blob: 6a1d4765438fc0fe50d1aadd025761b2812b756a [file] [log] [blame]
/*
* Copyright (c) 2019-2021, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <stdint.h>
#include <libfdt.h>
#include <platform_def.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <drivers/clk.h>
#include <drivers/delay_timer.h>
#include <drivers/st/stm32_hash.h>
#include <drivers/st/stm32mp_reset.h>
#include <lib/mmio.h>
#include <lib/utils.h>
#include <plat/common/platform.h>
#define DT_HASH_COMPAT "st,stm32f756-hash"
#define HASH_CR 0x00U
#define HASH_DIN 0x04U
#define HASH_STR 0x08U
#define HASH_SR 0x24U
#define HASH_HREG(x) (0x310U + ((x) * 0x04U))
/* Control Register */
#define HASH_CR_INIT BIT(2)
#define HASH_CR_DATATYPE_SHIFT U(4)
#define HASH_CR_ALGO_SHA1 0x0U
#define HASH_CR_ALGO_MD5 BIT(7)
#define HASH_CR_ALGO_SHA224 BIT(18)
#define HASH_CR_ALGO_SHA256 (BIT(18) | BIT(7))
/* Status Flags */
#define HASH_SR_DCIS BIT(1)
#define HASH_SR_BUSY BIT(3)
/* STR Register */
#define HASH_STR_NBLW_MASK GENMASK(4, 0)
#define HASH_STR_DCAL BIT(8)
#define MD5_DIGEST_SIZE 16U
#define SHA1_DIGEST_SIZE 20U
#define SHA224_DIGEST_SIZE 28U
#define SHA256_DIGEST_SIZE 32U
#define RESET_TIMEOUT_US_1MS 1000U
#define HASH_TIMEOUT_US 10000U
enum stm32_hash_data_format {
HASH_DATA_32_BITS,
HASH_DATA_16_BITS,
HASH_DATA_8_BITS,
HASH_DATA_1_BIT
};
struct stm32_hash_instance {
uintptr_t base;
unsigned int clock;
size_t digest_size;
};
struct stm32_hash_remain {
uint32_t buffer;
size_t length;
};
/* Expect a single HASH peripheral */
static struct stm32_hash_instance stm32_hash;
static struct stm32_hash_remain stm32_remain;
static uintptr_t hash_base(void)
{
return stm32_hash.base;
}
static int hash_wait_busy(void)
{
uint64_t timeout = timeout_init_us(HASH_TIMEOUT_US);
while ((mmio_read_32(hash_base() + HASH_SR) & HASH_SR_BUSY) != 0U) {
if (timeout_elapsed(timeout)) {
ERROR("%s: busy timeout\n", __func__);
return -ETIMEDOUT;
}
}
return 0;
}
static int hash_wait_computation(void)
{
uint64_t timeout = timeout_init_us(HASH_TIMEOUT_US);
while ((mmio_read_32(hash_base() + HASH_SR) & HASH_SR_DCIS) == 0U) {
if (timeout_elapsed(timeout)) {
ERROR("%s: busy timeout\n", __func__);
return -ETIMEDOUT;
}
}
return 0;
}
static int hash_write_data(uint32_t data)
{
int ret;
ret = hash_wait_busy();
if (ret != 0) {
return ret;
}
mmio_write_32(hash_base() + HASH_DIN, data);
return 0;
}
static void hash_hw_init(enum stm32_hash_algo_mode mode)
{
uint32_t reg;
reg = HASH_CR_INIT | (HASH_DATA_8_BITS << HASH_CR_DATATYPE_SHIFT);
switch (mode) {
case HASH_MD5SUM:
reg |= HASH_CR_ALGO_MD5;
stm32_hash.digest_size = MD5_DIGEST_SIZE;
break;
case HASH_SHA1:
reg |= HASH_CR_ALGO_SHA1;
stm32_hash.digest_size = SHA1_DIGEST_SIZE;
break;
case HASH_SHA224:
reg |= HASH_CR_ALGO_SHA224;
stm32_hash.digest_size = SHA224_DIGEST_SIZE;
break;
/* Default selected algo is SHA256 */
case HASH_SHA256:
default:
reg |= HASH_CR_ALGO_SHA256;
stm32_hash.digest_size = SHA256_DIGEST_SIZE;
break;
}
mmio_write_32(hash_base() + HASH_CR, reg);
}
static int hash_get_digest(uint8_t *digest)
{
int ret;
uint32_t i;
uint32_t dsg;
ret = hash_wait_computation();
if (ret != 0) {
return ret;
}
for (i = 0U; i < (stm32_hash.digest_size / sizeof(uint32_t)); i++) {
dsg = __builtin_bswap32(mmio_read_32(hash_base() +
HASH_HREG(i)));
memcpy(digest + (i * sizeof(uint32_t)), &dsg, sizeof(uint32_t));
}
#if defined(IMAGE_BL2)
/*
* Clean hardware context as HASH could be used later
* by non-secure software
*/
hash_hw_init(HASH_SHA256);
#endif
return 0;
}
int stm32_hash_update(const uint8_t *buffer, size_t length)
{
size_t remain_length = length;
int ret = 0;
if ((length == 0U) || (buffer == NULL)) {
return 0;
}
clk_enable(stm32_hash.clock);
if (stm32_remain.length != 0U) {
uint32_t copysize;
copysize = MIN((sizeof(uint32_t) - stm32_remain.length),
length);
memcpy(((uint8_t *)&stm32_remain.buffer) + stm32_remain.length,
buffer, copysize);
remain_length -= copysize;
buffer += copysize;
if (stm32_remain.length == sizeof(uint32_t)) {
ret = hash_write_data(stm32_remain.buffer);
if (ret != 0) {
goto exit;
}
zeromem(&stm32_remain, sizeof(stm32_remain));
}
}
while (remain_length / sizeof(uint32_t) != 0U) {
uint32_t tmp_buf;
memcpy(&tmp_buf, buffer, sizeof(uint32_t));
ret = hash_write_data(tmp_buf);
if (ret != 0) {
goto exit;
}
buffer += sizeof(uint32_t);
remain_length -= sizeof(uint32_t);
}
if (remain_length != 0U) {
assert(stm32_remain.length == 0U);
memcpy((uint8_t *)&stm32_remain.buffer, buffer, remain_length);
stm32_remain.length = remain_length;
}
exit:
clk_disable(stm32_hash.clock);
return ret;
}
int stm32_hash_final(uint8_t *digest)
{
int ret;
clk_enable(stm32_hash.clock);
if (stm32_remain.length != 0U) {
ret = hash_write_data(stm32_remain.buffer);
if (ret != 0) {
clk_disable(stm32_hash.clock);
return ret;
}
mmio_clrsetbits_32(hash_base() + HASH_STR, HASH_STR_NBLW_MASK,
8U * stm32_remain.length);
zeromem(&stm32_remain, sizeof(stm32_remain));
} else {
mmio_clrbits_32(hash_base() + HASH_STR, HASH_STR_NBLW_MASK);
}
mmio_setbits_32(hash_base() + HASH_STR, HASH_STR_DCAL);
ret = hash_get_digest(digest);
clk_disable(stm32_hash.clock);
return ret;
}
int stm32_hash_final_update(const uint8_t *buffer, uint32_t length,
uint8_t *digest)
{
int ret;
ret = stm32_hash_update(buffer, length);
if (ret != 0) {
return ret;
}
return stm32_hash_final(digest);
}
void stm32_hash_init(enum stm32_hash_algo_mode mode)
{
clk_enable(stm32_hash.clock);
hash_hw_init(mode);
clk_disable(stm32_hash.clock);
zeromem(&stm32_remain, sizeof(stm32_remain));
}
int stm32_hash_register(void)
{
struct dt_node_info hash_info;
int node;
for (node = dt_get_node(&hash_info, -1, DT_HASH_COMPAT);
node != -FDT_ERR_NOTFOUND;
node = dt_get_node(&hash_info, node, DT_HASH_COMPAT)) {
#if defined(IMAGE_BL2)
if (hash_info.status != DT_DISABLED) {
break;
}
#else
/* BL32 uses hash if it is assigned only to secure world */
if (hash_info.status == DT_SECURE) {
stm32mp_register_secure_periph_iomem(hash_info.base);
break;
}
#endif
}
if (node == -FDT_ERR_NOTFOUND) {
return -ENODEV;
}
if (hash_info.clock < 0) {
return -EINVAL;
}
stm32_hash.base = hash_info.base;
stm32_hash.clock = hash_info.clock;
clk_enable(stm32_hash.clock);
if (hash_info.reset >= 0) {
uint32_t id = (uint32_t)hash_info.reset;
if (stm32mp_reset_assert(id, RESET_TIMEOUT_US_1MS) != 0) {
panic();
}
udelay(20);
if (stm32mp_reset_deassert(id, RESET_TIMEOUT_US_1MS) != 0) {
panic();
}
}
clk_disable(stm32_hash.clock);
return 0;
}