFO("  Start address  : 0x%lx\n", base_va);
+	INFO("  Number of pages: %i (%zi bytes)\n", (int) pages_count, size);
+	INFO("  Attributes     : 0x%x\n", attributes);
+
+	spin_lock(&mem_attr_smc_lock);
+
+	int ret = change_mem_attributes(secure_partition_xlat_ctx_handle,
+			base_va, size, smc_attr_to_mmap_attr(attributes));
+
+	spin_unlock(&mem_attr_smc_lock);
+
+	/* Convert error codes of change_mem_attributes() into SPM ones. */
+	assert(ret == 0 || ret == -EINVAL);
+
+	return (ret == 0) ? SPM_SUCCESS : SPM_INVALID_PARAMETER;
+}
+
+
+uint64_t spm_smc_handler(uint32_t smc_fid,
+			 uint64_t x1,
+			 uint64_t x2,
+			 uint64_t x3,
+			 uint64_t x4,
+			 void *cookie,
+			 void *handle,
+			 uint64_t flags)
+{
+	cpu_context_t *ns_cpu_context;
+	unsigned int ns;
+
+	/* Determine which security state this SMC originated from */
+	ns = is_caller_non_secure(flags);
+
+	if (ns == SMC_FROM_SECURE) {
+
+		/* Handle SMCs from Secure world. */
+
+		switch (smc_fid) {
+
+		case  SPM_VERSION_AARCH32:
+			SMC_RET1(handle, SPM_VERSION_COMPILED);
+
+		case SP_EVENT_COMPLETE_AARCH64:
+			assert(handle == cm_get_context(SECURE));
+			cm_el1_sysregs_context_save(SECURE);
+			spm_setup_next_eret_into_sel0(handle);
+
+			if (sp_init_in_progress) {
+				/*
+				 * SPM reports completion. The SPM must have
+				 * initiated the original request through a
+				 * synchronous entry into the secure
+				 * partition. Jump back to the original C
+				 * runtime context.
+				 */
+				spm_synchronous_sp_exit(&sp_ctx, x1);
+				assert(0);
+			}
+
+			/*
+			 * This is the result from the Secure partition of an
+			 * earlier request. Copy the result into the non-secure
+			 * context, save the secure state and return to the
+			 * non-secure state.
+			 */
+
+			/* Get a reference to the non-secure context */
+			ns_cpu_context = cm_get_context(NON_SECURE);
+			assert(ns_cpu_context);
+
+			/* Restore non-secure state */
+			cm_el1_sysregs_context_restore(NON_SECURE);
+			cm_set_next_eret_context(NON_SECURE);
+
+			/* Return to normal world */
+			SMC_RET1(ns_cpu_context, x1);
+
+		case SP_MEM_ATTRIBUTES_GET_AARCH64:
+			INFO("Received SP_MEM_ATTRIBUTES_GET_AARCH64 SMC\n");
+
+			if (!sp_init_in_progress) {
+				WARN("SP_MEM_ATTRIBUTES_GET_AARCH64 is available at boot time only\n");
+				SMC_RET1(handle, SPM_NOT_SUPPORTED);
+			}
+			SMC_RET1(handle, spm_memory_attributes_get_smc_handler(x1));
+
+		case SP_MEM_ATTRIBUTES_SET_AARCH64:
+			INFO("Received SP_MEM_ATTRIBUTES_SET_AARCH64 SMC\n");
+
+			if (!sp_init_in_progress) {
+				WARN("SP_MEM_ATTRIBUTES_SET_AARCH64 is available at boot time only\n");
+				SMC_RET1(handle, SPM_NOT_SUPPORTED);
+			}
+			SMC_RET1(handle, spm_memory_attributes_set_smc_handler(x1, x2, x3));
+		default:
+			break;
+		}
+	} else {
+
+		/* Handle SMCs from Non-secure world. */
+
+		switch (smc_fid) {
+
+		case  SP_VERSION_AARCH64:
+		case  SP_VERSION_AARCH32:
+			SMC_RET1(handle, SP_VERSION_COMPILED);
+
+		case SP_COMMUNICATE_AARCH32:
+		case SP_COMMUNICATE_AARCH64:
+
+			/* Save the Normal world context */
+			cm_el1_sysregs_context_save(NON_SECURE);
+
+			/*
+			 * Restore the secure world context and prepare for
+			 * entry in S-EL0
+			 */
+			assert(&sp_ctx.cpu_ctx == cm_get_context(SECURE));
+			cm_el1_sysregs_context_restore(SECURE);
+			cm_set_next_eret_context(SECURE);
+
+			if (x2 != 0) {
+				VERBOSE("SP_COMMUNICATE_AARCH32/64: X2 is not 0 as recommended.");
+			}
+
+			SMC_RET4(&sp_ctx.cpu_ctx,
+				 smc_fid, x2, x3, plat_my_core_pos());
+
+		case SP_MEM_ATTRIBUTES_GET_AARCH64:
+		case SP_MEM_ATTRIBUTES_SET_AARCH64:
+			/* SMC interfaces reserved for secure callers. */
+			SMC_RET1(handle, SPM_NOT_SUPPORTED);
+
+		default:
+			break;
+		}
+	}
+
+	SMC_RET1(handle, SMC_UNK);
+}