nxp: ddr driver enablement for nxp layerscape soc

DDR driver for NXP layerscape SoC(s):
 - lx2160aqds
 - lx2162aqds
 - lx2160ardb
 - Other Board with SoC(s) like ls1046a, ls1043a etc;
	-- These other boards are not verified yet.

Signed-off-by: Rajesh Bhagat <rajesh.bhagat@nxp.com>
Signed-off-by: York Sun <york.sun@nxp.com>
Signed-off-by: Udit Agarwal <udit.agarwal@nxp.com>
Signed-off-by: Pankaj Gupta <pankaj.gupta@nxp.com>
Change-Id: Ic84a63cb30eba054f432d479862cd4d1097cbbaf
diff --git a/drivers/nxp/ddr/phy-gen2/phy.c b/drivers/nxp/ddr/phy-gen2/phy.c
new file mode 100644
index 0000000..97de1ae
--- /dev/null
+++ b/drivers/nxp/ddr/phy-gen2/phy.c
@@ -0,0 +1,2669 @@
+/*
+ * Copyright 2021 NXP
+ * SPDX-License-Identifier: BSD-3-Clause
+ *
+ */
+
+#include <errno.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include <common/debug.h>
+#include "csr.h"
+#include <ddr.h>
+#include "ddr4fw.h"
+#include <drivers/delay_timer.h>
+#ifdef NXP_WARM_BOOT
+#include <fspi_api.h>
+#endif
+#include "input.h"
+#include <lib/mmio.h>
+#include <lib/utils.h>
+#include <lib/xlat_tables/xlat_tables_v2.h>
+#ifdef DDR_PHY_DEBUG
+#include "messages.h"
+#endif
+#ifdef NXP_WARM_BOOT
+#include "phy.h"
+#endif
+#include "pie.h"
+
+#define TIMEOUTDEFAULT 500
+#define MAP_PHY_ADDR(pstate, n, instance, offset, c) \
+		((((pstate * n) + instance + c) << 12) + offset)
+
+static uint32_t map_phy_addr_space(uint32_t addr)
+{
+	/* 23 bit addressing */
+	uint32_t pstate =     (addr & U(0x700000)) >> 20U; /* bit 22:20 */
+	uint32_t block_type = (addr & U(0x0f0000)) >> 16U; /* bit 19:16 */
+	uint32_t instance =   (addr & U(0x00f000)) >> 12U; /* bit 15:12 */
+	uint32_t offset =     (addr & U(0x000fff));        /* bit 11:0 */
+
+	switch (block_type) {
+	case 0x0: /* 0x0 : ANIB */
+		return MAP_PHY_ADDR(pstate, 12, instance, offset, 0);
+	case 0x1: /* 0x1 : DBYTE */
+		return MAP_PHY_ADDR(pstate, 10, instance, offset, 0x30);
+	case 0x2: /* 0x2 : MASTER */
+		return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x58);
+	case 0x4: /* 0x4 : ACSM */
+		return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x5c);
+	case 0x5: /* 0x5 : μCTL Memory */
+		return MAP_PHY_ADDR(pstate, 0, instance, offset, 0x60);
+	case 0x7: /* 0x7 : PPGC */
+		return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x68);
+	case 0x9: /* 0x9 : INITENG */
+		return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x69);
+	case 0xc: /* 0xC : DRTUB */
+		return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x6d);
+	case 0xd: /* 0xD : APB Only */
+		return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x6e);
+	default:
+		printf("ERR: Invalid block_type = 0x%x\n", block_type);
+		return 0;
+	}
+}
+
+static inline uint16_t *phy_io_addr(void *phy, uint32_t addr)
+{
+	return phy + (map_phy_addr_space(addr) << 2);
+}
+
+static inline void phy_io_write16(uint16_t *phy, uint32_t addr, uint16_t data)
+{
+	mmio_write_16((uintptr_t)phy_io_addr(phy, addr), data);
+#ifdef DEBUG_PHY_IO
+	printf("0x%06x,0x%x\n", addr, data);
+#endif
+}
+
+static inline uint16_t phy_io_read16(uint16_t *phy, uint32_t addr)
+{
+	uint16_t reg = mmio_read_16((uintptr_t) phy_io_addr(phy, addr));
+
+#ifdef DEBUG_PHY_IO
+	printf("R: 0x%06x,0x%x\n", addr, reg);
+#endif
+
+	return reg;
+}
+
+#ifdef NXP_APPLY_MAX_CDD
+
+#define CDD_VAL_READ_ADDR (0x054012)
+#define CDD_DATA_LEN    (60)
+
+static void read_phy_reg(uint16_t *phy, uint32_t addr,
+		uint16_t *buf, uint32_t len)
+{
+	uint32_t i = 0U;
+
+	for (i = 0U; i < len/2; i++) {
+		buf[i] = phy_io_read16(phy, (addr + i));
+	}
+}
+
+static uint32_t findrank(uint32_t cs_in_use)
+{
+	uint32_t val = 0U;
+
+	switch (cs_in_use) {
+	case U(0xf):
+		val = 4U;
+		break;
+	case U(0x3):
+		val = 2U;
+		break;
+	case U(0x1):
+		val = 1U;
+		break;
+	default:
+		printf("Error - Invalid cs_in_use value\n");
+	}
+	return val;
+}
+
+static uint8_t findmax(uint8_t *buf, uint32_t len)
+{
+	uint8_t max = 0U;
+	uint32_t i = 0U;
+
+	for (i = 0U; i < len; i++) {
+		if (buf[i] > max) {
+			max = buf[i];
+		}
+	}
+
+	return max;
+}
+
+static void get_cdd_val(uint16_t **phy_ptr, uint32_t rank, uint32_t freq,
+		uint32_t *tcfg0, uint32_t *tcfg4)
+{
+	uint8_t cdd[CDD_DATA_LEN+4] = {0U};
+	uint32_t i, val = 0U;
+	uint16_t *phy;
+	uint8_t buf[16] = {U(0x0)};
+	uint8_t trr = 0U, tww = 0U, trw = 0U, twr = 0U;
+	uint8_t rrmax = 0U, wwmax = 0U, rwmax = 0U, wrmax = 0U;
+	uint8_t tmp = U(0x0);
+	uint8_t *c =  NULL;
+
+	for (i = 0U; i < NUM_OF_DDRC; i++) {
+
+		phy = phy_ptr[i];
+		if (phy == NULL) {
+			continue;
+		}
+
+		phy_io_write16(phy, t_apbonly |
+				csr_micro_cont_mux_sel_addr, U(0x0));
+
+		read_phy_reg(phy, CDD_VAL_READ_ADDR,
+				(uint16_t *)&cdd, CDD_DATA_LEN);
+
+		phy_io_write16(phy, t_apbonly |
+				csr_micro_cont_mux_sel_addr, U(0x1));
+
+	/* CDD values and address
+	 *
+	 *   0x054012    0x24    cdd[0]  CDD[X][X]
+	 *   0x054012    0x25    cdd[1]  RR[3][2]
+	 *   0x054013    0x26    cdd[2]  RR[3][1]
+	 *   0x054013    0x27    cdd[3]  RR[3][0]
+	 *   0x054014    0x28    cdd[4]  RR[2][3]
+	 *   0x054014    0x29    cdd[5]  RR[2][1]
+	 *   0x054015    0x2a    cdd[6]  RR[2][0]
+	 *   0x054015    0x2b    cdd[7]  RR[1][3]
+	 *   0x054016    0x2c    cdd[8]  RR[1][2]
+	 *   0x054016    0x2d    cdd[9]  RR[1][0]
+	 *   0x054017    0x2e    cdd[10] RR[0][3]
+	 *   0x054017    0x2f    cdd[11] RR[0][2]
+	 *   0x054018    0x30    cdd[12] RR[0][1]
+
+	 *   0x054018    0x31    cdd[13] WW[3][2]
+	 *   0x054019    0x32    cdd[14] WW[3][1]
+	 *   0x054019    0x33    cdd[15] WW[3][0]
+	 *   0x05401a    0x34    cdd[16] WW[2][3]
+	 *   0x05401a    0x35    cdd[17] WW[2][1]
+	 *   0x05401b    0x36    cdd[18] WW[2][0]
+	 *   0x05401b    0x37    cdd[19] WW[1][3]
+	 *   0x05401c    0x38    cdd[20] WW[1][2]
+	 *   0x05401c    0x39    cdd[21] WW[1][0]
+	 *   0x05401d    0x3a    cdd[22] WW[0][3]
+	 *   0x05401d    0x3b    cdd[23] WW[0][2]
+	 *   0x05401e    0x3c    cdd[24] WW[0][1]
+
+	 *   0x05401e    0x3d    cdd[25] RW[3][3]
+	 *   0x05401f    0x3e    cdd[26] RW[3][2]
+	 *   0x05401f    0x3f    cdd[27] RW[3][1]
+	 *   0x054020    0x40    cdd[28] RW[3][0]
+	 *   0x054020    0x41    cdd[29] RW[2][3]
+	 *   0x054021    0x42    cdd[30] RW[2][2]
+	 *   0x054021    0x43    cdd[31] RW[2][1]
+	 *   0x054022    0x44    cdd[32] RW[2][0]
+	 *   0x054022    0x45    cdd[33] RW[1][3]
+	 *   0x054023    0x46    cdd[34] RW[1][2]
+	 *   0x054023    0x47    cdd[35] RW[1][1]
+	 *   0x054024    0x48    cdd[36] RW[1][0]
+	 *   0x054024    0x49    cdd[37] RW[0][3]
+	 *   0x054025    0x4a    cdd[38] RW[0][2]
+	 *   0x054025    0x4b    cdd[39] RW[0][1]
+	 *   0x054026    0x4c    cdd[40] RW[0][0]
+
+	 *   0x054026    0x4d    cdd[41] WR[3][3]
+	 *   0x054027    0x4e    cdd[42] WR[3][2]
+	 *   0x054027    0x4f    cdd[43] WR[3][1]
+	 *   0x054028    0x50    cdd[44] WR[3][0]
+	 *   0x054028    0x51    cdd[45] WR[2][3]
+	 *   0x054029    0x52    cdd[46] WR[2][2]
+	 *   0x054029    0x53    cdd[47] WR[2][1]
+	 *   0x05402a    0x54    cdd[48] WR[2][0]
+	 *   0x05402a    0x55    cdd[49] WR[1][3]
+	 *   0x05402b    0x56    cdd[50] WR[1][2]
+	 *   0x05402b    0x57    cdd[51] WR[1][1]
+	 *   0x05402c    0x58    cdd[52] WR[1][0]
+	 *   0x05402c    0x59    cdd[53] WR[0][3]
+	 *   0x05402d    0x5a    cdd[54] WR[0][2]
+	 *   0x05402d    0x5b    cdd[55] WR[0][1]
+	 *   0x05402e    0x5c    cdd[56] WR[0][0]
+	 *   0x05402e    0x5d    cdd[57] CDD[Y][Y]
+	 */
+
+		switch (rank) {
+		case 1U:
+			tmp = rwmax;
+			rwmax = cdd[40];
+			if (tmp > rwmax) {
+				rwmax = tmp;
+			}
+
+			tmp = wrmax;
+			wrmax = cdd[56];
+			if (tmp > wrmax) {
+				wrmax = tmp;
+			}
+
+			break;
+
+		case 2U:
+			buf[0] = cdd[12];
+			buf[1] = cdd[9];
+			tmp = rrmax;
+			rrmax = findmax(buf, 2U);
+			if (tmp > rrmax) {
+				rrmax = tmp;
+			}
+
+			buf[0] = cdd[24];
+			buf[1] = cdd[21];
+			tmp = wwmax;
+			wwmax = findmax(buf, 2U);
+			if (tmp > wwmax) {
+				wwmax = tmp;
+			}
+
+			buf[0] = cdd[40];
+			buf[1] = cdd[39];
+			buf[2] = cdd[36];
+			buf[3] = cdd[35];
+			tmp = rwmax;
+			rwmax = findmax(buf, 4U);
+			if (tmp > rwmax) {
+				rwmax = tmp;
+			}
+
+			buf[0] = cdd[56];
+			buf[1] = cdd[55];
+			buf[2] = cdd[52];
+			buf[3] = cdd[51];
+			tmp = wrmax;
+			wrmax = findmax(buf, 4U);
+			if (tmp > wrmax) {
+				wrmax = tmp;
+			}
+
+			break;
+
+		case 4U:
+			tmp = rrmax;
+			c = &cdd[1];
+			rrmax = findmax(c, 12U);
+			if (tmp > rrmax) {
+				rrmax = tmp;
+			}
+
+			tmp = wwmax;
+			c = &cdd[13];
+			wwmax = findmax(c, 12U);
+			if (tmp > wwmax) {
+				wwmax = tmp;
+			}
+
+			tmp = rwmax;
+			c = &cdd[25];
+			rwmax = findmax(c, 16U);
+			if (tmp > rwmax) {
+				rwmax = tmp;
+			}
+
+			tmp = wrmax;
+			c = &cdd[41];
+			wrmax = findmax(c, 16U);
+			if (tmp > wrmax) {
+				wrmax = tmp;
+			}
+
+			break;
+
+		}
+	}
+
+	rrmax += 3U;
+	wwmax += 4U;
+
+	if (wwmax > 7U) {
+		wwmax = 7U;
+	}
+
+	if (rrmax > 7U) {
+		rrmax = 7U;
+	}
+
+	if (wrmax > U(0xf)) {
+		wrmax = 0U;
+	}
+
+	if (rwmax > U(0x7)) {
+		rwmax = U(0x7);
+	}
+
+	val = *tcfg0;
+	tww = (val >> 24U) & U(0x3);
+	trr = (val >> 26U) & U(0x3);
+	twr = (val >> 28U) & U(0x3);
+	trw = (val >> 30U) & U(0x3);
+
+	val = *tcfg4;
+	tww = tww | (((val >> 8U) & U(0x1)) << 2U);
+	trr = trr | (((val >> 10U) & U(0x1)) << 2U);
+	twr = twr | (((val >> 12U) & U(0x1)) << 2U);
+	trw = trw | (((val >> 14U) & U(0x3)) << 2U);
+
+	if (trr > rrmax) {
+		rrmax = trr;
+	}
+
+	if (tww > wwmax) {
+		wwmax = tww;
+	}
+
+	if (trw > rwmax) {
+		rwmax = trw;
+	}
+
+	if (twr > wrmax) {
+		wrmax = twr;
+	}
+
+	debug("CDD rrmax %x wwmax %x rwmax %x wrmax %x\n",
+			rrmax, wwmax, rwmax, wrmax);
+
+	val = ((wwmax & U(0x3)) << 24U)
+		| ((rrmax & U(0x3)) << 26U)
+		| ((wrmax & U(0x3)) << 28U)
+		| ((rwmax & U(0x3)) << 30U);
+
+	*tcfg0 = (*tcfg0 & U(0x00FFFFFF)) | (val);
+
+	val = (((wwmax >> 2U) & U(0x1)) << 8U)
+		| (((rrmax >> 2U) & U(0x1)) << 10U)
+		| (((wrmax >> 2U) & U(0x1)) << 12U)
+		| (((rwmax >> 2U) & U(0x3)) << 14U);
+
+	*tcfg4 = (*tcfg4 & U(0xffff00ff)) | val;
+}
+#endif
+
+#ifdef NXP_WARM_BOOT
+int save_phy_training_values(uint16_t **phy_ptr, uint32_t address_to_store,
+		uint32_t num_of_phy, int train2d)
+{
+	uint16_t *phy = NULL, value = 0x0;
+	uint32_t size = 1U, num_of_regs = 1U, phy_store = 0U;
+	int i = 0, j = 0, ret = -EINVAL;
+
+	ret = xspi_sector_erase(address_to_store, PHY_ERASE_SIZE);
+	if (ret != 0) {
+		return -EINVAL;
+	}
+
+	for (j = 0; j < num_of_phy; j++) {
+		/* Save training values of all PHYs */
+		phy = phy_ptr[j];
+		size = sizeof(training_1D_values);
+		num_of_regs = ARRAY_SIZE(training_1D_values);
+
+		/* Enable access to the internal CSRs */
+		phy_io_write16(phy, t_apbonly |
+				csr_micro_cont_mux_sel_addr, 0x0);
+		/* Enable clocks in case they were disabled. */
+		phy_io_write16(phy, t_drtub |
+				csr_ucclk_hclk_enables_addr, 0x3);
+		if (train2d != 0) {
+		/* Address to store training values is
+		 * to be appended for next PHY
+		 */
+			phy_store = address_to_store + (j *
+					(sizeof(training_1D_values) +
+					 sizeof(training_2D_values)));
+		} else {
+			phy_store = address_to_store + (j *
+					(sizeof(training_1D_values)));
+		}
+		debug("Saving 1D Training reg val at: %d\n", phy_store);
+		for (i = 0; i < num_of_regs; i++) {
+			value = phy_io_read16(phy, training_1D_values[i].addr);
+#ifdef DEBUG_WARM_RESET
+			debug("%d. Reg: %x, value: %x PHY: %p\n", i,
+					training_1D_values[i].addr, value,
+					phy_io_addr(phy,
+						training_1D_values[i].addr));
+#endif
+			training_1D_values[i].data = value;
+		}
+		/* Storing 1D training values on flash */
+		ret = xspi_write(phy_store, (void *)training_1D_values, size);
+		if (train2d != 0) {
+			phy_store = phy_store+size;
+			size = sizeof(training_2D_values);
+			num_of_regs = ARRAY_SIZE(training_2D_values);
+			debug("Saving 2D Training reg val at:%d\n", phy_store);
+			for (i = 0; i < num_of_regs; i++) {
+				value = phy_io_read16(phy,
+						training_2D_values[i].addr);
+				training_2D_values[i].data = value;
+#ifdef DEBUG_WARM_RESET
+				debug("%d.2D addr:0x%x,val:0x%x,PHY:0x%p\n",
+						i, training_2D_values[i].addr,
+						value, phy_io_addr(phy,
+						training_2D_values[i].addr));
+#endif
+			}
+			/* Storing 2D training values on flash */
+			ret = xspi_write(phy_store, training_2D_values,
+					size);
+		}
+		/* Disable clocks in case they were disabled. */
+		phy_io_write16(phy, t_drtub |
+				csr_ucclk_hclk_enables_addr, 0x0);
+		/* Disable access to the internal CSRs */
+		phy_io_write16(phy, t_apbonly |
+				csr_micro_cont_mux_sel_addr, 0x1);
+	}
+	if (ret != 0) {
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+int restore_phy_training_values(uint16_t **phy_ptr, uint32_t address_to_restore,
+		uint32_t num_of_phy, int train2d)
+{
+	uint16_t *phy = NULL;
+	uint32_t size = 1U, num_of_regs = 1U, phy_store = 0U;
+	int i = 0, j = 0, ret = -EINVAL;
+
+	debug("Restoring Training register values\n");
+	for (j = 0; j < num_of_phy; j++) {
+		phy = phy_ptr[j];
+		size = sizeof(training_1D_values);
+		num_of_regs = ARRAY_SIZE(training_1D_values);
+		if (train2d != 0) {
+		/* The address to restore training values is
+		 * to be appended for next PHY
+		 */
+			phy_store = address_to_restore + (j *
+					(sizeof(training_1D_values) +
+					 sizeof(training_2D_values)));
+		} else {
+			phy_store = address_to_restore + (j *
+					(sizeof(training_1D_values)));
+		}
+		/* Enable access to the internal CSRs */
+		phy_io_write16(phy, t_apbonly |
+				csr_micro_cont_mux_sel_addr, 0x0);
+		/* Enable clocks in case they were disabled. */
+		phy_io_write16(phy, t_drtub |
+				csr_ucclk_hclk_enables_addr, 0x3);
+
+		/* Reading 1D training values from flash*/
+		ret = xspi_read(phy_store, (uint32_t *)training_1D_values,
+				size);
+		debug("Restoring 1D Training reg val at:%08x\n", phy_store);
+		for (i = 0; i < num_of_regs; i++) {
+			phy_io_write16(phy, training_1D_values[i].addr,
+					training_1D_values[i].data);
+#ifdef DEBUG_WARM_RESET
+			debug("%d. Reg: %x, value: %x PHY: %p\n", i,
+					training_1D_values[i].addr,
+					training_1D_values[i].data,
+					phy_io_addr(phy,
+						training_1D_values[i].addr));
+#endif
+		}
+		if (train2d != 0) {
+			phy_store = phy_store + size;
+			size = sizeof(training_2D_values);
+			num_of_regs = ARRAY_SIZE(training_2D_values);
+			/* Reading 2D training values from flash */
+			ret = xspi_read(phy_store,
+					(uint32_t *)training_2D_values,	size);
+			debug("Restoring 2D Training reg val at:%08x\n",
+					phy_store);
+			for (i = 0; i < num_of_regs; i++) {
+				phy_io_write16(phy, training_2D_values[i].addr,
+						training_2D_values[i].data);
+#ifdef DEBUG_WARM_RESET
+				debug("%d. Reg: %x, value: %x PHY: %p\n", i,
+						training_2D_values[i].addr,
+						training_2D_values[i].data,
+						phy_io_addr(phy,
+						training_1D_values[i].addr));
+#endif
+			}
+		}
+		/* Disable clocks in case they were disabled. */
+		phy_io_write16(phy, t_drtub |
+				csr_ucclk_hclk_enables_addr, 0x0);
+		/* Disable access to the internal CSRs */
+		phy_io_write16(phy, t_apbonly |
+				csr_micro_cont_mux_sel_addr, 0x1);
+	}
+	if (ret != 0) {
+		return -EINVAL;
+	}
+	return 0;
+}
+#endif
+
+static void load_pieimage(uint16_t *phy,
+			  enum dimm_types dimm_type)
+{
+	int i;
+	int size;
+	const struct pie *image = NULL;
+
+	switch (dimm_type) {
+	case UDIMM:
+	case SODIMM:
+	case NODIMM:
+		image = pie_udimm;
+		size = ARRAY_SIZE(pie_udimm);
+		break;
+	case RDIMM:
+		image = pie_rdimm;
+		size = ARRAY_SIZE(pie_rdimm);
+		break;
+	case LRDIMM:
+		image = pie_lrdimm;
+		size = ARRAY_SIZE(pie_lrdimm);
+		break;
+	default:
+		printf("Unsupported DIMM type\n");
+		break;
+	}
+
+	if (image != NULL) {
+		for (i = 0; i < size; i++)
+			phy_io_write16(phy, image[i].addr, image[i].data);
+	}
+}
+
+static void prog_acsm_playback(uint16_t *phy,
+			       const struct input *input, const void *msg)
+{
+	int vec;
+	const struct ddr4r1d *msg_blk;
+	uint16_t acsmplayback[2][3];
+	uint32_t f0rc0a;
+	uint32_t f0rc3x;
+	uint32_t f0rc5x;
+
+	if (input->basic.dimm_type != RDIMM) {
+		return;
+	}
+
+	msg_blk = msg;
+	f0rc0a = (msg_blk->f0rc0a_d0 & U(0xf)) | U(0xa0);
+	f0rc3x = (msg_blk->f0rc3x_d0 & U(0xff)) | U(0x300);
+	f0rc5x = (input->adv.phy_gen2_umctl_f0rc5x & U(0xff)) | U(0x500);
+
+	acsmplayback[0][0] = U(0x3ff) & f0rc0a;
+	acsmplayback[1][0] = (U(0x1c00) & f0rc0a) >> 10U;
+	acsmplayback[0][1] = U(0x3ff) & f0rc3x;
+	acsmplayback[1][1] = (U(0x1c00) & f0rc3x) >> 10U;
+	acsmplayback[0][2] = U(0x3ff) & f0rc5x;
+	acsmplayback[1][2] = (U(0x1c00) & f0rc5x) >> 10U;
+	for (vec = 0; vec < 3; vec++) {
+		phy_io_write16(phy, t_acsm | (csr_acsm_playback0x0_addr +
+			       (vec << 1)), acsmplayback[0][vec]);
+		phy_io_write16(phy, t_acsm | (csr_acsm_playback1x0_addr +
+			       (vec << 1)), acsmplayback[1][vec]);
+	}
+}
+
+static void prog_acsm_ctr(uint16_t *phy,
+			  const struct input *input)
+{
+	if (input->basic.dimm_type != RDIMM) {
+		return;
+	}
+
+	phy_io_write16(phy, t_acsm | csr_acsm_ctrl13_addr,
+		       0xf << csr_acsm_cke_enb_lsb);
+
+	phy_io_write16(phy, t_acsm | csr_acsm_ctrl0_addr,
+		       csr_acsm_par_mode_mask | csr_acsm_2t_mode_mask);
+}
+
+static void prog_cal_rate_run(uint16_t *phy,
+			  const struct input *input)
+{
+	int cal_rate;
+	int cal_interval;
+	int cal_once;
+	uint32_t addr;
+
+	cal_interval = input->adv.cal_interval;
+	cal_once = input->adv.cal_once;
+	cal_rate = 0x1 << csr_cal_run_lsb		|
+			cal_once << csr_cal_once_lsb	|
+			cal_interval << csr_cal_interval_lsb;
+	addr = t_master | csr_cal_rate_addr;
+	phy_io_write16(phy, addr, cal_rate);
+}
+
+static void prog_seq0bdly0(uint16_t *phy,
+		    const struct input *input)
+{
+	int ps_count[4];
+	int frq;
+	uint32_t addr;
+	int lower_freq_opt = 0;
+
+	__unused const soc_info_t *soc_info;
+
+	frq = input->basic.frequency >> 1;
+	ps_count[0] = frq >> 3; /* 0.5 * frq / 4*/
+	if (input->basic.frequency < 400) {
+		lower_freq_opt = (input->basic.dimm_type == RDIMM) ? 7 : 3;
+	} else if (input->basic.frequency < 533) {
+		lower_freq_opt = (input->basic.dimm_type == RDIMM) ? 14 : 11;
+	}
+
+	/* 1.0 * frq / 4 - lower_freq */
+	ps_count[1] = (frq >> 2) - lower_freq_opt;
+	ps_count[2] = (frq << 1) +  (frq >> 1); /* 10.0 * frq / 4 */
+
+#ifdef DDR_PLL_FIX
+	soc_info = get_soc_info();
+	if (soc_info->maj_ver == 1) {
+		ps_count[0] = 0x520; /* seq0bdly0 */
+		ps_count[1] = 0xa41; /* seq0bdly1 */
+		ps_count[2] = 0x668a; /* seq0bdly2 */
+	}
+#endif
+	if (frq > 266) {
+		ps_count[3] = 44;
+	} else if (frq > 200) {
+		ps_count[3] = 33;
+	} else {
+		ps_count[3] = 16;
+	}
+
+	addr = t_master | csr_seq0bdly0_addr;
+	phy_io_write16(phy, addr, ps_count[0]);
+
+	debug("seq0bdly0 = 0x%x\n", phy_io_read16(phy, addr));
+
+	addr = t_master | csr_seq0bdly1_addr;
+	phy_io_write16(phy, addr, ps_count[1]);
+
+	debug("seq0bdly1 = 0x%x\n", phy_io_read16(phy, addr));
+
+	addr = t_master | csr_seq0bdly2_addr;
+	phy_io_write16(phy, addr, ps_count[2]);
+
+	debug("seq0bdly2 = 0x%x\n", phy_io_read16(phy, addr));
+
+	addr = t_master | csr_seq0bdly3_addr;
+	phy_io_write16(phy, addr, ps_count[3]);
+
+	debug("seq0bdly3 = 0x%x\n", phy_io_read16(phy, addr));
+}
+
+/* Only RDIMM requires msg_blk */
+static void i_load_pie(uint16_t **phy_ptr,
+		       const struct input *input,
+		       const void *msg)
+{
+	int i;
+	uint16_t *phy;
+
+	for (i = 0; i < NUM_OF_DDRC; i++) {
+		phy = phy_ptr[i];
+		if (phy == NULL) {
+			continue;
+		}
+
+		phy_io_write16(phy,
+			       t_apbonly | csr_micro_cont_mux_sel_addr,
+			       0U);
+
+		load_pieimage(phy, input->basic.dimm_type);
+
+		prog_seq0bdly0(phy, input);
+		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag0_addr,
+			       U(0x0000));
+		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag1_addr,
+			       U(0x0173));
+		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag2_addr,
+			       U(0x0060));
+		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag3_addr,
+			       U(0x6110));
+		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag4_addr,
+			       U(0x2152));
+		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag5_addr,
+			       U(0xdfbd));
+		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag6_addr,
+			       input->basic.dimm_type == RDIMM &&
+			       input->adv.phy_gen2_umctl_opt == 1U ?
+			       U(0x6000) : U(0xffff));
+		phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag7_addr,
+			       U(0x6152));
+		prog_acsm_playback(phy, input, msg);		/* rdimm */
+		prog_acsm_ctr(phy, input);			/* rdimm */
+
+		phy_io_write16(phy, t_master | csr_cal_zap_addr, U(0x1));
+		prog_cal_rate_run(phy, input);
+
+		phy_io_write16(phy, t_drtub | csr_ucclk_hclk_enables_addr,
+			       input->basic.dimm_type == RDIMM ? U(0x2) : 0U);
+
+		phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 1U);
+	}
+}
+
+static void phy_gen2_init_input(struct input *input)
+{
+	int i;
+
+	input->adv.dram_byte_swap		= 0;
+	input->adv.ext_cal_res_val		= 0;
+	input->adv.tx_slew_rise_dq		= 0xf;
+	input->adv.tx_slew_fall_dq		= 0xf;
+	input->adv.tx_slew_rise_ac		= 0xf;
+	input->adv.tx_slew_fall_ac		= 0xf;
+	input->adv.mem_alert_en			= 0;
+	input->adv.mem_alert_puimp		= 5;
+	input->adv.mem_alert_vref_level		= 0x29;
+	input->adv.mem_alert_sync_bypass	= 0;
+	input->adv.cal_interval			= 0x9;
+	input->adv.cal_once			= 0;
+	input->adv.dis_dyn_adr_tri		= 0;
+	input->adv.is2ttiming			= 0;
+	input->adv.d4rx_preamble_length		= 0;
+	input->adv.d4tx_preamble_length		= 0;
+
+	for (i = 0; i < 7; i++) {
+		debug("mr[%d] = 0x%x\n", i, input->mr[i]);
+	}
+
+	debug("input->cs_d0 = 0x%x\n", input->cs_d0);
+	debug("input->cs_d1 = 0x%x\n", input->cs_d1);
+	debug("input->mirror = 0x%x\n", input->mirror);
+	debug("PHY ODT impedance = %d ohm\n", input->adv.odtimpedance);
+	debug("PHY DQ driver impedance = %d ohm\n", input->adv.tx_impedance);
+	debug("PHY Addr driver impedance = %d ohm\n", input->adv.atx_impedance);
+
+	for (i = 0; i < 4; i++) {
+		debug("odt[%d] = 0x%x\n", i, input->odt[i]);
+	}
+
+	if (input->basic.dimm_type == RDIMM) {
+		for (i = 0; i < 16; i++) {
+			debug("input->rcw[%d] = 0x%x\n", i, input->rcw[i]);
+		}
+		debug("input->rcw3x = 0x%x\n", input->rcw3x);
+	}
+}
+
+/*
+ * All protocols share the same base structure of message block.
+ * RDIMM and LRDIMM have more entries defined than UDIMM.
+ * Create message blocks for 1D and 2D training.
+ * Update len with message block size.
+ */
+static int phy_gen2_msg_init(void *msg_1d,
+			     void *msg_2d,
+			     const struct input *input)
+{
+	struct ddr4u1d *msg_blk = msg_1d;
+	struct ddr4u2d *msg_blk_2d = msg_2d;
+	struct ddr4r1d *msg_blk_r;
+	struct ddr4lr1d *msg_blk_lr;
+
+	switch (input->basic.dimm_type) {
+	case UDIMM:
+	case SODIMM:
+	case NODIMM:
+		msg_blk->dram_type	= U(0x2);
+		break;
+	case RDIMM:
+		msg_blk->dram_type	= U(0x4);
+		break;
+	case LRDIMM:
+		msg_blk->dram_type	= U(0x5);
+		break;
+	default:
+		ERROR("Unsupported DIMM type\n");
+		return -EINVAL;
+	}
+	msg_blk->pstate			= 0U;
+
+	/*Enable quickRd2D, a substage of read deskew, to 1D training.*/
+	msg_blk->reserved00             = U(0x20);
+
+	/*Enable High-Effort WrDQ1D.*/
+	msg_blk->reserved00             |= U(0x40);
+
+	/* Enable 1D extra effort training.*/
+	msg_blk->reserved1c[3]		= U(0x3);
+
+	if (input->basic.dimm_type == LRDIMM) {
+		msg_blk->sequence_ctrl	= U(0x3f1f);
+	} else {
+		msg_blk->sequence_ctrl	= U(0x031f);
+	}
+	msg_blk->phy_config_override	= 0U;
+#ifdef DDR_PHY_DEBUG
+	msg_blk->hdt_ctrl		= U(0x5);
+#else
+	msg_blk->hdt_ctrl		= U(0xc9);
+#endif
+	msg_blk->msg_misc		= U(0x0);
+	msg_blk->dfimrlmargin		= U(0x1);
+	msg_blk->phy_vref		= input->vref ? input->vref : U(0x61);
+	msg_blk->cs_present		= input->cs_d0 | input->cs_d1;
+	msg_blk->cs_present_d0		= input->cs_d0;
+	msg_blk->cs_present_d1		= input->cs_d1;
+	if (input->mirror != 0) {
+		msg_blk->addr_mirror	= U(0x0a);	/* odd CS are mirrored */
+	}
+	msg_blk->share2dvref_result	= 1U;
+
+	msg_blk->acsm_odt_ctrl0		= input->odt[0];
+	msg_blk->acsm_odt_ctrl1		= input->odt[1];
+	msg_blk->acsm_odt_ctrl2		= input->odt[2];
+	msg_blk->acsm_odt_ctrl3		= input->odt[3];
+	msg_blk->enabled_dqs = (input->basic.num_active_dbyte_dfi0 +
+				input->basic.num_active_dbyte_dfi1) * 8;
+	msg_blk->x16present		= input->basic.dram_data_width == 0x10 ?
+					  msg_blk->cs_present : 0;
+	msg_blk->d4misc			= U(0x1);
+	msg_blk->cs_setup_gddec		= U(0x1);
+	msg_blk->rtt_nom_wr_park0	= 0U;
+	msg_blk->rtt_nom_wr_park1	= 0U;
+	msg_blk->rtt_nom_wr_park2	= 0U;
+	msg_blk->rtt_nom_wr_park3	= 0U;
+	msg_blk->rtt_nom_wr_park4	= 0U;
+	msg_blk->rtt_nom_wr_park5	= 0U;
+	msg_blk->rtt_nom_wr_park6	= 0U;
+	msg_blk->rtt_nom_wr_park7	= 0U;
+	msg_blk->mr0			= input->mr[0];
+	msg_blk->mr1			= input->mr[1];
+	msg_blk->mr2			= input->mr[2];
+	msg_blk->mr3			= input->mr[3];
+	msg_blk->mr4			= input->mr[4];
+	msg_blk->mr5			= input->mr[5];
+	msg_blk->mr6			= input->mr[6];
+	if ((msg_blk->mr4 & U(0x1c0)) != 0U) {
+		ERROR("Setting DRAM CAL mode is not supported\n");
+	}
+
+	msg_blk->alt_cas_l		= 0U;
+	msg_blk->alt_wcas_l		= 0U;
+
+	msg_blk->dramfreq		= input->basic.frequency * 2U;
+	msg_blk->pll_bypass_en		= input->basic.pll_bypass;
+	msg_blk->dfi_freq_ratio		= input->basic.dfi_freq_ratio == 0U ? 1U :
+					  input->basic.dfi_freq_ratio == 1U ? 2U :
+					  4U;
+	msg_blk->bpznres_val		= input->adv.ext_cal_res_val;
+	msg_blk->disabled_dbyte		= 0U;
+
+	debug("msg_blk->dram_type = 0x%x\n", msg_blk->dram_type);
+	debug("msg_blk->sequence_ctrl = 0x%x\n", msg_blk->sequence_ctrl);
+	debug("msg_blk->phy_cfg = 0x%x\n", msg_blk->phy_cfg);
+	debug("msg_blk->x16present = 0x%x\n", msg_blk->x16present);
+	debug("msg_blk->dramfreq = 0x%x\n", msg_blk->dramfreq);
+	debug("msg_blk->pll_bypass_en = 0x%x\n", msg_blk->pll_bypass_en);
+	debug("msg_blk->dfi_freq_ratio = 0x%x\n", msg_blk->dfi_freq_ratio);
+	debug("msg_blk->phy_odt_impedance = 0x%x\n",
+						msg_blk->phy_odt_impedance);
+	debug("msg_blk->phy_drv_impedance = 0x%x\n",
+						msg_blk->phy_drv_impedance);
+	debug("msg_blk->bpznres_val = 0x%x\n", msg_blk->bpznres_val);
+	debug("msg_blk->enabled_dqs = 0x%x\n", msg_blk->enabled_dqs);
+	debug("msg_blk->acsm_odt_ctrl0 = 0x%x\n", msg_blk->acsm_odt_ctrl0);
+	debug("msg_blk->acsm_odt_ctrl1 = 0x%x\n", msg_blk->acsm_odt_ctrl1);
+	debug("msg_blk->acsm_odt_ctrl2 = 0x%x\n", msg_blk->acsm_odt_ctrl2);
+	debug("msg_blk->acsm_odt_ctrl3 = 0x%x\n", msg_blk->acsm_odt_ctrl3);
+
+	/* RDIMM only */
+	if (input->basic.dimm_type == RDIMM ||
+	    input->basic.dimm_type == LRDIMM) {
+		msg_blk_r = (struct ddr4r1d *)msg_blk;
+		if (msg_blk_r->cs_present_d0 != 0U) {
+			msg_blk_r->f0rc00_d0 = input->rcw[0];
+			msg_blk_r->f0rc01_d0 = input->rcw[1];
+			msg_blk_r->f0rc02_d0 = input->rcw[2];
+			msg_blk_r->f0rc03_d0 = input->rcw[3];
+			msg_blk_r->f0rc04_d0 = input->rcw[4];
+			msg_blk_r->f0rc05_d0 = input->rcw[5];
+			msg_blk_r->f0rc06_d0 = input->rcw[6];
+			msg_blk_r->f0rc07_d0 = input->rcw[7];
+			msg_blk_r->f0rc08_d0 = input->rcw[8];
+			msg_blk_r->f0rc09_d0 = input->rcw[9];
+			msg_blk_r->f0rc0a_d0 = input->rcw[10];
+			msg_blk_r->f0rc0b_d0 = input->rcw[11];
+			msg_blk_r->f0rc0c_d0 = input->rcw[12];
+			msg_blk_r->f0rc0d_d0 = input->rcw[13];
+			msg_blk_r->f0rc0e_d0 = input->rcw[14];
+			msg_blk_r->f0rc0f_d0 = input->rcw[15];
+			msg_blk_r->f0rc3x_d0 = input->rcw3x;
+		}
+		if (msg_blk_r->cs_present_d1 != 0) {
+			msg_blk_r->f0rc00_d1 = input->rcw[0];
+			msg_blk_r->f0rc01_d1 = input->rcw[1];
+			msg_blk_r->f0rc02_d1 = input->rcw[2];
+			msg_blk_r->f0rc03_d1 = input->rcw[3];
+			msg_blk_r->f0rc04_d1 = input->rcw[4];
+			msg_blk_r->f0rc05_d1 = input->rcw[5];
+			msg_blk_r->f0rc06_d1 = input->rcw[6];
+			msg_blk_r->f0rc07_d1 = input->rcw[7];
+			msg_blk_r->f0rc08_d1 = input->rcw[8];
+			msg_blk_r->f0rc09_d1 = input->rcw[9];
+			msg_blk_r->f0rc0a_d1 = input->rcw[10];
+			msg_blk_r->f0rc0b_d1 = input->rcw[11];
+			msg_blk_r->f0rc0c_d1 = input->rcw[12];
+			msg_blk_r->f0rc0d_d1 = input->rcw[13];
+			msg_blk_r->f0rc0e_d1 = input->rcw[14];
+			msg_blk_r->f0rc0f_d1 = input->rcw[15];
+			msg_blk_r->f0rc3x_d1 = input->rcw3x;
+		}
+		if (input->basic.dimm_type == LRDIMM) {
+			msg_blk_lr = (struct ddr4lr1d *)msg_blk;
+			msg_blk_lr->bc0a_d0 = msg_blk_lr->f0rc0a_d0;
+			msg_blk_lr->bc0a_d1 = msg_blk_lr->f0rc0a_d1;
+			msg_blk_lr->f0bc6x_d0 = msg_blk_lr->f0rc3x_d0;
+			msg_blk_lr->f0bc6x_d1 = msg_blk_lr->f0rc3x_d1;
+		}
+	}
+
+	/* below is different for 1D and 2D message block */
+	if (input->basic.train2d != 0) {
+		memcpy(msg_blk_2d, msg_blk, sizeof(struct ddr4u1d));
+		/*High-Effort WrDQ1D is applicable to 2D traning also*/
+		msg_blk_2d->reserved00          |= U(0x40);
+		msg_blk_2d->sequence_ctrl	= U(0x0061);
+		msg_blk_2d->rx2d_train_opt	= 0U;
+		msg_blk_2d->tx2d_train_opt	= 0U;
+		msg_blk_2d->share2dvref_result	= 1U;
+		msg_blk_2d->delay_weight2d	= U(0x20);
+		msg_blk_2d->voltage_weight2d	= U(0x80);
+		debug("rx2d_train_opt %d, tx2d_train_opt %d\n",
+				msg_blk_2d->rx2d_train_opt,
+				msg_blk_2d->tx2d_train_opt);
+	}
+
+	msg_blk->phy_cfg = (((msg_blk->mr3 & U(0x8)) != 0U) ||
+				((msg_blk_2d->mr3 & 0x8) != 0U)) ? 0U
+				: input->adv.is2ttiming;
+
+	return 0;
+}
+
+static void prog_tx_pre_drv_mode(uint16_t *phy,
+				 const struct input *input)
+{
+	int lane, byte, b_addr, c_addr, p_addr;
+	int tx_slew_rate, tx_pre_p, tx_pre_n;
+	int tx_pre_drv_mode = 0x2;
+	uint32_t addr;
+
+	/* Program TxPreDrvMode with 0x2 */
+	/* FIXME: TxPreDrvMode depends on DramType? */
+	tx_pre_p = input->adv.tx_slew_rise_dq;
+	tx_pre_n = input->adv.tx_slew_fall_dq;
+	tx_slew_rate = tx_pre_drv_mode << csr_tx_pre_drv_mode_lsb	|
+		     tx_pre_p << csr_tx_pre_p_lsb			|
+		     tx_pre_n << csr_tx_pre_n_lsb;
+	p_addr = 0;
+	for (byte = 0; byte < input->basic.num_dbyte; byte++) {
+		c_addr = byte << 12;
+		for (lane = 0; lane <= 1; lane++) {
+			b_addr = lane << 8;
+			addr = p_addr | t_dbyte | c_addr | b_addr |
+					csr_tx_slew_rate_addr;
+			phy_io_write16(phy, addr, tx_slew_rate);
+		}
+	}
+}
+
+static void prog_atx_pre_drv_mode(uint16_t *phy,
+				  const struct input *input)
+{
+	int anib, c_addr;
+	int atx_slew_rate, atx_pre_p, atx_pre_n, atx_pre_drv_mode,
+		ck_anib_inst[2];
+	uint32_t addr;
+
+	atx_pre_n = input->adv.tx_slew_fall_ac;
+	atx_pre_p = input->adv.tx_slew_rise_ac;
+
+	if (input->basic.num_anib == 8) {
+		ck_anib_inst[0] = 1;
+		ck_anib_inst[1] = 1;
+	} else if (input->basic.num_anib == 10 || input->basic.num_anib == 12 ||
+	    input->basic.num_anib == 13) {
+		ck_anib_inst[0] = 4;
+		ck_anib_inst[1] = 5;
+	} else {
+		ERROR("Invalid number of aNIBs: %d\n", input->basic.num_anib);
+		return;
+	}
+
+	for (anib = 0; anib < input->basic.num_anib; anib++) {
+		c_addr = anib << 12;
+		if (anib == ck_anib_inst[0] || anib == ck_anib_inst[1]) {
+			atx_pre_drv_mode = 0;
+		} else {
+			atx_pre_drv_mode = 3;
+		}
+		atx_slew_rate = atx_pre_drv_mode << csr_atx_pre_drv_mode_lsb |
+				atx_pre_n << csr_atx_pre_n_lsb		     |
+				atx_pre_p << csr_atx_pre_p_lsb;
+		addr = t_anib | c_addr | csr_atx_slew_rate_addr;
+		phy_io_write16(phy, addr, atx_slew_rate);
+	}
+}
+
+static void prog_enable_cs_multicast(uint16_t *phy,
+				     const struct input *input)
+{
+	uint32_t addr = t_master | csr_enable_cs_multicast_addr;
+
+	if (input->basic.dimm_type != RDIMM &&
+	    input->basic.dimm_type != LRDIMM) {
+		return;
+	}
+
+	phy_io_write16(phy, addr, input->adv.cast_cs_to_cid);
+}
+
+static void prog_dfi_rd_data_cs_dest_map(uint16_t *phy,
+					 unsigned int ip_rev,
+					 const struct input *input,
+					 const struct ddr4lr1d *msg)
+{
+	const struct ddr4lr1d *msg_blk;
+	uint16_t dfi_xxdestm0 = 0U;
+	uint16_t dfi_xxdestm1 = 0U;
+	uint16_t dfi_xxdestm2 = 0U;
+	uint16_t dfi_xxdestm3 = 0U;
+	uint16_t dfi_rd_data_cs_dest_map;
+	uint16_t dfi_wr_data_cs_dest_map;
+	__unused const soc_info_t *soc_info;
+
+#ifdef ERRATA_DDR_A011396
+	/* Only apply to DDRC 5.05.00 */
+	soc_info = get_soc_info(NXP_DCFG_ADDR);
+	if ((soc_info->maj_ver == 1U) && (ip_rev == U(0x50500))) {
+		phy_io_write16(phy,
+				t_master | csr_dfi_rd_data_cs_dest_map_addr,
+				0U);
+		return;
+	}
+#endif
+
+	msg_blk = msg;
+
+	switch (input->basic.dimm_type) {
+	case UDIMM:
+	case SODIMM:
+	case NODIMM:
+		if ((msg_blk->msg_misc & U(0x40)) != 0U) {
+			dfi_rd_data_cs_dest_map = U(0xa0);
+			dfi_wr_data_cs_dest_map = U(0xa0);
+
+			phy_io_write16(phy,
+				t_master | csr_dfi_rd_data_cs_dest_map_addr,
+				dfi_rd_data_cs_dest_map);
+			phy_io_write16(phy,
+				t_master | csr_dfi_wr_data_cs_dest_map_addr,
+				dfi_wr_data_cs_dest_map);
+		}
+		break;
+	case LRDIMM:
+		if (msg->cs_present_d1 != 0U) {
+			dfi_xxdestm2 = 1U;
+			dfi_xxdestm3 = 1U;
+		}
+
+		dfi_rd_data_cs_dest_map =
+			dfi_xxdestm0 << csr_dfi_rd_destm0_lsb	|
+			dfi_xxdestm1 << csr_dfi_rd_destm1_lsb	|
+			dfi_xxdestm2 << csr_dfi_rd_destm2_lsb	|
+			dfi_xxdestm3 << csr_dfi_rd_destm3_lsb;
+		dfi_wr_data_cs_dest_map =
+			dfi_xxdestm0 << csr_dfi_wr_destm0_lsb	|
+			dfi_xxdestm1 << csr_dfi_wr_destm1_lsb	|
+			dfi_xxdestm2 << csr_dfi_wr_destm2_lsb	|
+			dfi_xxdestm3 << csr_dfi_wr_destm3_lsb;
+		phy_io_write16(phy, t_master | csr_dfi_rd_data_cs_dest_map_addr,
+				dfi_rd_data_cs_dest_map);
+		phy_io_write16(phy, t_master | csr_dfi_wr_data_cs_dest_map_addr,
+				dfi_wr_data_cs_dest_map);
+
+		break;
+	default:
+		break;
+	}
+}
+
+static void prog_pll_ctrl(uint16_t *phy,
+			   const struct input *input)
+{
+	uint32_t addr;
+	int pll_ctrl1 = 0x21; /* 000100001b */
+	int pll_ctrl4 = 0x17f; /* 101111111b */
+	int pll_test_mode = 0x24; /* 00100100b */
+
+	addr = t_master | csr_pll_ctrl1_addr;
+	phy_io_write16(phy, addr, pll_ctrl1);
+
+	debug("pll_ctrl1 = 0x%x\n", phy_io_read16(phy, addr));
+
+	addr = t_master | csr_pll_test_mode_addr;
+	phy_io_write16(phy, addr, pll_test_mode);
+
+	debug("pll_test_mode = 0x%x\n", phy_io_read16(phy, addr));
+
+	addr = t_master | csr_pll_ctrl4_addr;
+	phy_io_write16(phy, addr, pll_ctrl4);
+
+	debug("pll_ctrl4 = 0x%x\n", phy_io_read16(phy, addr));
+}
+
+static void prog_pll_ctrl2(uint16_t *phy,
+			   const struct input *input)
+{
+	int pll_ctrl2;
+	uint32_t addr = t_master | csr_pll_ctrl2_addr;
+
+	if (input->basic.frequency / 2 < 235) {
+		pll_ctrl2 = 0x7;
+	} else if (input->basic.frequency / 2 < 313) {
+		pll_ctrl2 = 0x6;
+	} else if (input->basic.frequency / 2 < 469) {
+		pll_ctrl2 = 0xb;
+	} else if (input->basic.frequency / 2 < 625) {
+		pll_ctrl2 = 0xa;
+	} else if (input->basic.frequency / 2 < 938) {
+		pll_ctrl2 = 0x19;
+	} else if (input->basic.frequency / 2 < 1067) {
+		pll_ctrl2 = 0x18;
+	} else {
+		pll_ctrl2 = 0x19;
+	}
+
+	phy_io_write16(phy, addr, pll_ctrl2);
+
+	debug("pll_ctrl2 = 0x%x\n", phy_io_read16(phy, addr));
+}
+
+static void prog_dll_lck_param(uint16_t *phy, const struct input *input)
+{
+	uint32_t addr = t_master | csr_dll_lockparam_addr;
+
+	phy_io_write16(phy, addr, U(0x212));
+	debug("dll_lck_param = 0x%x\n", phy_io_read16(phy, addr));
+}
+
+static void prog_dll_gain_ctl(uint16_t *phy, const struct input *input)
+{
+	uint32_t addr = t_master | csr_dll_gain_ctl_addr;
+
+	phy_io_write16(phy, addr, U(0x61));
+	debug("dll_gain_ctl = 0x%x\n", phy_io_read16(phy, addr));
+}
+
+static void prog_pll_pwr_dn(uint16_t *phy,
+			   const struct input *input)
+{
+	uint32_t addr;
+
+	addr = t_master | csr_pll_pwr_dn_addr;
+	phy_io_write16(phy, addr, 0U);
+
+	debug("pll_pwrdn = 0x%x\n", phy_io_read16(phy, addr));
+}
+
+static void prog_ard_ptr_init_val(uint16_t *phy,
+				  const struct input *input)
+{
+	int ard_ptr_init_val;
+	uint32_t addr = t_master | csr_ard_ptr_init_val_addr;
+
+	if (input->basic.frequency >= 933) {
+		ard_ptr_init_val = 0x2;
+	} else {
+		ard_ptr_init_val = 0x1;
+	}
+
+	phy_io_write16(phy, addr, ard_ptr_init_val);
+}
+
+static void prog_dqs_preamble_control(uint16_t *phy,
+				      const struct input *input)
+{
+	int data;
+	uint32_t addr = t_master | csr_dqs_preamble_control_addr;
+	const int wdqsextension = 0;
+	const int lp4sttc_pre_bridge_rx_en = 0;
+	const int lp4postamble_ext = 0;
+	const int lp4tgl_two_tck_tx_dqs_pre = 0;
+	const int position_dfe_init = 2;
+	const int dll_rx_preamble_mode = 1;
+	int two_tck_tx_dqs_pre = input->adv.d4tx_preamble_length;
+	int two_tck_rx_dqs_pre = input->adv.d4rx_preamble_length;
+
+	data = wdqsextension << csr_wdqsextension_lsb			|
+	       lp4sttc_pre_bridge_rx_en << csr_lp4sttc_pre_bridge_rx_en_lsb |
+	       lp4postamble_ext << csr_lp4postamble_ext_lsb		|
+	       lp4tgl_two_tck_tx_dqs_pre << csr_lp4tgl_two_tck_tx_dqs_pre_lsb |
+	       position_dfe_init << csr_position_dfe_init_lsb		|
+	       two_tck_tx_dqs_pre << csr_two_tck_tx_dqs_pre_lsb		|
+	       two_tck_rx_dqs_pre << csr_two_tck_rx_dqs_pre_lsb;
+	phy_io_write16(phy, addr, data);
+
+	data = dll_rx_preamble_mode << csr_dll_rx_preamble_mode_lsb;
+	addr = t_master | csr_dbyte_dll_mode_cntrl_addr;
+	phy_io_write16(phy, addr, data);
+}
+
+static void prog_proc_odt_time_ctl(uint16_t *phy,
+				   const struct input *input)
+{
+	int proc_odt_time_ctl;
+	uint32_t addr = t_master | csr_proc_odt_time_ctl_addr;
+
+	if (input->adv.wdqsext != 0) {
+		proc_odt_time_ctl = 0x3;
+	} else if (input->basic.frequency <= 933) {
+		proc_odt_time_ctl = 0xa;
+	} else if (input->basic.frequency <= 1200) {
+		if (input->adv.d4rx_preamble_length == 1) {
+			proc_odt_time_ctl = 0x2;
+		} else {
+			proc_odt_time_ctl = 0x6;
+		}
+	} else {
+		if (input->adv.d4rx_preamble_length == 1) {
+			proc_odt_time_ctl = 0x3;
+		} else {
+			proc_odt_time_ctl = 0x7;
+		}
+	}
+	phy_io_write16(phy, addr, proc_odt_time_ctl);
+}
+
+static const struct impedance_mapping map[] = {
+	{	29,	0x3f	},
+	{	31,	0x3e	},
+	{	33,	0x3b	},
+	{	36,	0x3a	},
+	{	39,	0x39	},
+	{	42,	0x38	},
+	{	46,	0x1b	},
+	{	51,	0x1a	},
+	{	57,	0x19	},
+	{	64,	0x18	},
+	{	74,	0x0b	},
+	{	88,	0x0a	},
+	{	108,	0x09	},
+	{	140,	0x08	},
+	{	200,	0x03	},
+	{	360,	0x02	},
+	{	481,	0x01	},
+	{}
+};
+
+static int map_impedance(int strength)
+{
+	const struct impedance_mapping *tbl = map;
+	int val = 0;
+
+	if (strength == 0) {
+		return 0;
+	}
+
+	while (tbl->ohm != 0U) {
+		if (strength < tbl->ohm) {
+			val = tbl->code;
+			break;
+		}
+		tbl++;
+	}
+
+	return val;
+}
+
+static int map_odtstren_p(int strength, int hard_macro_ver)
+{
+	int val = -1;
+
+	if (hard_macro_ver == 4) {
+		if (strength == 0) {
+			val = 0;
+		} else if (strength == 120) {
+			val = 0x8;
+		} else if (strength == 60) {
+			val = 0x18;
+		} else if (strength == 40) {
+			val = 0x38;
+		} else {
+			printf("error: unsupported ODTStrenP %d\n", strength);
+		}
+	} else {
+		val = map_impedance(strength);
+	}
+
+	return val;
+}
+
+static void prog_tx_odt_drv_stren(uint16_t *phy,
+				  const struct input *input)
+{
+	int lane, byte, b_addr, c_addr;
+	int tx_odt_drv_stren;
+	int odtstren_p, odtstren_n;
+	uint32_t addr;
+
+	odtstren_p = map_odtstren_p(input->adv.odtimpedance,
+				input->basic.hard_macro_ver);
+	if (odtstren_p < 0) {
+		return;
+	}
+
+	odtstren_n = 0;	/* always high-z */
+	tx_odt_drv_stren = odtstren_n << csr_odtstren_n_lsb | odtstren_p;
+	for (byte = 0; byte < input->basic.num_dbyte; byte++) {
+		c_addr = byte << 12;
+		for (lane = 0; lane <= 1; lane++) {
+			b_addr = lane << 8;
+			addr = t_dbyte | c_addr | b_addr |
+				csr_tx_odt_drv_stren_addr;
+			phy_io_write16(phy, addr, tx_odt_drv_stren);
+		}
+	}
+}
+
+static int map_drvstren_fsdq_p(int strength, int hard_macro_ver)
+{
+	int val = -1;
+
+	if (hard_macro_ver == 4) {
+		if (strength == 0) {
+			val = 0x07;
+		} else if (strength == 120) {
+			val = 0x0F;
+		} else if (strength == 60) {
+			val = 0x1F;
+		} else if (strength == 40) {
+			val = 0x3F;
+		} else {
+			printf("error: unsupported drv_stren_fSDq_p %d\n",
+			       strength);
+		}
+	} else {
+		val = map_impedance(strength);
+	}
+
+	return val;
+}
+
+static int map_drvstren_fsdq_n(int strength, int hard_macro_ver)
+{
+	int val = -1;
+
+	if (hard_macro_ver == 4) {
+		if (strength == 0) {
+			val = 0x00;
+		} else if (strength == 120) {
+			val = 0x08;
+		} else if (strength == 60) {
+			val = 0x18;
+		} else if (strength == 40) {
+			val = 0x38;
+		} else {
+			printf("error: unsupported drvStrenFSDqN %d\n",
+			       strength);
+		}
+	} else {
+		val = map_impedance(strength);
+	}
+
+	return val;
+}
+
+static void prog_tx_impedance_ctrl1(uint16_t *phy,
+				    const struct input *input)
+{
+	int lane, byte, b_addr, c_addr;
+	int tx_impedance_ctrl1;
+	int drv_stren_fsdq_p, drv_stren_fsdq_n;
+	uint32_t addr;
+
+	drv_stren_fsdq_p = map_drvstren_fsdq_p(input->adv.tx_impedance,
+					input->basic.hard_macro_ver);
+	drv_stren_fsdq_n = map_drvstren_fsdq_n(input->adv.tx_impedance,
+					input->basic.hard_macro_ver);
+	tx_impedance_ctrl1 = drv_stren_fsdq_n << csr_drv_stren_fsdq_n_lsb |
+			   drv_stren_fsdq_p << csr_drv_stren_fsdq_p_lsb;
+
+	for (byte = 0; byte < input->basic.num_dbyte; byte++) {
+		c_addr = byte << 12;
+		for (lane = 0; lane <= 1; lane++) {
+			b_addr = lane << 8;
+			addr = t_dbyte | c_addr | b_addr |
+				csr_tx_impedance_ctrl1_addr;
+			phy_io_write16(phy, addr, tx_impedance_ctrl1);
+		}
+	}
+}
+
+static int map_adrv_stren_p(int strength, int hard_macro_ver)
+{
+	int val = -1;
+
+	if (hard_macro_ver == 4) {
+		if (strength == 120) {
+			val = 0x1c;
+		} else if (strength == 60) {
+			val = 0x1d;
+		} else if (strength == 40) {
+			val = 0x1f;
+		} else {
+			printf("error: unsupported aDrv_stren_p %d\n",
+			       strength);
+		}
+	} else {
+		if (strength == 120) {
+			val = 0x00;
+		} else if (strength == 60) {
+			val = 0x01;
+		} else if (strength == 40) {
+			val = 0x03;
+		} else if (strength == 30) {
+			val = 0x07;
+		} else if (strength == 24) {
+			val = 0x0f;
+		} else if (strength == 20) {
+			val = 0x1f;
+		} else {
+			printf("error: unsupported aDrv_stren_p %d\n",
+			       strength);
+		}
+	}
+
+	return val;
+}
+
+static int map_adrv_stren_n(int strength, int hard_macro_ver)
+{
+	int val = -1;
+
+	if (hard_macro_ver == 4) {
+		if (strength == 120) {
+			val = 0x00;
+		} else if (strength == 60) {
+			val = 0x01;
+		} else if (strength == 40) {
+			val = 0x03;
+		} else {
+			printf("Error: unsupported ADrvStrenP %d\n", strength);
+		}
+	} else {
+		if (strength == 120) {
+			val = 0x00;
+		} else if (strength == 60) {
+			val = 0x01;
+		} else if (strength == 40) {
+			val = 0x03;
+		} else if (strength == 30) {
+			val = 0x07;
+		} else if (strength == 24) {
+			val = 0x0f;
+		} else if (strength == 20) {
+			val = 0x1f;
+		} else {
+			printf("Error: unsupported ADrvStrenP %d\n", strength);
+		}
+	}
+
+	return val;
+}
+
+static void prog_atx_impedance(uint16_t *phy,
+			       const struct input *input)
+{
+	int anib, c_addr;
+	int atx_impedance;
+	int adrv_stren_p;
+	int adrv_stren_n;
+	uint32_t addr;
+
+	if (input->basic.hard_macro_ver == 4 &&
+	    input->adv.atx_impedance == 20) {
+		printf("Error:ATxImpedance has to be 40 for HardMacroVer 4\n");
+		return;
+	}
+
+	adrv_stren_p = map_adrv_stren_p(input->adv.atx_impedance,
+					input->basic.hard_macro_ver);
+	adrv_stren_n = map_adrv_stren_n(input->adv.atx_impedance,
+					input->basic.hard_macro_ver);
+	atx_impedance = adrv_stren_n << csr_adrv_stren_n_lsb		|
+		       adrv_stren_p << csr_adrv_stren_p_lsb;
+	for (anib = 0; anib < input->basic.num_anib; anib++) {
+		c_addr = anib << 12;
+		addr = t_anib | c_addr | csr_atx_impedance_addr;
+		phy_io_write16(phy, addr, atx_impedance);
+	}
+}
+
+static void prog_dfi_mode(uint16_t *phy,
+			  const struct input *input)
+{
+	int dfi_mode;
+	uint32_t addr;
+
+	if (input->basic.dfi1exists == 1) {
+		dfi_mode = 0x5;	/* DFI1 exists but disabled */
+	} else {
+		dfi_mode = 0x1;	/* DFI1 does not physically exists */
+	}
+	addr = t_master | csr_dfi_mode_addr;
+	phy_io_write16(phy, addr, dfi_mode);
+}
+
+static void prog_acx4_anib_dis(uint16_t *phy, const struct input *input)
+{
+	uint32_t addr;
+
+	addr = t_master | csr_acx4_anib_dis_addr;
+	phy_io_write16(phy, addr, 0x0);
+	debug("%s 0x%x\n", __func__, phy_io_read16(phy, addr));
+}
+
+static void prog_dfi_camode(uint16_t *phy,
+			    const struct input *input)
+{
+	int dfi_camode = 2;
+	uint32_t addr = t_master | csr_dfi_camode_addr;
+
+	phy_io_write16(phy, addr, dfi_camode);
+}
+
+static void prog_cal_drv_str0(uint16_t *phy,
+			      const struct input *input)
+{
+	int cal_drv_str0;
+	int cal_drv_str_pd50;
+	int cal_drv_str_pu50;
+	uint32_t addr;
+
+	cal_drv_str_pu50 = input->adv.ext_cal_res_val;
+	cal_drv_str_pd50 = cal_drv_str_pu50;
+	cal_drv_str0 = cal_drv_str_pu50 << csr_cal_drv_str_pu50_lsb |
+			cal_drv_str_pd50;
+	addr = t_master | csr_cal_drv_str0_addr;
+	phy_io_write16(phy, addr, cal_drv_str0);
+}
+
+static void prog_cal_uclk_info(uint16_t *phy,
+			       const struct input *input)
+{
+	int cal_uclk_ticks_per1u_s;
+	uint32_t addr;
+
+	cal_uclk_ticks_per1u_s = input->basic.frequency >> 1;
+	if (cal_uclk_ticks_per1u_s < 24) {
+		cal_uclk_ticks_per1u_s = 24;
+	}
+
+	addr = t_master | csr_cal_uclk_info_addr;
+	phy_io_write16(phy, addr, cal_uclk_ticks_per1u_s);
+}
+
+static void prog_cal_rate(uint16_t *phy,
+			  const struct input *input)
+{
+	int cal_rate;
+	int cal_interval;
+	int cal_once;
+	uint32_t addr;
+
+	cal_interval = input->adv.cal_interval;
+	cal_once = input->adv.cal_once;
+	cal_rate = cal_once << csr_cal_once_lsb		|
+		  cal_interval << csr_cal_interval_lsb;
+	addr = t_master | csr_cal_rate_addr;
+	phy_io_write16(phy, addr, cal_rate);
+}
+
+static void prog_vref_in_global(uint16_t *phy,
+				const struct input *input,
+				const struct ddr4u1d *msg)
+{
+	int vref_in_global;
+	int global_vref_in_dac = 0;
+	int global_vref_in_sel = 0;
+	uint32_t addr;
+
+	/*
+	 * phy_vref_prcnt = msg->phy_vref / 128.0
+	 *  global_vref_in_dac = (phy_vref_prcnt - 0.345) / 0.005;
+	 */
+	global_vref_in_dac = (msg->phy_vref * 1000 - 345 * 128 + 320) /
+			     (5 * 128);
+
+	vref_in_global = global_vref_in_dac << csr_global_vref_in_dac_lsb |
+		       global_vref_in_sel;
+	addr = t_master | csr_vref_in_global_addr;
+	phy_io_write16(phy, addr, vref_in_global);
+}
+
+static void prog_dq_dqs_rcv_cntrl(uint16_t *phy,
+				  const struct input *input)
+{
+	int lane, byte, b_addr, c_addr;
+	int dq_dqs_rcv_cntrl;
+	int gain_curr_adj_defval = 0xb;
+	int major_mode_dbyte = 3;
+	int dfe_ctrl_defval = 0;
+	int ext_vref_range_defval = 0;
+	int sel_analog_vref = 1;
+	uint32_t addr;
+
+	dq_dqs_rcv_cntrl = gain_curr_adj_defval << csr_gain_curr_adj_lsb |
+			major_mode_dbyte << csr_major_mode_dbyte_lsb	|
+			dfe_ctrl_defval << csr_dfe_ctrl_lsb		|
+			ext_vref_range_defval << csr_ext_vref_range_lsb	|
+			sel_analog_vref << csr_sel_analog_vref_lsb;
+	for (byte = 0; byte < input->basic.num_dbyte; byte++) {
+		c_addr = byte << 12;
+		for (lane = 0; lane <= 1; lane++) {
+			b_addr = lane << 8;
+			addr = t_dbyte | c_addr | b_addr |
+					csr_dq_dqs_rcv_cntrl_addr;
+			phy_io_write16(phy, addr, dq_dqs_rcv_cntrl);
+		}
+	}
+}
+
+static void prog_mem_alert_control(uint16_t *phy,
+				   const struct input *input)
+{
+	int mem_alert_control;
+	int mem_alert_control2;
+	int malertpu_en;
+	int malertrx_en;
+	int malertvref_level;
+	int malertpu_stren;
+	int malertsync_bypass;
+	int malertdisable_val_defval = 1;
+	uint32_t addr;
+
+	if (input->basic.dram_type == DDR4 && input->adv.mem_alert_en == 1) {
+		malertpu_en = 1;
+		malertrx_en = 1;
+		malertpu_stren = input->adv.mem_alert_puimp;
+		malertvref_level = input->adv.mem_alert_vref_level;
+		malertsync_bypass = input->adv.mem_alert_sync_bypass;
+		mem_alert_control = malertdisable_val_defval << 14	|
+				  malertrx_en << 13		|
+				  malertpu_en << 12		|
+				  malertpu_stren << 8		|
+				  malertvref_level;
+		mem_alert_control2 = malertsync_bypass <<
+					csr_malertsync_bypass_lsb;
+		addr = t_master | csr_mem_alert_control_addr;
+		phy_io_write16(phy, addr, mem_alert_control);
+		addr = t_master | csr_mem_alert_control2_addr;
+		phy_io_write16(phy, addr, mem_alert_control2);
+	}
+}
+
+static void prog_dfi_freq_ratio(uint16_t *phy,
+				const struct input *input)
+{
+	int dfi_freq_ratio;
+	uint32_t addr = t_master | csr_dfi_freq_ratio_addr;
+
+	dfi_freq_ratio = input->basic.dfi_freq_ratio;
+	phy_io_write16(phy, addr, dfi_freq_ratio);
+}
+
+static void prog_tristate_mode_ca(uint16_t *phy,
+				  const struct input *input)
+{
+	int tristate_mode_ca;
+	int dis_dyn_adr_tri;
+	int ddr2tmode;
+	int ck_dis_val_def = 1;
+	uint32_t addr = t_master | csr_tristate_mode_ca_addr;
+
+	dis_dyn_adr_tri = input->adv.dis_dyn_adr_tri;
+	ddr2tmode = input->adv.is2ttiming;
+	tristate_mode_ca = ck_dis_val_def << csr_ck_dis_val_lsb	|
+			 ddr2tmode << csr_ddr2tmode_lsb		|
+			 dis_dyn_adr_tri << csr_dis_dyn_adr_tri_lsb;
+	phy_io_write16(phy, addr, tristate_mode_ca);
+}
+
+static void prog_dfi_xlat(uint16_t *phy,
+			  const struct input *input)
+{
+	uint16_t loop_vector;
+	int dfifreqxlat_dat;
+	int pllbypass_dat;
+	uint32_t addr;
+
+	/* fIXME: Shall unused P1, P2, P3 be bypassed? */
+	pllbypass_dat = input->basic.pll_bypass; /* only [0] is used */
+	for (loop_vector = 0; loop_vector < 8; loop_vector++) {
+		if (loop_vector == 0) {
+			dfifreqxlat_dat = pllbypass_dat + 0x5555;
+		} else if (loop_vector == 7) {
+			dfifreqxlat_dat = 0xf000;
+		} else {
+			dfifreqxlat_dat = 0x5555;
+		}
+		addr = t_master | (csr_dfi_freq_xlat0_addr + loop_vector);
+		phy_io_write16(phy, addr, dfifreqxlat_dat);
+	}
+}
+
+static void prog_dbyte_misc_mode(uint16_t *phy,
+				 const struct input *input,
+				 const struct ddr4u1d *msg)
+{
+	int dbyte_misc_mode;
+	int dq_dqs_rcv_cntrl1;
+	int dq_dqs_rcv_cntrl1_1;
+	int byte, c_addr;
+	uint32_t addr;
+
+	dbyte_misc_mode = 0x1 << csr_dbyte_disable_lsb;
+	dq_dqs_rcv_cntrl1 = 0x1ff << csr_power_down_rcvr_lsb		|
+			 0x1 << csr_power_down_rcvr_dqs_lsb	|
+			 0x1 << csr_rx_pad_standby_en_lsb;
+	dq_dqs_rcv_cntrl1_1 = (0x100 << csr_power_down_rcvr_lsb |
+			csr_rx_pad_standby_en_mask);
+	for (byte = 0; byte < input->basic.num_dbyte; byte++) {
+		c_addr = byte << 12;
+		if (byte <= input->basic.num_active_dbyte_dfi0 - 1) {
+			/* disable RDBI lane if not used. */
+			if ((input->basic.dram_data_width != 4) &&
+				(((msg->mr5 >> 12) & 0x1) == 0)) {
+				addr = t_dbyte
+					| c_addr
+					| csr_dq_dqs_rcv_cntrl1_addr;
+				phy_io_write16(phy, addr, dq_dqs_rcv_cntrl1_1);
+			}
+		} else {
+			addr = t_dbyte | c_addr | csr_dbyte_misc_mode_addr;
+			phy_io_write16(phy, addr, dbyte_misc_mode);
+			addr = t_dbyte | c_addr | csr_dq_dqs_rcv_cntrl1_addr;
+			phy_io_write16(phy, addr, dq_dqs_rcv_cntrl1);
+		}
+	}
+}
+
+static void prog_master_x4config(uint16_t *phy,
+				 const struct input *input)
+{
+	int master_x4config;
+	int x4tg;
+	uint32_t addr = t_master | csr_master_x4config_addr;
+
+	x4tg = input->basic.dram_data_width == 4 ? 0xf : 0;
+	master_x4config = x4tg << csr_x4tg_lsb;
+	phy_io_write16(phy, addr, master_x4config);
+}
+
+static void prog_dmipin_present(uint16_t *phy,
+				const struct input *input,
+				const struct ddr4u1d *msg)
+{
+	int dmipin_present;
+	uint32_t addr = t_master | csr_dmipin_present_addr;
+
+	dmipin_present = (msg->mr5 >> 12) & 0x1;
+	phy_io_write16(phy, addr, dmipin_present);
+}
+
+static void prog_dfi_phyupd(uint16_t *phy,
+			  const struct input *input)
+{
+	int dfiphyupd_dat;
+	uint32_t addr;
+
+	addr = t_master | (csr_dfiphyupd_addr);
+	dfiphyupd_dat = phy_io_read16(phy, addr) &
+				~csr_dfiphyupd_threshold_mask;
+
+	phy_io_write16(phy, addr, dfiphyupd_dat);
+}
+
+static void prog_cal_misc2(uint16_t *phy,
+			  const struct input *input)
+{
+	int cal_misc2_dat, cal_drv_pdth_data, cal_offsets_dat;
+	uint32_t addr;
+
+	addr = t_master | (csr_cal_misc2_addr);
+	cal_misc2_dat = phy_io_read16(phy, addr) |
+			(1 << csr_cal_misc2_err_dis);
+
+	phy_io_write16(phy, addr, cal_misc2_dat);
+
+	addr = t_master | (csr_cal_offsets_addr);
+
+	cal_drv_pdth_data = 0x9 << 6;
+	cal_offsets_dat = (phy_io_read16(phy, addr) & ~csr_cal_drv_pdth_mask)
+			| cal_drv_pdth_data;
+
+	phy_io_write16(phy, addr, cal_offsets_dat);
+}
+
+static int c_init_phy_config(uint16_t **phy_ptr,
+			     unsigned int ip_rev,
+			     const struct input *input,
+			     const void *msg)
+{
+	int i;
+	uint16_t *phy;
+	__unused const soc_info_t *soc_info;
+
+	for (i = 0; i < NUM_OF_DDRC; i++) {
+		phy = phy_ptr[i];
+		if (phy == NULL) {
+			continue;
+		}
+
+		debug("Initialize PHY %d config\n", i);
+		prog_dfi_phyupd(phy, input);
+		prog_cal_misc2(phy, input);
+		prog_tx_pre_drv_mode(phy, input);
+		prog_atx_pre_drv_mode(phy, input);
+		prog_enable_cs_multicast(phy, input);	/* rdimm and lrdimm */
+		prog_dfi_rd_data_cs_dest_map(phy, ip_rev, input, msg);
+		prog_pll_ctrl2(phy, input);
+#ifdef DDR_PLL_FIX
+		soc_info = get_soc_info();
+		debug("SOC_SI_REV = %x\n", soc_info->maj_ver);
+		if (soc_info->maj_ver == 1) {
+			prog_pll_pwr_dn(phy, input);
+
+			/*Enable FFE aka TxEqualizationMode for rev1 SI*/
+			phy_io_write16(phy, 0x010048, 0x1);
+		}
+#endif
+		prog_ard_ptr_init_val(phy, input);
+		prog_dqs_preamble_control(phy, input);
+		prog_dll_lck_param(phy, input);
+		prog_dll_gain_ctl(phy, input);
+		prog_proc_odt_time_ctl(phy, input);
+		prog_tx_odt_drv_stren(phy, input);
+		prog_tx_impedance_ctrl1(phy, input);
+		prog_atx_impedance(phy, input);
+		prog_dfi_mode(phy, input);
+		prog_dfi_camode(phy, input);
+		prog_cal_drv_str0(phy, input);
+		prog_cal_uclk_info(phy, input);
+		prog_cal_rate(phy, input);
+		prog_vref_in_global(phy, input, msg);
+		prog_dq_dqs_rcv_cntrl(phy, input);
+		prog_mem_alert_control(phy, input);
+		prog_dfi_freq_ratio(phy, input);
+		prog_tristate_mode_ca(phy, input);
+		prog_dfi_xlat(phy, input);
+		prog_dbyte_misc_mode(phy, input, msg);
+		prog_master_x4config(phy, input);
+		prog_dmipin_present(phy, input, msg);
+		prog_acx4_anib_dis(phy, input);
+	}
+
+	return 0;
+}
+
+static uint32_t get_mail(uint16_t *phy, int stream)
+{
+	int timeout;
+	uint32_t mail = 0U;
+
+	timeout = TIMEOUTDEFAULT;
+	while (((--timeout) != 0) &&
+	       ((phy_io_read16(phy, t_apbonly | csr_uct_shadow_regs)
+		& uct_write_prot_shadow_mask) != 0)) {
+		mdelay(10);
+	}
+	if (timeout == 0) {
+		ERROR("Timeout getting mail from PHY\n");
+		return 0xFFFF;
+	}
+
+	mail = phy_io_read16(phy, t_apbonly |
+			     csr_uct_write_only_shadow);
+	if (stream != 0) {
+		mail |= phy_io_read16(phy, t_apbonly |
+				      csr_uct_dat_write_only_shadow) << 16;
+	}
+
+	/* Ack */
+	phy_io_write16(phy, t_apbonly | csr_dct_write_prot, 0);
+
+	timeout = TIMEOUTDEFAULT;
+	while (((--timeout) != 0) &&
+	       ((phy_io_read16(phy, t_apbonly | csr_uct_shadow_regs)
+		 & uct_write_prot_shadow_mask) == 0)) {
+		mdelay(1);
+	}
+	if (timeout == 0) {
+		ERROR("Timeout ack PHY mail\n");
+	}
+
+	/* completed */
+	phy_io_write16(phy, t_apbonly | csr_dct_write_prot, 1U);
+
+	return mail;
+}
+
+#ifdef DDR_PHY_DEBUG
+static const char *lookup_msg(uint32_t index, int train2d)
+{
+	int i;
+	int size;
+	const struct phy_msg *messages;
+	const char *ptr = NULL;
+
+	if (train2d != 0) {
+		messages = messages_2d;
+		size = ARRAY_SIZE(messages_2d);
+	} else {
+		messages = messages_1d;
+		size = ARRAY_SIZE(messages_1d);
+	}
+	for (i = 0; i < size; i++) {
+		if (messages[i].index == index) {
+			ptr = messages[i].msg;
+			break;
+		}
+	}
+
+	return ptr;
+}
+#endif
+
+#define MAX_ARGS 32
+static void decode_stream_message(uint16_t *phy, int train2d)
+{
+	uint32_t index __unused;
+
+	__unused const char *format;
+	__unused uint32_t args[MAX_ARGS];
+	__unused int i;
+
+#ifdef DDR_PHY_DEBUG
+	index = get_mail(phy, 1);
+	if ((index & 0xffff) > MAX_ARGS) {	/* up to MAX_ARGS args so far */
+		printf("Program error in %s\n", __func__);
+	}
+	for (i = 0; i < (index & 0xffff) && i < MAX_ARGS; i++) {
+		args[i] = get_mail(phy, 1);
+	}
+
+	format = lookup_msg(index, train2d);
+	if (format != NULL) {
+		printf("0x%08x: ", index);
+		printf(format, args[0], args[1], args[2], args[3], args[4],
+		       args[5], args[6], args[7], args[8], args[9], args[10],
+		       args[11], args[12], args[13], args[14], args[15],
+		       args[16], args[17], args[18], args[19], args[20],
+		       args[21], args[22], args[23], args[24], args[25],
+		       args[26], args[27], args[28], args[29], args[30],
+		       args[31]);
+	}
+#endif
+}
+
+static int wait_fw_done(uint16_t *phy, int train2d)
+{
+	uint32_t mail = 0U;
+
+	while (mail == U(0x0)) {
+		mail = get_mail(phy, 0);
+		switch (mail) {
+		case U(0x7):
+			debug("%s Training completed\n", train2d ? "2D" : "1D");
+			break;
+		case U(0xff):
+			debug("%s Training failure\n", train2d ? "2D" : "1D");
+			break;
+		case U(0x0):
+			debug("End of initialization\n");
+			mail = 0U;
+			break;
+		case U(0x1):
+			debug("End of fine write leveling\n");
+			mail = 0U;
+			break;
+		case U(0x2):
+			debug("End of read enable training\n");
+			mail = 0U;
+			break;
+		case U(0x3):
+			debug("End of read delay center optimization\n");
+			mail = 0U;
+			break;
+		case U(0x4):
+			debug("End of write delay center optimization\n");
+			mail = 0U;
+			break;
+		case U(0x5):
+			debug("End of 2D read delay/voltage center optimztn\n");
+			mail = 0U;
+			break;
+		case U(0x6):
+			debug("End of 2D write delay/voltage center optmztn\n");
+			mail = 0U;
+			break;
+		case U(0x8):
+			decode_stream_message(phy, train2d);
+			mail = 0U;
+			break;
+		case U(0x9):
+			debug("End of max read latency training\n");
+			mail = 0U;
+			break;
+		case U(0xa):
+			debug("End of read dq deskew training\n");
+			mail = 0U;
+			break;
+		case U(0xc):
+			debug("End of LRDIMM Specific training, including:\n");
+			debug("/tDWL, MREP, MRD and MWD\n");
+			mail = 0U;
+			break;
+		case U(0xd):
+			debug("End of CA training\n");
+			mail = 0U;
+			break;
+		case U(0xfd):
+			debug("End of MPR read delay center optimization\n");
+			mail = 0U;
+			break;
+		case U(0xfe):
+			debug("End of Write leveling coarse delay\n");
+			mail = 0U;
+			break;
+		case U(0xffff):
+			debug("Timed out\n");
+			break;
+		default:
+			mail = 0U;
+			break;
+		}
+	}
+
+	if (mail == U(0x7)) {
+		return 0;
+	} else if (mail == U(0xff)) {
+		return -EIO;
+	} else if (mail == U(0xffff)) {
+		return -ETIMEDOUT;
+	}
+
+	debug("PHY_GEN2 FW: Unxpected mail = 0x%x\n", mail);
+
+	return -EINVAL;
+}
+
+static int g_exec_fw(uint16_t **phy_ptr, int train2d, struct input *input)
+{
+	int ret = -EINVAL;
+	int i;
+	uint16_t *phy;
+
+	for (i = 0; i < NUM_OF_DDRC; i++) {
+		phy = phy_ptr[i];
+		if (phy == NULL) {
+			continue;
+		}
+		debug("Applying PLL optimal settings\n");
+		prog_pll_ctrl2(phy, input);
+		prog_pll_ctrl(phy, input);
+		phy_io_write16(phy,
+			       t_apbonly | csr_micro_cont_mux_sel_addr,
+			       0x1);
+		phy_io_write16(phy,
+			       t_apbonly | csr_micro_reset_addr,
+			       csr_reset_to_micro_mask |
+			       csr_stall_to_micro_mask);
+		phy_io_write16(phy,
+			       t_apbonly | csr_micro_reset_addr,
+			       csr_stall_to_micro_mask);
+		phy_io_write16(phy,
+			       t_apbonly | csr_micro_reset_addr,
+			       0);
+
+		ret = wait_fw_done(phy, train2d);
+		if (ret == -ETIMEDOUT) {
+			ERROR("Wait timed out: Firmware execution on PHY %d\n",
+			      i);
+		}
+	}
+	return ret;
+}
+
+static inline int send_fw(uint16_t *phy,
+			   uint32_t dst,
+			   uint16_t *img,
+			   uint32_t size)
+{
+	uint32_t i;
+
+	if ((size % 2U) != 0U) {
+		ERROR("Wrong image size 0x%x\n", size);
+		return -EINVAL;
+	}
+
+	for (i = 0U; i < size / 2; i++) {
+		phy_io_write16(phy, dst + i, *(img + i));
+	}
+
+	return 0;
+}
+
+static int load_fw(uint16_t **phy_ptr,
+		   struct input *input,
+		   int train2d,
+		   void *msg,
+		   size_t len,
+		   uintptr_t phy_gen2_fw_img_buf,
+		   int (*img_loadr)(unsigned int, uintptr_t *, uint32_t *),
+		   uint32_t warm_boot_flag)
+{
+	uint32_t imem_id, dmem_id;
+	uintptr_t image_buf;
+	uint32_t size;
+	int ret;
+	int i;
+	uint16_t *phy;
+
+	switch (input->basic.dimm_type) {
+	case UDIMM:
+	case SODIMM:
+	case NODIMM:
+		imem_id = train2d ? DDR_IMEM_UDIMM_2D_IMAGE_ID :
+			  DDR_IMEM_UDIMM_1D_IMAGE_ID;
+		dmem_id = train2d ? DDR_DMEM_UDIMM_2D_IMAGE_ID :
+			  DDR_DMEM_UDIMM_1D_IMAGE_ID;
+		break;
+	case RDIMM:
+		imem_id = train2d ? DDR_IMEM_RDIMM_2D_IMAGE_ID :
+			  DDR_IMEM_RDIMM_1D_IMAGE_ID;
+		dmem_id = train2d ? DDR_DMEM_RDIMM_2D_IMAGE_ID :
+			  DDR_DMEM_RDIMM_1D_IMAGE_ID;
+		break;
+	default:
+		ERROR("Unsupported DIMM type\n");
+		return -EINVAL;
+	}
+
+	size = PHY_GEN2_MAX_IMAGE_SIZE;
+	image_buf = (uintptr_t)phy_gen2_fw_img_buf;
+	mmap_add_dynamic_region(phy_gen2_fw_img_buf,
+			phy_gen2_fw_img_buf,
+			PHY_GEN2_MAX_IMAGE_SIZE,
+			MT_MEMORY | MT_RW | MT_SECURE);
+	ret = img_loadr(imem_id, &image_buf, &size);
+	if (ret != 0) {
+		ERROR("Failed to load %d firmware.\n", imem_id);
+		return ret;
+	}
+	debug("Loaded Imaged id %d of size %x at address %lx\n",
+						imem_id, size, image_buf);
+
+	for (i = 0; i < NUM_OF_DDRC; i++) {
+		phy = phy_ptr[i];
+		if (phy == NULL) {
+			continue;
+		}
+
+		if (warm_boot_flag != DDR_WARM_BOOT) {
+			if (train2d == 0) {
+				phy_io_write16(phy, t_master |
+						csr_mem_reset_l_addr,
+						csr_protect_mem_reset_mask);
+			}
+		}
+		/* Enable access to the internal CSRs */
+		phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 0);
+
+		ret = send_fw(phy, PHY_GEN2_IMEM_ADDR,
+			      (uint16_t *)image_buf, size);
+		if (ret != 0) {
+			return ret;
+		}
+	}
+
+	size = PHY_GEN2_MAX_IMAGE_SIZE;
+	image_buf = (uintptr_t)phy_gen2_fw_img_buf;
+	ret = img_loadr(dmem_id, &image_buf, &size);
+	if (ret != 0) {
+		ERROR("Failed to load %d firmware.\n", dmem_id);
+		return ret;
+	}
+	debug("Loaded Imaged id %d of size %x at address %lx\n",
+						dmem_id, size, image_buf);
+	image_buf += len;
+	size -= len;
+
+	for (i = 0; i < NUM_OF_DDRC; i++) {
+		phy = phy_ptr[i];
+		if (phy == NULL) {
+			continue;
+		}
+
+		ret = send_fw(phy, PHY_GEN2_DMEM_ADDR, msg, len);
+		if (ret != 0) {
+			return ret;
+		}
+
+		ret = send_fw(phy, PHY_GEN2_DMEM_ADDR + len / 2,
+			      (uint16_t *)image_buf, size);
+		if (ret != 0) {
+			return ret;
+		}
+	}
+
+	return ret;
+}
+
+static void parse_odt(const unsigned int val,
+		       const int read,
+		       const int i,
+		       const unsigned int cs_d0,
+		       const unsigned int cs_d1,
+		       unsigned int *odt)
+{
+	int shift = read ? 4 : 0;
+	int j;
+
+	if (i < 0 || i > 3) {
+		printf("Error: invalid chip-select value\n");
+	}
+	switch (val) {
+	case DDR_ODT_CS:
+		odt[i] |= (1 << i) << shift;
+		break;
+	case DDR_ODT_ALL_OTHER_CS:
+		for (j = 0; j < DDRC_NUM_CS; j++) {
+			if (i == j) {
+				continue;
+			}
+			if (((cs_d0 | cs_d1) & (1 << j)) == 0) {
+				continue;
+			}
+			odt[j] |= (1 << i) << shift;
+		}
+		break;
+	case DDR_ODT_CS_AND_OTHER_DIMM:
+		odt[i] |= (1 << i) << 4;
+		/* fallthrough */
+	case DDR_ODT_OTHER_DIMM:
+		for (j = 0; j < DDRC_NUM_CS; j++) {
+			if ((((cs_d0 & (1 << i)) != 0) &&
+						((cs_d1 & (1 << j)) != 0)) ||
+			    (((cs_d1 & (1 << i)) != 0) &&
+						((cs_d0 & (1 << j)) != 0))) {
+				odt[j] |= (1 << i) << shift;
+			}
+		}
+		break;
+	case DDR_ODT_ALL:
+		for (j = 0; j < DDRC_NUM_CS; j++) {
+			if (((cs_d0 | cs_d1) & (1 << j)) == 0) {
+				continue;
+			}
+			odt[j] |= (1 << i) << shift;
+		}
+		break;
+	case DDR_ODT_SAME_DIMM:
+		for (j = 0; j < DDRC_NUM_CS; j++) {
+			if ((((cs_d0 & (1 << i)) != 0) &&
+						((cs_d0 & (1 << j)) != 0)) ||
+			    (((cs_d1 & (1 << i)) != 0) &&
+						((cs_d1 & (1 << j)) != 0))) {
+				odt[j] |= (1 << i) << shift;
+			}
+		}
+		break;
+	case DDR_ODT_OTHER_CS_ONSAMEDIMM:
+		for (j = 0; j < DDRC_NUM_CS; j++) {
+			if (i == j) {
+				continue;
+			}
+			if ((((cs_d0 & (1 << i)) != 0) &&
+						((cs_d0 & (1 << j)) != 0)) ||
+			    (((cs_d1 & (1 << i)) != 0) &&
+						((cs_d1 & (1 << j)) != 0))) {
+				odt[j] |= (1 << i) << shift;
+			}
+		}
+		break;
+	case DDR_ODT_NEVER:
+		break;
+	default:
+		break;
+	}
+}
+
+#ifdef DEBUG_DDR_INPUT_CONFIG
+char *dram_types_str[] = {
+		"DDR4",
+		"DDR3",
+		"LDDDR4",
+		"LPDDR3",
+		"LPDDR2",
+		"DDR5"
+};
+
+char *dimm_types_str[] = {
+		"UDIMM",
+		"SODIMM",
+		"RDIMM",
+		"LRDIMM",
+		"NODIMM",
+};
+
+
+static void print_jason_format(struct input *input,
+			       struct ddr4u1d *msg_1d,
+			       struct ddr4u2d *msg_2d)
+{
+
+	printf("\n{");
+	printf("\n    \"dram_type\": \"%s\",", dram_types_str[input->basic.dram_type]);
+	printf("\n    \"dimm_type\": \"%s\",", dimm_types_str[input->basic.dimm_type]);
+	printf("\n    \"hard_macro_ver\": \"%d\",", input->basic.hard_macro_ver);
+	printf("\n    \"num_dbyte\": \"0x%04x\",", (unsigned int)input->basic.num_dbyte);
+	printf("\n    \"num_active_dbyte_dfi0\": \"0x%04x\",", (unsigned int)input->basic.num_active_dbyte_dfi0);
+	printf("\n    \"num_anib\": \"0x%04x\",", (unsigned int)input->basic.num_anib);
+	printf("\n    \"num_rank_dfi0\": \"0x%04x\",", (unsigned int)input->basic.num_rank_dfi0);
+	printf("\n    \"num_pstates\": \"0x%04x\",", (unsigned int)input->basic.num_pstates);
+	printf("\n    \"frequency\": \"%d\",", input->basic.frequency);
+	printf("\n    \"pll_bypass\": \"0x%04x\",", (unsigned int)input->basic.dfi_freq_ratio);
+	printf("\n    \"dfi_freq_ratio\": \"0x%04x\",", (unsigned int)input->basic.dfi_freq_ratio);
+	printf("\n    \"dfi1_exists\":  \"0x%04x\",", (unsigned int)input->basic.dfi1exists);
+	printf("\n    \"dram_data_width\": \"0x%04x\",", (unsigned int)input->basic.dram_data_width);
+	printf("\n    \"dram_byte_swap\": \"0x%04x\",", (unsigned int)input->adv.dram_byte_swap);
+	printf("\n    \"ext_cal_res_val\": \"0x%04x\",", (unsigned int)input->adv.ext_cal_res_val);
+	printf("\n    \"tx_slew_rise_dq\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_rise_dq);
+	printf("\n    \"tx_slew_fall_dq\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_fall_dq);
+	printf("\n    \"tx_slew_rise_ac\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_rise_ac);
+	printf("\n    \"tx_slew_fall_ac\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_fall_ac);
+	printf("\n    \"odt_impedance\": \"%d\",", input->adv.odtimpedance);
+	printf("\n    \"tx_impedance\": \"%d\",", input->adv.tx_impedance);
+	printf("\n    \"atx_impedance\": \"%d\",", input->adv.atx_impedance);
+	printf("\n    \"mem_alert_en\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_en);
+	printf("\n    \"mem_alert_pu_imp\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_puimp);
+	printf("\n    \"mem_alert_vref_level\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_vref_level);
+	printf("\n    \"mem_alert_sync_bypass\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_sync_bypass);
+	printf("\n    \"cal_interval\": \"0x%04x\",", (unsigned int)input->adv.cal_interval);
+	printf("\n    \"cal_once\": \"0x%04x\",", (unsigned int)input->adv.cal_once);
+	printf("\n    \"dis_dyn_adr_tri\": \"0x%04x\",", (unsigned int)input->adv.dis_dyn_adr_tri);
+	printf("\n    \"is2t_timing\": \"0x%04x\",", (unsigned int)input->adv.is2ttiming);
+	printf("\n    \"d4rx_preabmle_length\": \"0x%04x\",", (unsigned int)input->adv.d4rx_preamble_length);
+	printf("\n    \"d4tx_preamble_length\": \"0x%04x\",", (unsigned int)input->adv.d4tx_preamble_length);
+	printf("\n    \"msg_misc\": \"0x%02x\",", (unsigned int)msg_1d->msg_misc);
+	printf("\n    \"reserved00\": \"0x%01x\",", (unsigned int)msg_1d->reserved00);
+	printf("\n    \"hdt_ctrl\": \"0x%02x\",", (unsigned int)msg_1d->hdt_ctrl);
+	printf("\n    \"cs_present\": \"0x%02x\",", (unsigned int)msg_1d->cs_present);
+	printf("\n    \"phy_vref\": \"0x%02x\",", (unsigned int)msg_1d->phy_vref);
+	printf("\n    \"dfi_mrl_margin\": \"0x%02x\",", (unsigned int)msg_1d->dfimrlmargin);
+	printf("\n    \"addr_mirror\": \"0x%02x\",", (unsigned int)msg_1d->addr_mirror);
+	printf("\n    \"wr_odt_pat_rank0\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl0 & 0x0f));
+	printf("\n    \"wr_odt_pat_rank1\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl1 & 0x0f));
+	printf("\n    \"wr_odt_pat_rank2\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl2 & 0x0f));
+	printf("\n    \"wr_odt_pat_rank3\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl3 & 0x0f));
+	printf("\n    \"rd_odt_pat_rank0\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl0 & 0xf0));
+	printf("\n    \"rd_odt_pat_rank1\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl1 & 0xf0));
+	printf("\n    \"rd_odt_pat_rank2\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl2 & 0xf0));
+	printf("\n    \"rd_odt_pat_rank3\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl3 & 0xf0));
+	printf("\n    \"d4_misc\": \"0x%01x\",", (unsigned int)msg_1d->d4misc);
+	printf("\n    \"share_2d_vref_results\": \"0x%01x\",", (unsigned int)msg_1d->share2dvref_result);
+	printf("\n    \"sequence_ctrl\": \"0x%04x\",", (unsigned int)msg_1d->sequence_ctrl);
+	printf("\n    \"mr0\": \"0x%04x\",", (unsigned int)msg_1d->mr0);
+	printf("\n    \"mr1\": \"0x%04x\",", (unsigned int)msg_1d->mr1);
+	printf("\n    \"mr2\": \"0x%04x\",", (unsigned int)msg_1d->mr2);
+	printf("\n    \"mr3\": \"0x%04x\",", (unsigned int)msg_1d->mr3);
+	printf("\n    \"mr4\": \"0x%04x\",", (unsigned int)msg_1d->mr4);
+	printf("\n    \"mr5\": \"0x%04x\",", (unsigned int)msg_1d->mr5);
+	printf("\n    \"mr6\": \"0x%04x\",", (unsigned int)msg_1d->mr6);
+	printf("\n    \"alt_cal_l\": \"0x%04x\",", (unsigned int)msg_1d->alt_cas_l);
+	printf("\n    \"alt_wcal_l\": \"0x%04x\",", (unsigned int)msg_1d->alt_wcas_l);
+	printf("\n    \"sequence_ctrl_2d\": \"0x%04x\",", (unsigned int)msg_2d->sequence_ctrl);
+	printf("\n    \"rtt_nom_wr_park0\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park0);
+	printf("\n    \"rtt_nom_wr_park1\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park1);
+	printf("\n    \"rtt_nom_wr_park2\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park2);
+	printf("\n    \"rtt_nom_wr_park3\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park3);
+	printf("\n    \"rtt_nom_wr_park4\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park4);
+	printf("\n    \"rtt_nom_wr_park5\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park5);
+	printf("\n    \"rtt_nom_wr_park6\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park6);
+	printf("\n    \"rtt_nom_wr_park7\": \"0x%01x\"", (unsigned int)msg_1d->rtt_nom_wr_park7);
+	printf("\n}");
+	printf("\n");
+}
+#endif
+
+int compute_ddr_phy(struct ddr_info *priv)
+{
+	const unsigned long clk = priv->clk;
+	const struct memctl_opt *popts = &priv->opt;
+	const struct ddr_conf *conf = &priv->conf;
+	const struct dimm_params *dimm_param = &priv->dimm;
+	struct ddr_cfg_regs *regs = &priv->ddr_reg;
+	int ret;
+	static struct input input;
+	static struct ddr4u1d msg_1d;
+	static struct ddr4u2d msg_2d;
+	unsigned int i;
+	unsigned int odt_rd, odt_wr;
+	__unused const soc_info_t *soc_info;
+#ifdef NXP_APPLY_MAX_CDD
+	unsigned int tcfg0, tcfg4, rank;
+#endif
+
+	if (dimm_param == NULL) {
+		ERROR("Empty DIMM parameters.\n");
+		return -EINVAL;
+	}
+
+	zeromem(&input, sizeof(input));
+	zeromem(&msg_1d, sizeof(msg_1d));
+	zeromem(&msg_2d, sizeof(msg_2d));
+
+	input.basic.dram_type = DDR4;
+	/* FIXME: Add condition for LRDIMM */
+	input.basic.dimm_type = (dimm_param->rdimm != 0) ? RDIMM : UDIMM;
+	input.basic.num_dbyte = dimm_param->primary_sdram_width / 8 +
+				 dimm_param->ec_sdram_width / 8;
+	input.basic.num_active_dbyte_dfi0 = input.basic.num_dbyte;
+	input.basic.num_rank_dfi0 = dimm_param->n_ranks;
+	input.basic.dram_data_width = dimm_param->device_width;
+	input.basic.hard_macro_ver	= 0xa;
+	input.basic.num_pstates	= 1;
+	input.basic.dfi_freq_ratio	= 1;
+	input.basic.num_anib		= 0xc;
+	input.basic.train2d		= popts->skip2d ? 0 : 1;
+	input.basic.frequency = (int) (clk / 2000000ul);
+	debug("frequency = %dMHz\n", input.basic.frequency);
+	input.cs_d0 = conf->cs_on_dimm[0];
+#if DDRC_NUM_DIMM > 1
+	input.cs_d1 = conf->cs_on_dimm[1];
+#endif
+	input.mirror = dimm_param->mirrored_dimm;
+	input.mr[0] = regs->sdram_mode[0] & U(0xffff);
+	input.mr[1] = regs->sdram_mode[0] >> 16U;
+	input.mr[2] = regs->sdram_mode[1] >> 16U;
+	input.mr[3] = regs->sdram_mode[1] & U(0xffff);
+	input.mr[4] = regs->sdram_mode[8] >> 16U;
+	input.mr[5] = regs->sdram_mode[8] & U(0xffff);
+	input.mr[6] = regs->sdram_mode[9] >> 16U;
+	input.vref = popts->vref_phy;
+	debug("Vref_phy = %d percent\n", (input.vref * 100U) >> 7U);
+	for (i = 0U; i < DDRC_NUM_CS; i++) {
+		if ((regs->cs[i].config & SDRAM_CS_CONFIG_EN) == 0U) {
+			continue;
+		}
+		odt_rd = (regs->cs[i].config >> 20U) & U(0x7);
+		odt_wr = (regs->cs[i].config >> 16U) & U(0x7);
+		parse_odt(odt_rd, true, i, input.cs_d0, input.cs_d1,
+			   input.odt);
+		parse_odt(odt_wr, false, i, input.cs_d0, input.cs_d1,
+			   input.odt);
+	}
+
+	/* Do not set sdram_cfg[RD_EN] or sdram_cfg2[RCW_EN] for RDIMM */
+	if (dimm_param->rdimm != 0U) {
+		regs->sdram_cfg[0] &= ~(1 << 28U);
+		regs->sdram_cfg[1] &= ~(1 << 2U);
+		input.rcw[0] = (regs->sdram_rcw[0] >> 28U) & U(0xf);
+		input.rcw[1] = (regs->sdram_rcw[0] >> 24U) & U(0xf);
+		input.rcw[2] = (regs->sdram_rcw[0] >> 20U) & U(0xf);
+		input.rcw[3] = (regs->sdram_rcw[0] >> 16U) & U(0xf);
+		input.rcw[4] = (regs->sdram_rcw[0] >> 12U) & U(0xf);
+		input.rcw[5] = (regs->sdram_rcw[0] >> 8U) & U(0xf);
+		input.rcw[6] = (regs->sdram_rcw[0] >> 4U) & U(0xf);
+		input.rcw[7] = (regs->sdram_rcw[0] >> 0U) & U(0xf);
+		input.rcw[8] = (regs->sdram_rcw[1] >> 28U) & U(0xf);
+		input.rcw[9] = (regs->sdram_rcw[1] >> 24U) & U(0xf);
+		input.rcw[10] = (regs->sdram_rcw[1] >> 20U) & U(0xf);
+		input.rcw[11] = (regs->sdram_rcw[1] >> 16U) & U(0xf);
+		input.rcw[12] = (regs->sdram_rcw[1] >> 12U) & U(0xf);
+		input.rcw[13] = (regs->sdram_rcw[1] >> 8U) & U(0xf);
+		input.rcw[14] = (regs->sdram_rcw[1] >> 4U) & U(0xf);
+		input.rcw[15] = (regs->sdram_rcw[1] >> 0U) & U(0xf);
+		input.rcw3x = (regs->sdram_rcw[2] >> 8U) & U(0xff);
+	}
+
+	input.adv.odtimpedance = popts->odt ? popts->odt : 60;
+	input.adv.tx_impedance = popts->phy_tx_impedance ?
+					popts->phy_tx_impedance : 28;
+	input.adv.atx_impedance = popts->phy_atx_impedance ?
+					popts->phy_atx_impedance : 30;
+
+	debug("Initializing input adv data structure\n");
+	phy_gen2_init_input(&input);
+
+	debug("Initializing message block\n");
+	ret = phy_gen2_msg_init(&msg_1d, &msg_2d, &input);
+	if (ret != 0) {
+		ERROR("Init msg failed (error code %d)\n", ret);
+		return ret;
+	}
+
+	ret = c_init_phy_config(priv->phy, priv->ip_rev, &input, &msg_1d);
+	if (ret != 0) {
+		ERROR("Init PHY failed (error code %d)\n", ret);
+		return ret;
+	}
+#ifdef NXP_WARM_BOOT
+	debug("Warm boot flag value %0x\n", priv->warm_boot_flag);
+	if (priv->warm_boot_flag == DDR_WARM_BOOT) {
+		debug("Restoring the Phy training data\n");
+		// Restore the training data
+		ret = restore_phy_training_values(priv->phy,
+						  PHY_TRAINING_REGS_ON_FLASH,
+						  priv->num_ctlrs,
+						  input.basic.train2d);
+		if (ret != 0) {
+			ERROR("Restoring of training data failed %d\n", ret);
+			return ret;
+		}
+	} else {
+#endif
+
+		debug("Load 1D firmware\n");
+		ret = load_fw(priv->phy, &input, 0, &msg_1d,
+			      sizeof(struct ddr4u1d), priv->phy_gen2_fw_img_buf,
+					priv->img_loadr, priv->warm_boot_flag);
+		if (ret != 0) {
+			ERROR("Loading firmware failed (error code %d)\n", ret);
+			return ret;
+		}
+
+		debug("Execute firmware\n");
+		ret = g_exec_fw(priv->phy, 0, &input);
+		if (ret != 0) {
+			ERROR("Execution FW failed (error code %d)\n", ret);
+		}
+
+#ifdef NXP_APPLY_MAX_CDD
+		soc_info = get_soc_info(NXP_DCFG_ADDR);
+		if (soc_info->maj_ver == 2) {
+			tcfg0 = regs->timing_cfg[0];
+			tcfg4 = regs->timing_cfg[4];
+			rank = findrank(conf->cs_in_use);
+			get_cdd_val(priv->phy, rank, input.basic.frequency,
+					&tcfg0, &tcfg4);
+			regs->timing_cfg[0] = tcfg0;
+			regs->timing_cfg[4] = tcfg4;
+		}
+#endif
+
+		if ((ret == 0) && (input.basic.train2d != 0)) {
+			/* 2D training starts here */
+			debug("Load 2D firmware\n");
+			ret = load_fw(priv->phy, &input, 1, &msg_2d,
+				      sizeof(struct ddr4u2d),
+				      priv->phy_gen2_fw_img_buf,
+				      priv->img_loadr,
+				      priv->warm_boot_flag);
+			if (ret != 0) {
+				ERROR("Loading fw failed (err code %d)\n", ret);
+			} else {
+				debug("Execute 2D firmware\n");
+				ret = g_exec_fw(priv->phy, 1, &input);
+				if (ret != 0) {
+					ERROR("Execution FW failed (err %d)\n",
+					       ret);
+				}
+			}
+		}
+#ifdef NXP_WARM_BOOT
+		if (priv->warm_boot_flag != DDR_WRM_BOOT_NT_SUPPORTED &&
+		    ret == 0) {
+			debug("save the phy training data\n");
+			//Save training data TBD
+			ret = save_phy_training_values(priv->phy,
+						PHY_TRAINING_REGS_ON_FLASH,
+						priv->num_ctlrs,
+						input.basic.train2d);
+			if (ret != 0) {
+				ERROR("Saving training data failed.");
+				ERROR("Warm boot will fail. Error=%d.\n", ret);
+			}
+		}
+	} /* else */
+#endif
+
+	if (ret == 0) {
+		debug("Load PIE\n");
+		i_load_pie(priv->phy, &input, &msg_1d);
+
+		NOTICE("DDR4 %s with %d-rank %d-bit bus (x%d)\n",
+		       input.basic.dimm_type == RDIMM ? "RDIMM" :
+		       input.basic.dimm_type == LRDIMM ? "LRDIMM" :
+		       "UDIMM",
+		       dimm_param->n_ranks,
+		       dimm_param->primary_sdram_width,
+		       dimm_param->device_width);
+	}
+#ifdef DEBUG_DDR_INPUT_CONFIG
+	print_jason_format(&input, &msg_1d, &msg_2d);
+#endif
+
+	return ret;
+}