blob: d329c3d33855c4920ad8e00541c99bc9ddf677fa [file] [log] [blame]
/*
* Copyright (c) 2017-2021, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <cdefs.h>
#include <inttypes.h>
#include <stdbool.h>
#include <stdint.h>
#include "../amu_private.h"
#include <arch.h>
#include <arch_features.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <lib/el3_runtime/pubsub_events.h>
#include <lib/extensions/amu.h>
#include <plat/common/platform.h>
#if ENABLE_AMU_FCONF
# include <lib/fconf/fconf.h>
# include <lib/fconf/fconf_amu_getter.h>
#endif
#if ENABLE_MPMM
# include <lib/mpmm/mpmm.h>
#endif
struct amu_ctx {
uint64_t group0_cnts[AMU_GROUP0_MAX_COUNTERS];
#if ENABLE_AMU_AUXILIARY_COUNTERS
uint64_t group1_cnts[AMU_GROUP1_MAX_COUNTERS];
#endif
/* Architected event counter 1 does not have an offset register */
uint64_t group0_voffsets[AMU_GROUP0_MAX_COUNTERS - 1U];
#if ENABLE_AMU_AUXILIARY_COUNTERS
uint64_t group1_voffsets[AMU_GROUP1_MAX_COUNTERS];
#endif
uint16_t group0_enable;
#if ENABLE_AMU_AUXILIARY_COUNTERS
uint16_t group1_enable;
#endif
};
static struct amu_ctx amu_ctxs_[PLATFORM_CORE_COUNT];
CASSERT((sizeof(amu_ctxs_[0].group0_enable) * CHAR_BIT) <= AMU_GROUP0_MAX_COUNTERS,
amu_ctx_group0_enable_cannot_represent_all_group0_counters);
#if ENABLE_AMU_AUXILIARY_COUNTERS
CASSERT((sizeof(amu_ctxs_[0].group1_enable) * CHAR_BIT) <= AMU_GROUP1_MAX_COUNTERS,
amu_ctx_group1_enable_cannot_represent_all_group1_counters);
#endif
static inline __unused uint64_t read_id_aa64pfr0_el1_amu(void)
{
return (read_id_aa64pfr0_el1() >> ID_AA64PFR0_AMU_SHIFT) &
ID_AA64PFR0_AMU_MASK;
}
static inline __unused uint64_t read_hcr_el2_amvoffen(void)
{
return (read_hcr_el2() & HCR_AMVOFFEN_BIT) >>
HCR_AMVOFFEN_SHIFT;
}
static inline __unused void write_cptr_el2_tam(uint64_t value)
{
write_cptr_el2((read_cptr_el2() & ~CPTR_EL2_TAM_BIT) |
((value << CPTR_EL2_TAM_SHIFT) & CPTR_EL2_TAM_BIT));
}
static inline __unused void write_cptr_el3_tam(cpu_context_t *ctx, uint64_t tam)
{
uint64_t value = read_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3);
value &= ~TAM_BIT;
value |= (tam << TAM_SHIFT) & TAM_BIT;
write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, value);
}
static inline __unused void write_hcr_el2_amvoffen(uint64_t value)
{
write_hcr_el2((read_hcr_el2() & ~HCR_AMVOFFEN_BIT) |
((value << HCR_AMVOFFEN_SHIFT) & HCR_AMVOFFEN_BIT));
}
static inline __unused void write_amcr_el0_cg1rz(uint64_t value)
{
write_amcr_el0((read_amcr_el0() & ~AMCR_CG1RZ_BIT) |
((value << AMCR_CG1RZ_SHIFT) & AMCR_CG1RZ_BIT));
}
static inline __unused uint64_t read_amcfgr_el0_ncg(void)
{
return (read_amcfgr_el0() >> AMCFGR_EL0_NCG_SHIFT) &
AMCFGR_EL0_NCG_MASK;
}
static inline __unused uint64_t read_amcgcr_el0_cg0nc(void)
{
return (read_amcgcr_el0() >> AMCGCR_EL0_CG0NC_SHIFT) &
AMCGCR_EL0_CG0NC_MASK;
}
static inline __unused uint64_t read_amcg1idr_el0_voff(void)
{
return (read_amcg1idr_el0() >> AMCG1IDR_VOFF_SHIFT) &
AMCG1IDR_VOFF_MASK;
}
static inline __unused uint64_t read_amcgcr_el0_cg1nc(void)
{
return (read_amcgcr_el0() >> AMCGCR_EL0_CG1NC_SHIFT) &
AMCGCR_EL0_CG1NC_MASK;
}
static inline __unused uint64_t read_amcntenset0_el0_px(void)
{
return (read_amcntenset0_el0() >> AMCNTENSET0_EL0_Pn_SHIFT) &
AMCNTENSET0_EL0_Pn_MASK;
}
static inline __unused uint64_t read_amcntenset1_el0_px(void)
{
return (read_amcntenset1_el0() >> AMCNTENSET1_EL0_Pn_SHIFT) &
AMCNTENSET1_EL0_Pn_MASK;
}
static inline __unused void write_amcntenset0_el0_px(uint64_t px)
{
uint64_t value = read_amcntenset0_el0();
value &= ~AMCNTENSET0_EL0_Pn_MASK;
value |= (px << AMCNTENSET0_EL0_Pn_SHIFT) & AMCNTENSET0_EL0_Pn_MASK;
write_amcntenset0_el0(value);
}
static inline __unused void write_amcntenset1_el0_px(uint64_t px)
{
uint64_t value = read_amcntenset1_el0();
value &= ~AMCNTENSET1_EL0_Pn_MASK;
value |= (px << AMCNTENSET1_EL0_Pn_SHIFT) & AMCNTENSET1_EL0_Pn_MASK;
write_amcntenset1_el0(value);
}
static inline __unused void write_amcntenclr0_el0_px(uint64_t px)
{
uint64_t value = read_amcntenclr0_el0();
value &= ~AMCNTENCLR0_EL0_Pn_MASK;
value |= (px << AMCNTENCLR0_EL0_Pn_SHIFT) & AMCNTENCLR0_EL0_Pn_MASK;
write_amcntenclr0_el0(value);
}
static inline __unused void write_amcntenclr1_el0_px(uint64_t px)
{
uint64_t value = read_amcntenclr1_el0();
value &= ~AMCNTENCLR1_EL0_Pn_MASK;
value |= (px << AMCNTENCLR1_EL0_Pn_SHIFT) & AMCNTENCLR1_EL0_Pn_MASK;
write_amcntenclr1_el0(value);
}
static __unused bool amu_supported(void)
{
return read_id_aa64pfr0_el1_amu() >= ID_AA64PFR0_AMU_V1;
}
static __unused bool amu_v1p1_supported(void)
{
return read_id_aa64pfr0_el1_amu() >= ID_AA64PFR0_AMU_V1P1;
}
#if ENABLE_AMU_AUXILIARY_COUNTERS
static __unused bool amu_group1_supported(void)
{
return read_amcfgr_el0_ncg() > 0U;
}
#endif
/*
* Enable counters. This function is meant to be invoked by the context
* management library before exiting from EL3.
*/
void amu_enable(bool el2_unused, cpu_context_t *ctx)
{
uint64_t id_aa64pfr0_el1_amu; /* AMU version */
uint64_t amcfgr_el0_ncg; /* Number of counter groups */
uint64_t amcgcr_el0_cg0nc; /* Number of group 0 counters */
uint64_t amcntenset0_el0_px = 0x0; /* Group 0 enable mask */
uint64_t amcntenset1_el0_px = 0x0; /* Group 1 enable mask */
id_aa64pfr0_el1_amu = read_id_aa64pfr0_el1_amu();
if (id_aa64pfr0_el1_amu == ID_AA64PFR0_AMU_NOT_SUPPORTED) {
/*
* If the AMU is unsupported, nothing needs to be done.
*/
return;
}
if (el2_unused) {
/*
* CPTR_EL2.TAM: Set to zero so any accesses to the Activity
* Monitor registers do not trap to EL2.
*/
write_cptr_el2_tam(0U);
}
/*
* Retrieve and update the CPTR_EL3 value from the context mentioned
* in 'ctx'. Set CPTR_EL3.TAM to zero so that any accesses to
* the Activity Monitor registers do not trap to EL3.
*/
write_cptr_el3_tam(ctx, 0U);
/*
* Retrieve the number of architected counters. All of these counters
* are enabled by default.
*/
amcgcr_el0_cg0nc = read_amcgcr_el0_cg0nc();
amcntenset0_el0_px = (UINT64_C(1) << (amcgcr_el0_cg0nc)) - 1U;
assert(amcgcr_el0_cg0nc <= AMU_AMCGCR_CG0NC_MAX);
/*
* The platform may opt to enable specific auxiliary counters. This can
* be done via the common FCONF getter, or via the platform-implemented
* function.
*/
#if ENABLE_AMU_AUXILIARY_COUNTERS
const struct amu_topology *topology;
#if ENABLE_AMU_FCONF
topology = FCONF_GET_PROPERTY(amu, config, topology);
#else
topology = plat_amu_topology();
#endif /* ENABLE_AMU_FCONF */
if (topology != NULL) {
unsigned int core_pos = plat_my_core_pos();
amcntenset1_el0_px = topology->cores[core_pos].enable;
} else {
ERROR("AMU: failed to generate AMU topology\n");
}
#endif /* ENABLE_AMU_AUXILIARY_COUNTERS */
/*
* Enable the requested counters.
*/
write_amcntenset0_el0_px(amcntenset0_el0_px);
amcfgr_el0_ncg = read_amcfgr_el0_ncg();
if (amcfgr_el0_ncg > 0U) {
write_amcntenset1_el0_px(amcntenset1_el0_px);
#if !ENABLE_AMU_AUXILIARY_COUNTERS
VERBOSE("AMU: auxiliary counters detected but support is disabled\n");
#endif
}
/* Initialize FEAT_AMUv1p1 features if present. */
if (id_aa64pfr0_el1_amu >= ID_AA64PFR0_AMU_V1P1) {
if (el2_unused) {
/*
* Make sure virtual offsets are disabled if EL2 not
* used.
*/
write_hcr_el2_amvoffen(0U);
}
#if AMU_RESTRICT_COUNTERS
/*
* FEAT_AMUv1p1 adds a register field to restrict access to
* group 1 counters at all but the highest implemented EL. This
* is controlled with the `AMU_RESTRICT_COUNTERS` compile time
* flag, when set, system register reads at lower ELs return
* zero. Reads from the memory mapped view are unaffected.
*/
VERBOSE("AMU group 1 counter access restricted.\n");
write_amcr_el0_cg1rz(1U);
#else
write_amcr_el0_cg1rz(0U);
#endif
}
#if ENABLE_MPMM
mpmm_enable();
#endif
}
/* Read the group 0 counter identified by the given `idx`. */
static uint64_t amu_group0_cnt_read(unsigned int idx)
{
assert(amu_supported());
assert(idx < read_amcgcr_el0_cg0nc());
return amu_group0_cnt_read_internal(idx);
}
/* Write the group 0 counter identified by the given `idx` with `val` */
static void amu_group0_cnt_write(unsigned int idx, uint64_t val)
{
assert(amu_supported());
assert(idx < read_amcgcr_el0_cg0nc());
amu_group0_cnt_write_internal(idx, val);
isb();
}
/*
* Unlike with auxiliary counters, we cannot detect at runtime whether an
* architected counter supports a virtual offset. These are instead fixed
* according to FEAT_AMUv1p1, but this switch will need to be updated if later
* revisions of FEAT_AMU add additional architected counters.
*/
static bool amu_group0_voffset_supported(uint64_t idx)
{
switch (idx) {
case 0U:
case 2U:
case 3U:
return true;
case 1U:
return false;
default:
ERROR("AMU: can't set up virtual offset for unknown "
"architected counter %" PRIu64 "!\n", idx);
panic();
}
}
/*
* Read the group 0 offset register for a given index. Index must be 0, 2,
* or 3, the register for 1 does not exist.
*
* Using this function requires FEAT_AMUv1p1 support.
*/
static uint64_t amu_group0_voffset_read(unsigned int idx)
{
assert(amu_v1p1_supported());
assert(idx < read_amcgcr_el0_cg0nc());
assert(idx != 1U);
return amu_group0_voffset_read_internal(idx);
}
/*
* Write the group 0 offset register for a given index. Index must be 0, 2, or
* 3, the register for 1 does not exist.
*
* Using this function requires FEAT_AMUv1p1 support.
*/
static void amu_group0_voffset_write(unsigned int idx, uint64_t val)
{
assert(amu_v1p1_supported());
assert(idx < read_amcgcr_el0_cg0nc());
assert(idx != 1U);
amu_group0_voffset_write_internal(idx, val);
isb();
}
#if ENABLE_AMU_AUXILIARY_COUNTERS
/* Read the group 1 counter identified by the given `idx` */
static uint64_t amu_group1_cnt_read(unsigned int idx)
{
assert(amu_supported());
assert(amu_group1_supported());
assert(idx < read_amcgcr_el0_cg1nc());
return amu_group1_cnt_read_internal(idx);
}
/* Write the group 1 counter identified by the given `idx` with `val` */
static void amu_group1_cnt_write(unsigned int idx, uint64_t val)
{
assert(amu_supported());
assert(amu_group1_supported());
assert(idx < read_amcgcr_el0_cg1nc());
amu_group1_cnt_write_internal(idx, val);
isb();
}
/*
* Read the group 1 offset register for a given index.
*
* Using this function requires FEAT_AMUv1p1 support.
*/
static uint64_t amu_group1_voffset_read(unsigned int idx)
{
assert(amu_v1p1_supported());
assert(amu_group1_supported());
assert(idx < read_amcgcr_el0_cg1nc());
assert((read_amcg1idr_el0_voff() & (UINT64_C(1) << idx)) != 0U);
return amu_group1_voffset_read_internal(idx);
}
/*
* Write the group 1 offset register for a given index.
*
* Using this function requires FEAT_AMUv1p1 support.
*/
static void amu_group1_voffset_write(unsigned int idx, uint64_t val)
{
assert(amu_v1p1_supported());
assert(amu_group1_supported());
assert(idx < read_amcgcr_el0_cg1nc());
assert((read_amcg1idr_el0_voff() & (UINT64_C(1) << idx)) != 0U);
amu_group1_voffset_write_internal(idx, val);
isb();
}
#endif
static void *amu_context_save(const void *arg)
{
uint64_t i, j;
unsigned int core_pos;
struct amu_ctx *ctx;
uint64_t id_aa64pfr0_el1_amu; /* AMU version */
uint64_t hcr_el2_amvoffen; /* AMU virtual offsets enabled */
uint64_t amcgcr_el0_cg0nc; /* Number of group 0 counters */
#if ENABLE_AMU_AUXILIARY_COUNTERS
uint64_t amcg1idr_el0_voff; /* Auxiliary counters with virtual offsets */
uint64_t amcfgr_el0_ncg; /* Number of counter groups */
uint64_t amcgcr_el0_cg1nc; /* Number of group 1 counters */
#endif
id_aa64pfr0_el1_amu = read_id_aa64pfr0_el1_amu();
if (id_aa64pfr0_el1_amu == ID_AA64PFR0_AMU_NOT_SUPPORTED) {
return (void *)0;
}
core_pos = plat_my_core_pos();
ctx = &amu_ctxs_[core_pos];
amcgcr_el0_cg0nc = read_amcgcr_el0_cg0nc();
hcr_el2_amvoffen = (id_aa64pfr0_el1_amu >= ID_AA64PFR0_AMU_V1P1) ?
read_hcr_el2_amvoffen() : 0U;
#if ENABLE_AMU_AUXILIARY_COUNTERS
amcfgr_el0_ncg = read_amcfgr_el0_ncg();
amcgcr_el0_cg1nc = (amcfgr_el0_ncg > 0U) ? read_amcgcr_el0_cg1nc() : 0U;
amcg1idr_el0_voff = (hcr_el2_amvoffen != 0U) ? read_amcg1idr_el0_voff() : 0U;
#endif
/*
* Disable all AMU counters.
*/
ctx->group0_enable = read_amcntenset0_el0_px();
write_amcntenclr0_el0_px(ctx->group0_enable);
#if ENABLE_AMU_AUXILIARY_COUNTERS
if (amcfgr_el0_ncg > 0U) {
ctx->group1_enable = read_amcntenset1_el0_px();
write_amcntenclr1_el0_px(ctx->group1_enable);
}
#endif
/*
* Save the counters to the local context.
*/
isb(); /* Ensure counters have been stopped */
for (i = 0U; i < amcgcr_el0_cg0nc; i++) {
ctx->group0_cnts[i] = amu_group0_cnt_read(i);
}
#if ENABLE_AMU_AUXILIARY_COUNTERS
for (i = 0U; i < amcgcr_el0_cg1nc; i++) {
ctx->group1_cnts[i] = amu_group1_cnt_read(i);
}
#endif
/*
* Save virtual offsets for counters that offer them.
*/
if (hcr_el2_amvoffen != 0U) {
for (i = 0U, j = 0U; i < amcgcr_el0_cg0nc; i++) {
if (!amu_group0_voffset_supported(i)) {
continue; /* No virtual offset */
}
ctx->group0_voffsets[j++] = amu_group0_voffset_read(i);
}
#if ENABLE_AMU_AUXILIARY_COUNTERS
for (i = 0U, j = 0U; i < amcgcr_el0_cg1nc; i++) {
if ((amcg1idr_el0_voff >> i) & 1U) {
continue; /* No virtual offset */
}
ctx->group1_voffsets[j++] = amu_group1_voffset_read(i);
}
#endif
}
return (void *)0;
}
static void *amu_context_restore(const void *arg)
{
uint64_t i, j;
unsigned int core_pos;
struct amu_ctx *ctx;
uint64_t id_aa64pfr0_el1_amu; /* AMU version */
uint64_t hcr_el2_amvoffen; /* AMU virtual offsets enabled */
uint64_t amcfgr_el0_ncg; /* Number of counter groups */
uint64_t amcgcr_el0_cg0nc; /* Number of group 0 counters */
#if ENABLE_AMU_AUXILIARY_COUNTERS
uint64_t amcgcr_el0_cg1nc; /* Number of group 1 counters */
uint64_t amcg1idr_el0_voff; /* Auxiliary counters with virtual offsets */
#endif
id_aa64pfr0_el1_amu = read_id_aa64pfr0_el1_amu();
if (id_aa64pfr0_el1_amu == ID_AA64PFR0_AMU_NOT_SUPPORTED) {
return (void *)0;
}
core_pos = plat_my_core_pos();
ctx = &amu_ctxs_[core_pos];
amcfgr_el0_ncg = read_amcfgr_el0_ncg();
amcgcr_el0_cg0nc = read_amcgcr_el0_cg0nc();
hcr_el2_amvoffen = (id_aa64pfr0_el1_amu >= ID_AA64PFR0_AMU_V1P1) ?
read_hcr_el2_amvoffen() : 0U;
#if ENABLE_AMU_AUXILIARY_COUNTERS
amcgcr_el0_cg1nc = (amcfgr_el0_ncg > 0U) ? read_amcgcr_el0_cg1nc() : 0U;
amcg1idr_el0_voff = (hcr_el2_amvoffen != 0U) ? read_amcg1idr_el0_voff() : 0U;
#endif
/*
* Sanity check that all counters were disabled when the context was
* previously saved.
*/
assert(read_amcntenset0_el0_px() == 0U);
if (amcfgr_el0_ncg > 0U) {
assert(read_amcntenset1_el0_px() == 0U);
}
/*
* Restore the counter values from the local context.
*/
for (i = 0U; i < amcgcr_el0_cg0nc; i++) {
amu_group0_cnt_write(i, ctx->group0_cnts[i]);
}
#if ENABLE_AMU_AUXILIARY_COUNTERS
for (i = 0U; i < amcgcr_el0_cg1nc; i++) {
amu_group1_cnt_write(i, ctx->group1_cnts[i]);
}
#endif
/*
* Restore virtual offsets for counters that offer them.
*/
if (hcr_el2_amvoffen != 0U) {
for (i = 0U, j = 0U; i < amcgcr_el0_cg0nc; i++) {
if (!amu_group0_voffset_supported(i)) {
continue; /* No virtual offset */
}
amu_group0_voffset_write(i, ctx->group0_voffsets[j++]);
}
#if ENABLE_AMU_AUXILIARY_COUNTERS
for (i = 0U, j = 0U; i < amcgcr_el0_cg1nc; i++) {
if ((amcg1idr_el0_voff >> i) & 1U) {
continue; /* No virtual offset */
}
amu_group1_voffset_write(i, ctx->group1_voffsets[j++]);
}
#endif
}
/*
* Re-enable counters that were disabled during context save.
*/
write_amcntenset0_el0_px(ctx->group0_enable);
#if ENABLE_AMU_AUXILIARY_COUNTERS
if (amcfgr_el0_ncg > 0) {
write_amcntenset1_el0_px(ctx->group1_enable);
}
#endif
#if ENABLE_MPMM
mpmm_enable();
#endif
return (void *)0;
}
SUBSCRIBE_TO_EVENT(psci_suspend_pwrdown_start, amu_context_save);
SUBSCRIBE_TO_EVENT(psci_suspend_pwrdown_finish, amu_context_restore);