ARMv8 Trusted Firmware release v0.2
diff --git a/common/psci/psci_afflvl_on.c b/common/psci/psci_afflvl_on.c
new file mode 100644
index 0000000..b0de063
--- /dev/null
+++ b/common/psci/psci_afflvl_on.c
@@ -0,0 +1,416 @@
+/*
+ * Copyright (c) 2013, ARM Limited. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * Redistributions of source code must retain the above copyright notice, this
+ * list of conditions and the following disclaimer.
+ *
+ * Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ *
+ * Neither the name of ARM nor the names of its contributors may be used
+ * to endorse or promote products derived from this software without specific
+ * prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <stdio.h>
+#include <string.h>
+#include <assert.h>
+#include <arch_helpers.h>
+#include <console.h>
+#include <platform.h>
+#include <psci.h>
+#include <psci_private.h>
+
+typedef int (*afflvl_on_handler)(unsigned long,
+				 aff_map_node *,
+				 unsigned long,
+				 unsigned long);
+
+/*******************************************************************************
+ * This function checks whether a cpu which has been requested to be turned on
+ * is OFF to begin with.
+ ******************************************************************************/
+static int cpu_on_validate_state(unsigned int state)
+{
+	unsigned int psci_state;
+
+	/* Get the raw psci state */
+	psci_state = psci_get_state(state);
+
+	if (psci_state == PSCI_STATE_ON || psci_state == PSCI_STATE_SUSPEND)
+		return PSCI_E_ALREADY_ON;
+
+	if (psci_state == PSCI_STATE_ON_PENDING)
+		return PSCI_E_ON_PENDING;
+
+	assert(psci_state == PSCI_STATE_OFF);
+	return PSCI_E_SUCCESS;
+}
+
+/*******************************************************************************
+ * Handler routine to turn a cpu on. It takes care of any generic, architectural
+ * or platform specific setup required.
+ * TODO: Split this code across separate handlers for each type of setup?
+ ******************************************************************************/
+static int psci_afflvl0_on(unsigned long target_cpu,
+			   aff_map_node *cpu_node,
+			   unsigned long ns_entrypoint,
+			   unsigned long context_id)
+{
+	unsigned int index, plat_state;
+	unsigned long psci_entrypoint;
+	int rc;
+
+	/* Sanity check to safeguard against data corruption */
+	assert(cpu_node->level == MPIDR_AFFLVL0);
+
+	/*
+	 * Generic management: Ensure that the cpu is off to be
+	 * turned on
+	 */
+	rc = cpu_on_validate_state(cpu_node->state);
+	if (rc != PSCI_E_SUCCESS)
+		return rc;
+
+	/*
+	 * Arch. management: Derive the re-entry information for
+	 * the non-secure world from the non-secure state from
+	 * where this call originated.
+	 */
+	index = cpu_node->data;
+	rc = psci_set_ns_entry_info(index, ns_entrypoint, context_id);
+	if (rc != PSCI_E_SUCCESS)
+		return rc;
+
+	/* Set the secure world (EL3) re-entry point after BL1 */
+	psci_entrypoint = (unsigned long) psci_aff_on_finish_entry;
+
+	/*
+	 * Plat. management: Give the platform the current state
+	 * of the target cpu to allow it to perform the necessary
+	 * steps to power on.
+	 */
+	if (psci_plat_pm_ops->affinst_on) {
+
+		/* Get the current physical state of this cpu */
+		plat_state = psci_get_aff_phys_state(cpu_node);
+		rc = psci_plat_pm_ops->affinst_on(target_cpu,
+						  psci_entrypoint,
+						  ns_entrypoint,
+						  cpu_node->level,
+						  plat_state);
+	}
+
+	return rc;
+}
+
+/*******************************************************************************
+ * Handler routine to turn a cluster on. It takes care or any generic, arch.
+ * or platform specific setup required.
+ * TODO: Split this code across separate handlers for each type of setup?
+ ******************************************************************************/
+static int psci_afflvl1_on(unsigned long target_cpu,
+			   aff_map_node *cluster_node,
+			   unsigned long ns_entrypoint,
+			   unsigned long context_id)
+{
+	int rc = PSCI_E_SUCCESS;
+	unsigned int plat_state;
+	unsigned long psci_entrypoint;
+
+	assert(cluster_node->level == MPIDR_AFFLVL1);
+
+	/*
+	 * There is no generic and arch. specific cluster
+	 * management required
+	 */
+
+	/*
+	 * Plat. management: Give the platform the current state
+	 * of the target cpu to allow it to perform the necessary
+	 * steps to power on.
+	 */
+	if (psci_plat_pm_ops->affinst_on) {
+		plat_state = psci_get_aff_phys_state(cluster_node);
+		psci_entrypoint = (unsigned long) psci_aff_on_finish_entry;
+		rc = psci_plat_pm_ops->affinst_on(target_cpu,
+						  psci_entrypoint,
+						  ns_entrypoint,
+						  cluster_node->level,
+						  plat_state);
+	}
+
+	return rc;
+}
+
+/*******************************************************************************
+ * Handler routine to turn a cluster of clusters on. It takes care or any
+ * generic, arch. or platform specific setup required.
+ * TODO: Split this code across separate handlers for each type of setup?
+ ******************************************************************************/
+static int psci_afflvl2_on(unsigned long target_cpu,
+			   aff_map_node *system_node,
+			   unsigned long ns_entrypoint,
+			   unsigned long context_id)
+{
+	int rc = PSCI_E_SUCCESS;
+	unsigned int plat_state;
+	unsigned long psci_entrypoint;
+
+	/* Cannot go beyond affinity level 2 in this psci imp. */
+	assert(system_node->level == MPIDR_AFFLVL2);
+
+	/*
+	 * There is no generic and arch. specific system management
+	 * required
+	 */
+
+	/*
+	 * Plat. management: Give the platform the current state
+	 * of the target cpu to allow it to perform the necessary
+	 * steps to power on.
+	 */
+	if (psci_plat_pm_ops->affinst_on) {
+		plat_state = psci_get_aff_phys_state(system_node);
+		psci_entrypoint = (unsigned long) psci_aff_on_finish_entry;
+		rc = psci_plat_pm_ops->affinst_on(target_cpu,
+						  psci_entrypoint,
+						  ns_entrypoint,
+						  system_node->level,
+						  plat_state);
+	}
+
+	return rc;
+}
+
+/* Private data structure to make this handlers accessible through indexing */
+static const afflvl_on_handler psci_afflvl_on_handlers[] = {
+	psci_afflvl0_on,
+	psci_afflvl1_on,
+	psci_afflvl2_on,
+};
+
+/*******************************************************************************
+ * This function implements the core of the processing required to turn a cpu
+ * on. It avoids recursion to traverse from the lowest to the highest affinity
+ * level unlike the off/suspend/pon_finisher functions. It does ensure that the
+ * locks are picked in the same order as the order routines to avoid deadlocks.
+ * The flow is: Take all the locks until the highest affinity level, Call the
+ * handlers for turning an affinity level on & finally change the state of the
+ * affinity level.
+ ******************************************************************************/
+int psci_afflvl_on(unsigned long target_cpu,
+		   unsigned long entrypoint,
+		   unsigned long context_id,
+		   int current_afflvl,
+		   int target_afflvl)
+{
+	unsigned int prev_state, next_state;
+	int rc = PSCI_E_SUCCESS, level;
+	aff_map_node *aff_node;
+	unsigned long mpidr = read_mpidr() & MPIDR_AFFINITY_MASK;
+
+	/*
+	 * This loop acquires the lock corresponding to each
+	 * affinity level so that by the time we hit the lowest
+	 * affinity level, the system topology is snapshot and
+	 * state management can be done safely.
+	 */
+	for (level = current_afflvl; level >= target_afflvl; level--) {
+		aff_node = psci_get_aff_map_node(target_cpu, level);
+		if (aff_node)
+			bakery_lock_get(mpidr, &aff_node->lock);
+	}
+
+	/*
+	 * Perform generic, architecture and platform specific
+	 * handling
+	 */
+	for (level = current_afflvl; level >= target_afflvl; level--) {
+
+		/* Grab the node for each affinity level once again */
+		aff_node = psci_get_aff_map_node(target_cpu, level);
+		if (aff_node) {
+
+			/* Keep the old state and the next one handy */
+			prev_state = psci_get_state(aff_node->state);
+			rc = psci_afflvl_on_handlers[level](target_cpu,
+							    aff_node,
+							    entrypoint,
+							    context_id);
+			if (rc != PSCI_E_SUCCESS) {
+				psci_set_state(aff_node->state, prev_state);
+				goto exit;
+			}
+		}
+	}
+
+	/*
+	 * State management: Update the states since this is the
+	 * target affinity level requested.
+	 */
+	psci_change_state(target_cpu,
+			  target_afflvl,
+			  get_max_afflvl(),
+			  PSCI_STATE_ON_PENDING);
+
+exit:
+	/*
+	 * This loop releases the lock corresponding to each affinity level
+	 * in the reverse order. It also checks the final state of the cpu.
+	 */
+	for (level = target_afflvl; level <= current_afflvl; level++) {
+		aff_node = psci_get_aff_map_node(target_cpu, level);
+		if (aff_node) {
+			if (level == MPIDR_AFFLVL0) {
+				next_state = psci_get_state(aff_node->state);
+				assert(next_state == PSCI_STATE_ON_PENDING);
+			}
+			bakery_lock_release(mpidr, &aff_node->lock);
+		}
+	}
+
+	return rc;
+}
+
+/*******************************************************************************
+ * The following functions finish an earlier affinity power on request. They
+ * are called by the common finisher routine in psci_common.c.
+ ******************************************************************************/
+static unsigned int psci_afflvl0_on_finish(unsigned long mpidr,
+					   aff_map_node *cpu_node,
+					   unsigned int prev_state)
+{
+	unsigned int index, plat_state, rc = PSCI_E_SUCCESS;
+
+	assert(cpu_node->level == MPIDR_AFFLVL0);
+
+	/*
+	 * Plat. management: Perform the platform specific actions
+	 * for this cpu e.g. enabling the gic or zeroing the mailbox
+	 * register. The actual state of this cpu has already been
+	 * changed.
+	 */
+	if (psci_plat_pm_ops->affinst_on_finish) {
+
+		/* Get the previous physical state of this cpu */
+		plat_state = psci_get_phys_state(prev_state);
+		rc = psci_plat_pm_ops->affinst_on_finish(mpidr,
+							 cpu_node->level,
+							 plat_state);
+		assert(rc == PSCI_E_SUCCESS);
+	}
+
+	/*
+	 * Arch. management: Turn on mmu & restore architectural state
+	 */
+	write_vbar((unsigned long) runtime_exceptions);
+	enable_mmu();
+
+	/*
+	 * All the platform specific actions for turning this cpu
+	 * on have completed. Perform enough arch.initialization
+	 * to run in the non-secure address space.
+	 */
+	bl31_arch_setup();
+
+	/*
+	 * Generic management: Now we just need to retrieve the
+	 * information that we had stashed away during the cpu_on
+	 * call to set this cpu on it's way. First get the index
+	 * for restoring the re-entry info
+	 */
+	index = cpu_node->data;
+	rc = psci_get_ns_entry_info(index);
+
+	/* Clean caches before re-entering normal world */
+	dcsw_op_louis(DCCSW);
+
+	return rc;
+}
+
+static unsigned int psci_afflvl1_on_finish(unsigned long mpidr,
+					   aff_map_node *cluster_node,
+					   unsigned int prev_state)
+{
+	unsigned int rc = PSCI_E_SUCCESS;
+	unsigned int plat_state;
+
+	assert(cluster_node->level == MPIDR_AFFLVL1);
+
+	/*
+	 * Plat. management: Perform the platform specific actions
+	 * as per the old state of the cluster e.g. enabling
+	 * coherency at the interconnect depends upon the state with
+	 * which this cluster was powered up. If anything goes wrong
+	 * then assert as there is no way to recover from this
+	 * situation.
+	 */
+	if (psci_plat_pm_ops->affinst_on_finish) {
+		plat_state = psci_get_phys_state(prev_state);
+		rc = psci_plat_pm_ops->affinst_on_finish(mpidr,
+							 cluster_node->level,
+							 plat_state);
+		assert(rc == PSCI_E_SUCCESS);
+	}
+
+	return rc;
+}
+
+
+static unsigned int psci_afflvl2_on_finish(unsigned long mpidr,
+					   aff_map_node *system_node,
+					   unsigned int prev_state)
+{
+	int rc = PSCI_E_SUCCESS;
+	unsigned int plat_state;
+
+	/* Cannot go beyond this affinity level */
+	assert(system_node->level == MPIDR_AFFLVL2);
+
+	/*
+	 * Currently, there are no architectural actions to perform
+	 * at the system level.
+	 */
+
+	/*
+	 * Plat. management: Perform the platform specific actions
+	 * as per the old state of the cluster e.g. enabling
+	 * coherency at the interconnect depends upon the state with
+	 * which this cluster was powered up. If anything goes wrong
+	 * then assert as there is no way to recover from this
+	 * situation.
+	 */
+	if (psci_plat_pm_ops->affinst_on_finish) {
+		plat_state = psci_get_phys_state(system_node->state);
+		rc = psci_plat_pm_ops->affinst_on_finish(mpidr,
+							 system_node->level,
+							 plat_state);
+		assert(rc == PSCI_E_SUCCESS);
+	}
+
+	return rc;
+}
+
+const afflvl_power_on_finisher psci_afflvl_on_finishers[] = {
+	psci_afflvl0_on_finish,
+	psci_afflvl1_on_finish,
+	psci_afflvl2_on_finish,
+};
+