blob: 26a5a4d91f1ac93f42a600b0b42b7088108982c6 [file] [log] [blame]
Yann Gautier10a511c2018-07-24 17:18:19 +02001/*
Yann Gautier23684d02019-01-16 18:31:00 +01002 * Copyright (C) 2018-2019, STMicroelectronics - All Rights Reserved
Yann Gautier10a511c2018-07-24 17:18:19 +02003 *
4 * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5 */
6
Yann Gautier4156d4d2019-01-17 14:35:22 +01007#include <errno.h>
Antonio Nino Diaz09d40e02018-12-14 00:18:21 +00008#include <stddef.h>
9
Yann Gautier6e6ab282019-01-07 11:17:24 +010010#include <platform_def.h>
11
Yann Gautier10a511c2018-07-24 17:18:19 +020012#include <arch.h>
13#include <arch_helpers.h>
Antonio Nino Diaz09d40e02018-12-14 00:18:21 +000014#include <common/debug.h>
15#include <drivers/delay_timer.h>
Yann Gautier23684d02019-01-16 18:31:00 +010016#include <drivers/st/stm32mp_pmic.h>
Antonio Nino Diaz09d40e02018-12-14 00:18:21 +000017#include <drivers/st/stm32mp1_ddr.h>
18#include <drivers/st/stm32mp1_ddr_regs.h>
Antonio Nino Diaz09d40e02018-12-14 00:18:21 +000019#include <drivers/st/stm32mp1_pwr.h>
20#include <drivers/st/stm32mp1_ram.h>
Antonio Nino Diaz09d40e02018-12-14 00:18:21 +000021#include <lib/mmio.h>
22#include <plat/common/platform.h>
23
Yann Gautier10a511c2018-07-24 17:18:19 +020024struct reg_desc {
25 const char *name;
26 uint16_t offset; /* Offset for base address */
27 uint8_t par_offset; /* Offset for parameter array */
28};
29
30#define INVALID_OFFSET 0xFFU
31
32#define TIMESLOT_1US (plat_get_syscnt_freq2() / 1000000U)
33
34#define DDRCTL_REG(x, y) \
35 { \
36 .name = #x, \
37 .offset = offsetof(struct stm32mp1_ddrctl, x), \
38 .par_offset = offsetof(struct y, x) \
39 }
40
41#define DDRPHY_REG(x, y) \
42 { \
43 .name = #x, \
44 .offset = offsetof(struct stm32mp1_ddrphy, x), \
45 .par_offset = offsetof(struct y, x) \
46 }
47
48#define DDRCTL_REG_REG(x) DDRCTL_REG(x, stm32mp1_ddrctrl_reg)
49static const struct reg_desc ddr_reg[] = {
50 DDRCTL_REG_REG(mstr),
51 DDRCTL_REG_REG(mrctrl0),
52 DDRCTL_REG_REG(mrctrl1),
53 DDRCTL_REG_REG(derateen),
54 DDRCTL_REG_REG(derateint),
55 DDRCTL_REG_REG(pwrctl),
56 DDRCTL_REG_REG(pwrtmg),
57 DDRCTL_REG_REG(hwlpctl),
58 DDRCTL_REG_REG(rfshctl0),
59 DDRCTL_REG_REG(rfshctl3),
60 DDRCTL_REG_REG(crcparctl0),
61 DDRCTL_REG_REG(zqctl0),
62 DDRCTL_REG_REG(dfitmg0),
63 DDRCTL_REG_REG(dfitmg1),
64 DDRCTL_REG_REG(dfilpcfg0),
65 DDRCTL_REG_REG(dfiupd0),
66 DDRCTL_REG_REG(dfiupd1),
67 DDRCTL_REG_REG(dfiupd2),
68 DDRCTL_REG_REG(dfiphymstr),
69 DDRCTL_REG_REG(odtmap),
70 DDRCTL_REG_REG(dbg0),
71 DDRCTL_REG_REG(dbg1),
72 DDRCTL_REG_REG(dbgcmd),
73 DDRCTL_REG_REG(poisoncfg),
74 DDRCTL_REG_REG(pccfg),
75};
76
77#define DDRCTL_REG_TIMING(x) DDRCTL_REG(x, stm32mp1_ddrctrl_timing)
78static const struct reg_desc ddr_timing[] = {
79 DDRCTL_REG_TIMING(rfshtmg),
80 DDRCTL_REG_TIMING(dramtmg0),
81 DDRCTL_REG_TIMING(dramtmg1),
82 DDRCTL_REG_TIMING(dramtmg2),
83 DDRCTL_REG_TIMING(dramtmg3),
84 DDRCTL_REG_TIMING(dramtmg4),
85 DDRCTL_REG_TIMING(dramtmg5),
86 DDRCTL_REG_TIMING(dramtmg6),
87 DDRCTL_REG_TIMING(dramtmg7),
88 DDRCTL_REG_TIMING(dramtmg8),
89 DDRCTL_REG_TIMING(dramtmg14),
90 DDRCTL_REG_TIMING(odtcfg),
91};
92
93#define DDRCTL_REG_MAP(x) DDRCTL_REG(x, stm32mp1_ddrctrl_map)
94static const struct reg_desc ddr_map[] = {
95 DDRCTL_REG_MAP(addrmap1),
96 DDRCTL_REG_MAP(addrmap2),
97 DDRCTL_REG_MAP(addrmap3),
98 DDRCTL_REG_MAP(addrmap4),
99 DDRCTL_REG_MAP(addrmap5),
100 DDRCTL_REG_MAP(addrmap6),
101 DDRCTL_REG_MAP(addrmap9),
102 DDRCTL_REG_MAP(addrmap10),
103 DDRCTL_REG_MAP(addrmap11),
104};
105
106#define DDRCTL_REG_PERF(x) DDRCTL_REG(x, stm32mp1_ddrctrl_perf)
107static const struct reg_desc ddr_perf[] = {
108 DDRCTL_REG_PERF(sched),
109 DDRCTL_REG_PERF(sched1),
110 DDRCTL_REG_PERF(perfhpr1),
111 DDRCTL_REG_PERF(perflpr1),
112 DDRCTL_REG_PERF(perfwr1),
113 DDRCTL_REG_PERF(pcfgr_0),
114 DDRCTL_REG_PERF(pcfgw_0),
115 DDRCTL_REG_PERF(pcfgqos0_0),
116 DDRCTL_REG_PERF(pcfgqos1_0),
117 DDRCTL_REG_PERF(pcfgwqos0_0),
118 DDRCTL_REG_PERF(pcfgwqos1_0),
119 DDRCTL_REG_PERF(pcfgr_1),
120 DDRCTL_REG_PERF(pcfgw_1),
121 DDRCTL_REG_PERF(pcfgqos0_1),
122 DDRCTL_REG_PERF(pcfgqos1_1),
123 DDRCTL_REG_PERF(pcfgwqos0_1),
124 DDRCTL_REG_PERF(pcfgwqos1_1),
125};
126
127#define DDRPHY_REG_REG(x) DDRPHY_REG(x, stm32mp1_ddrphy_reg)
128static const struct reg_desc ddrphy_reg[] = {
129 DDRPHY_REG_REG(pgcr),
130 DDRPHY_REG_REG(aciocr),
131 DDRPHY_REG_REG(dxccr),
132 DDRPHY_REG_REG(dsgcr),
133 DDRPHY_REG_REG(dcr),
134 DDRPHY_REG_REG(odtcr),
135 DDRPHY_REG_REG(zq0cr1),
136 DDRPHY_REG_REG(dx0gcr),
137 DDRPHY_REG_REG(dx1gcr),
138 DDRPHY_REG_REG(dx2gcr),
139 DDRPHY_REG_REG(dx3gcr),
140};
141
142#define DDRPHY_REG_TIMING(x) DDRPHY_REG(x, stm32mp1_ddrphy_timing)
143static const struct reg_desc ddrphy_timing[] = {
144 DDRPHY_REG_TIMING(ptr0),
145 DDRPHY_REG_TIMING(ptr1),
146 DDRPHY_REG_TIMING(ptr2),
147 DDRPHY_REG_TIMING(dtpr0),
148 DDRPHY_REG_TIMING(dtpr1),
149 DDRPHY_REG_TIMING(dtpr2),
150 DDRPHY_REG_TIMING(mr0),
151 DDRPHY_REG_TIMING(mr1),
152 DDRPHY_REG_TIMING(mr2),
153 DDRPHY_REG_TIMING(mr3),
154};
155
156#define DDRPHY_REG_CAL(x) DDRPHY_REG(x, stm32mp1_ddrphy_cal)
157static const struct reg_desc ddrphy_cal[] = {
158 DDRPHY_REG_CAL(dx0dllcr),
159 DDRPHY_REG_CAL(dx0dqtr),
160 DDRPHY_REG_CAL(dx0dqstr),
161 DDRPHY_REG_CAL(dx1dllcr),
162 DDRPHY_REG_CAL(dx1dqtr),
163 DDRPHY_REG_CAL(dx1dqstr),
164 DDRPHY_REG_CAL(dx2dllcr),
165 DDRPHY_REG_CAL(dx2dqtr),
166 DDRPHY_REG_CAL(dx2dqstr),
167 DDRPHY_REG_CAL(dx3dllcr),
168 DDRPHY_REG_CAL(dx3dqtr),
169 DDRPHY_REG_CAL(dx3dqstr),
170};
171
172#define DDR_REG_DYN(x) \
173 { \
174 .name = #x, \
175 .offset = offsetof(struct stm32mp1_ddrctl, x), \
176 .par_offset = INVALID_OFFSET \
177 }
178
179static const struct reg_desc ddr_dyn[] = {
180 DDR_REG_DYN(stat),
181 DDR_REG_DYN(init0),
182 DDR_REG_DYN(dfimisc),
183 DDR_REG_DYN(dfistat),
184 DDR_REG_DYN(swctl),
185 DDR_REG_DYN(swstat),
186 DDR_REG_DYN(pctrl_0),
187 DDR_REG_DYN(pctrl_1),
188};
189
190#define DDRPHY_REG_DYN(x) \
191 { \
192 .name = #x, \
193 .offset = offsetof(struct stm32mp1_ddrphy, x), \
194 .par_offset = INVALID_OFFSET \
195 }
196
197static const struct reg_desc ddrphy_dyn[] = {
198 DDRPHY_REG_DYN(pir),
199 DDRPHY_REG_DYN(pgsr),
200};
201
202enum reg_type {
203 REG_REG,
204 REG_TIMING,
205 REG_PERF,
206 REG_MAP,
207 REGPHY_REG,
208 REGPHY_TIMING,
209 REGPHY_CAL,
210/*
211 * Dynamic registers => managed in driver or not changed,
212 * can be dumped in interactive mode.
213 */
214 REG_DYN,
215 REGPHY_DYN,
216 REG_TYPE_NB
217};
218
219enum base_type {
220 DDR_BASE,
221 DDRPHY_BASE,
222 NONE_BASE
223};
224
225struct ddr_reg_info {
226 const char *name;
227 const struct reg_desc *desc;
228 uint8_t size;
229 enum base_type base;
230};
231
232static const struct ddr_reg_info ddr_registers[REG_TYPE_NB] = {
233 [REG_REG] = {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100234 .name = "static",
235 .desc = ddr_reg,
236 .size = ARRAY_SIZE(ddr_reg),
237 .base = DDR_BASE
Yann Gautier10a511c2018-07-24 17:18:19 +0200238 },
239 [REG_TIMING] = {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100240 .name = "timing",
241 .desc = ddr_timing,
242 .size = ARRAY_SIZE(ddr_timing),
243 .base = DDR_BASE
Yann Gautier10a511c2018-07-24 17:18:19 +0200244 },
245 [REG_PERF] = {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100246 .name = "perf",
247 .desc = ddr_perf,
248 .size = ARRAY_SIZE(ddr_perf),
249 .base = DDR_BASE
Yann Gautier10a511c2018-07-24 17:18:19 +0200250 },
251 [REG_MAP] = {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100252 .name = "map",
253 .desc = ddr_map,
254 .size = ARRAY_SIZE(ddr_map),
255 .base = DDR_BASE
Yann Gautier10a511c2018-07-24 17:18:19 +0200256 },
257 [REGPHY_REG] = {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100258 .name = "static",
259 .desc = ddrphy_reg,
260 .size = ARRAY_SIZE(ddrphy_reg),
261 .base = DDRPHY_BASE
Yann Gautier10a511c2018-07-24 17:18:19 +0200262 },
263 [REGPHY_TIMING] = {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100264 .name = "timing",
265 .desc = ddrphy_timing,
266 .size = ARRAY_SIZE(ddrphy_timing),
267 .base = DDRPHY_BASE
Yann Gautier10a511c2018-07-24 17:18:19 +0200268 },
269 [REGPHY_CAL] = {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100270 .name = "cal",
271 .desc = ddrphy_cal,
272 .size = ARRAY_SIZE(ddrphy_cal),
273 .base = DDRPHY_BASE
Yann Gautier10a511c2018-07-24 17:18:19 +0200274 },
275 [REG_DYN] = {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100276 .name = "dyn",
277 .desc = ddr_dyn,
278 .size = ARRAY_SIZE(ddr_dyn),
279 .base = DDR_BASE
Yann Gautier10a511c2018-07-24 17:18:19 +0200280 },
281 [REGPHY_DYN] = {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100282 .name = "dyn",
283 .desc = ddrphy_dyn,
284 .size = ARRAY_SIZE(ddrphy_dyn),
285 .base = DDRPHY_BASE
Yann Gautier10a511c2018-07-24 17:18:19 +0200286 },
287};
288
Yann Gautier4156d4d2019-01-17 14:35:22 +0100289static uintptr_t get_base_addr(const struct ddr_info *priv, enum base_type base)
Yann Gautier10a511c2018-07-24 17:18:19 +0200290{
291 if (base == DDRPHY_BASE) {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100292 return (uintptr_t)priv->phy;
Yann Gautier10a511c2018-07-24 17:18:19 +0200293 } else {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100294 return (uintptr_t)priv->ctl;
Yann Gautier10a511c2018-07-24 17:18:19 +0200295 }
296}
297
298static void set_reg(const struct ddr_info *priv,
299 enum reg_type type,
300 const void *param)
301{
302 unsigned int i;
Yann Gautier4156d4d2019-01-17 14:35:22 +0100303 unsigned int value;
Yann Gautier10a511c2018-07-24 17:18:19 +0200304 enum base_type base = ddr_registers[type].base;
Yann Gautier4156d4d2019-01-17 14:35:22 +0100305 uintptr_t base_addr = get_base_addr(priv, base);
Yann Gautier10a511c2018-07-24 17:18:19 +0200306 const struct reg_desc *desc = ddr_registers[type].desc;
307
308 VERBOSE("init %s\n", ddr_registers[type].name);
309 for (i = 0; i < ddr_registers[type].size; i++) {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100310 uintptr_t ptr = base_addr + desc[i].offset;
311
Yann Gautier10a511c2018-07-24 17:18:19 +0200312 if (desc[i].par_offset == INVALID_OFFSET) {
313 ERROR("invalid parameter offset for %s", desc[i].name);
314 panic();
315 } else {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100316 value = *((uint32_t *)((uintptr_t)param +
Yann Gautier10a511c2018-07-24 17:18:19 +0200317 desc[i].par_offset));
Yann Gautier4156d4d2019-01-17 14:35:22 +0100318 mmio_write_32(ptr, value);
Yann Gautier10a511c2018-07-24 17:18:19 +0200319 }
320 }
321}
322
323static void stm32mp1_ddrphy_idone_wait(struct stm32mp1_ddrphy *phy)
324{
325 uint32_t pgsr;
326 int error = 0;
327 unsigned long start;
328 unsigned long time0, time;
329
330 start = get_timer(0);
331 time0 = start;
332
333 do {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100334 pgsr = mmio_read_32((uintptr_t)&phy->pgsr);
Yann Gautier10a511c2018-07-24 17:18:19 +0200335 time = get_timer(start);
336 if (time != time0) {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100337 VERBOSE(" > [0x%lx] pgsr = 0x%x &\n",
338 (uintptr_t)&phy->pgsr, pgsr);
339 VERBOSE(" [0x%lx] pir = 0x%x (time=%lx)\n",
340 (uintptr_t)&phy->pir,
341 mmio_read_32((uintptr_t)&phy->pir),
342 time);
Yann Gautier10a511c2018-07-24 17:18:19 +0200343 }
344
345 time0 = time;
346 if (time > plat_get_syscnt_freq2()) {
347 panic();
348 }
349 if ((pgsr & DDRPHYC_PGSR_DTERR) != 0U) {
350 VERBOSE("DQS Gate Trainig Error\n");
351 error++;
352 }
353 if ((pgsr & DDRPHYC_PGSR_DTIERR) != 0U) {
354 VERBOSE("DQS Gate Trainig Intermittent Error\n");
355 error++;
356 }
357 if ((pgsr & DDRPHYC_PGSR_DFTERR) != 0U) {
358 VERBOSE("DQS Drift Error\n");
359 error++;
360 }
361 if ((pgsr & DDRPHYC_PGSR_RVERR) != 0U) {
362 VERBOSE("Read Valid Training Error\n");
363 error++;
364 }
365 if ((pgsr & DDRPHYC_PGSR_RVEIRR) != 0U) {
366 VERBOSE("Read Valid Training Intermittent Error\n");
367 error++;
368 }
369 } while ((pgsr & DDRPHYC_PGSR_IDONE) == 0U && error == 0);
Yann Gautier4156d4d2019-01-17 14:35:22 +0100370 VERBOSE("\n[0x%lx] pgsr = 0x%x\n",
371 (uintptr_t)&phy->pgsr, pgsr);
Yann Gautier10a511c2018-07-24 17:18:19 +0200372}
373
374static void stm32mp1_ddrphy_init(struct stm32mp1_ddrphy *phy, uint32_t pir)
375{
376 uint32_t pir_init = pir | DDRPHYC_PIR_INIT;
377
Yann Gautier4156d4d2019-01-17 14:35:22 +0100378 mmio_write_32((uintptr_t)&phy->pir, pir_init);
379 VERBOSE("[0x%lx] pir = 0x%x -> 0x%x\n",
380 (uintptr_t)&phy->pir, pir_init,
381 mmio_read_32((uintptr_t)&phy->pir));
Yann Gautier10a511c2018-07-24 17:18:19 +0200382
383 /* Need to wait 10 configuration clock before start polling */
384 udelay(10);
385
386 /* Wait DRAM initialization and Gate Training Evaluation complete */
387 stm32mp1_ddrphy_idone_wait(phy);
388}
389
390/* Start quasi dynamic register update */
391static void stm32mp1_start_sw_done(struct stm32mp1_ddrctl *ctl)
392{
Yann Gautier4156d4d2019-01-17 14:35:22 +0100393 mmio_clrbits_32((uintptr_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE);
394 VERBOSE("[0x%lx] swctl = 0x%x\n",
395 (uintptr_t)&ctl->swctl, mmio_read_32((uintptr_t)&ctl->swctl));
Yann Gautier10a511c2018-07-24 17:18:19 +0200396}
397
398/* Wait quasi dynamic register update */
399static void stm32mp1_wait_sw_done_ack(struct stm32mp1_ddrctl *ctl)
400{
401 unsigned long start;
402 uint32_t swstat;
403
Yann Gautier4156d4d2019-01-17 14:35:22 +0100404 mmio_setbits_32((uintptr_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE);
405 VERBOSE("[0x%lx] swctl = 0x%x\n",
406 (uintptr_t)&ctl->swctl, mmio_read_32((uintptr_t)&ctl->swctl));
Yann Gautier10a511c2018-07-24 17:18:19 +0200407
408 start = get_timer(0);
409 do {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100410 swstat = mmio_read_32((uintptr_t)&ctl->swstat);
411 VERBOSE("[0x%lx] swstat = 0x%x ",
412 (uintptr_t)&ctl->swstat, swstat);
Yann Gautier10a511c2018-07-24 17:18:19 +0200413 VERBOSE("timer in ms 0x%x = start 0x%lx\r",
414 get_timer(0), start);
415 if (get_timer(start) > plat_get_syscnt_freq2()) {
416 panic();
417 }
418 } while ((swstat & DDRCTRL_SWSTAT_SW_DONE_ACK) == 0U);
419
Yann Gautier4156d4d2019-01-17 14:35:22 +0100420 VERBOSE("[0x%lx] swstat = 0x%x\n",
421 (uintptr_t)&ctl->swstat, swstat);
Yann Gautier10a511c2018-07-24 17:18:19 +0200422}
423
424/* Wait quasi dynamic register update */
425static void stm32mp1_wait_operating_mode(struct ddr_info *priv, uint32_t mode)
426{
427 unsigned long start;
428 uint32_t stat;
429 uint32_t operating_mode;
430 uint32_t selref_type;
431 int break_loop = 0;
432
433 start = get_timer(0);
434 for ( ; ; ) {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100435 stat = mmio_read_32((uintptr_t)&priv->ctl->stat);
Yann Gautier10a511c2018-07-24 17:18:19 +0200436 operating_mode = stat & DDRCTRL_STAT_OPERATING_MODE_MASK;
437 selref_type = stat & DDRCTRL_STAT_SELFREF_TYPE_MASK;
Yann Gautier4156d4d2019-01-17 14:35:22 +0100438 VERBOSE("[0x%lx] stat = 0x%x\n",
439 (uintptr_t)&priv->ctl->stat, stat);
Yann Gautier10a511c2018-07-24 17:18:19 +0200440 VERBOSE("timer in ms 0x%x = start 0x%lx\r",
441 get_timer(0), start);
442 if (get_timer(start) > plat_get_syscnt_freq2()) {
443 panic();
444 }
445
446 if (mode == DDRCTRL_STAT_OPERATING_MODE_SR) {
447 /*
448 * Self-refresh due to software
449 * => checking also STAT.selfref_type.
450 */
451 if ((operating_mode ==
452 DDRCTRL_STAT_OPERATING_MODE_SR) &&
453 (selref_type == DDRCTRL_STAT_SELFREF_TYPE_SR)) {
454 break_loop = 1;
455 }
456 } else if (operating_mode == mode) {
457 break_loop = 1;
458 } else if ((mode == DDRCTRL_STAT_OPERATING_MODE_NORMAL) &&
459 (operating_mode == DDRCTRL_STAT_OPERATING_MODE_SR) &&
460 (selref_type == DDRCTRL_STAT_SELFREF_TYPE_ASR)) {
461 /* Normal mode: handle also automatic self refresh */
462 break_loop = 1;
463 }
464
465 if (break_loop == 1) {
466 break;
467 }
468 }
469
Yann Gautier4156d4d2019-01-17 14:35:22 +0100470 VERBOSE("[0x%lx] stat = 0x%x\n",
471 (uintptr_t)&priv->ctl->stat, stat);
Yann Gautier10a511c2018-07-24 17:18:19 +0200472}
473
474/* Mode Register Writes (MRW or MRS) */
475static void stm32mp1_mode_register_write(struct ddr_info *priv, uint8_t addr,
476 uint32_t data)
477{
478 uint32_t mrctrl0;
479
480 VERBOSE("MRS: %d = %x\n", addr, data);
481
482 /*
483 * 1. Poll MRSTAT.mr_wr_busy until it is '0'.
484 * This checks that there is no outstanding MR transaction.
485 * No write should be performed to MRCTRL0 and MRCTRL1
486 * if MRSTAT.mr_wr_busy = 1.
487 */
Yann Gautier4156d4d2019-01-17 14:35:22 +0100488 while ((mmio_read_32((uintptr_t)&priv->ctl->mrstat) &
Yann Gautier10a511c2018-07-24 17:18:19 +0200489 DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) {
490 ;
491 }
492
493 /*
494 * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank
495 * and (for MRWs) MRCTRL1.mr_data to define the MR transaction.
496 */
497 mrctrl0 = DDRCTRL_MRCTRL0_MR_TYPE_WRITE |
498 DDRCTRL_MRCTRL0_MR_RANK_ALL |
499 (((uint32_t)addr << DDRCTRL_MRCTRL0_MR_ADDR_SHIFT) &
500 DDRCTRL_MRCTRL0_MR_ADDR_MASK);
Yann Gautier4156d4d2019-01-17 14:35:22 +0100501 mmio_write_32((uintptr_t)&priv->ctl->mrctrl0, mrctrl0);
502 VERBOSE("[0x%lx] mrctrl0 = 0x%x (0x%x)\n",
503 (uintptr_t)&priv->ctl->mrctrl0,
504 mmio_read_32((uintptr_t)&priv->ctl->mrctrl0), mrctrl0);
505 mmio_write_32((uintptr_t)&priv->ctl->mrctrl1, data);
506 VERBOSE("[0x%lx] mrctrl1 = 0x%x\n",
507 (uintptr_t)&priv->ctl->mrctrl1,
508 mmio_read_32((uintptr_t)&priv->ctl->mrctrl1));
Yann Gautier10a511c2018-07-24 17:18:19 +0200509
510 /*
511 * 3. In a separate APB transaction, write the MRCTRL0.mr_wr to 1. This
512 * bit is self-clearing, and triggers the MR transaction.
513 * The uMCTL2 then asserts the MRSTAT.mr_wr_busy while it performs
514 * the MR transaction to SDRAM, and no further access can be
515 * initiated until it is deasserted.
516 */
517 mrctrl0 |= DDRCTRL_MRCTRL0_MR_WR;
Yann Gautier4156d4d2019-01-17 14:35:22 +0100518 mmio_write_32((uintptr_t)&priv->ctl->mrctrl0, mrctrl0);
Yann Gautier10a511c2018-07-24 17:18:19 +0200519
Yann Gautier4156d4d2019-01-17 14:35:22 +0100520 while ((mmio_read_32((uintptr_t)&priv->ctl->mrstat) &
Yann Gautier10a511c2018-07-24 17:18:19 +0200521 DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) {
522 ;
523 }
524
Yann Gautier4156d4d2019-01-17 14:35:22 +0100525 VERBOSE("[0x%lx] mrctrl0 = 0x%x\n",
526 (uintptr_t)&priv->ctl->mrctrl0, mrctrl0);
Yann Gautier10a511c2018-07-24 17:18:19 +0200527}
528
529/* Switch DDR3 from DLL-on to DLL-off */
530static void stm32mp1_ddr3_dll_off(struct ddr_info *priv)
531{
Yann Gautier4156d4d2019-01-17 14:35:22 +0100532 uint32_t mr1 = mmio_read_32((uintptr_t)&priv->phy->mr1);
533 uint32_t mr2 = mmio_read_32((uintptr_t)&priv->phy->mr2);
Yann Gautier10a511c2018-07-24 17:18:19 +0200534 uint32_t dbgcam;
535
536 VERBOSE("mr1: 0x%x\n", mr1);
537 VERBOSE("mr2: 0x%x\n", mr2);
538
539 /*
540 * 1. Set the DBG1.dis_hif = 1.
541 * This prevents further reads/writes being received on the HIF.
542 */
Yann Gautier4156d4d2019-01-17 14:35:22 +0100543 mmio_setbits_32((uintptr_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF);
544 VERBOSE("[0x%lx] dbg1 = 0x%x\n",
545 (uintptr_t)&priv->ctl->dbg1,
546 mmio_read_32((uintptr_t)&priv->ctl->dbg1));
Yann Gautier10a511c2018-07-24 17:18:19 +0200547
548 /*
549 * 2. Ensure all commands have been flushed from the uMCTL2 by polling
550 * DBGCAM.wr_data_pipeline_empty = 1,
551 * DBGCAM.rd_data_pipeline_empty = 1,
552 * DBGCAM.dbg_wr_q_depth = 0 ,
553 * DBGCAM.dbg_lpr_q_depth = 0, and
554 * DBGCAM.dbg_hpr_q_depth = 0.
555 */
556 do {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100557 dbgcam = mmio_read_32((uintptr_t)&priv->ctl->dbgcam);
558 VERBOSE("[0x%lx] dbgcam = 0x%x\n",
559 (uintptr_t)&priv->ctl->dbgcam, dbgcam);
Yann Gautier10a511c2018-07-24 17:18:19 +0200560 } while ((((dbgcam & DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY) ==
561 DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY)) &&
562 ((dbgcam & DDRCTRL_DBGCAM_DBG_Q_DEPTH) == 0U));
563
564 /*
565 * 3. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
566 * to disable RTT_NOM:
567 * a. DDR3: Write to MR1[9], MR1[6] and MR1[2]
568 * b. DDR4: Write to MR1[10:8]
569 */
570 mr1 &= ~(BIT(9) | BIT(6) | BIT(2));
571 stm32mp1_mode_register_write(priv, 1, mr1);
572
573 /*
574 * 4. For DDR4 only: Perform an MRS command
575 * (using MRCTRL0 and MRCTRL1 registers) to write to MR5[8:6]
576 * to disable RTT_PARK
577 */
578
579 /*
580 * 5. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
581 * to write to MR2[10:9], to disable RTT_WR
582 * (and therefore disable dynamic ODT).
583 * This applies for both DDR3 and DDR4.
584 */
585 mr2 &= ~GENMASK(10, 9);
586 stm32mp1_mode_register_write(priv, 2, mr2);
587
588 /*
589 * 6. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
590 * to disable the DLL. The timing of this MRS is automatically
591 * handled by the uMCTL2.
592 * a. DDR3: Write to MR1[0]
593 * b. DDR4: Write to MR1[0]
594 */
595 mr1 |= BIT(0);
596 stm32mp1_mode_register_write(priv, 1, mr1);
597
598 /*
599 * 7. Put the SDRAM into self-refresh mode by setting
600 * PWRCTL.selfref_sw = 1, and polling STAT.operating_mode to ensure
601 * the DDRC has entered self-refresh.
602 */
Yann Gautier4156d4d2019-01-17 14:35:22 +0100603 mmio_setbits_32((uintptr_t)&priv->ctl->pwrctl,
Yann Gautier10a511c2018-07-24 17:18:19 +0200604 DDRCTRL_PWRCTL_SELFREF_SW);
Yann Gautier4156d4d2019-01-17 14:35:22 +0100605 VERBOSE("[0x%lx] pwrctl = 0x%x\n",
606 (uintptr_t)&priv->ctl->pwrctl,
607 mmio_read_32((uintptr_t)&priv->ctl->pwrctl));
Yann Gautier10a511c2018-07-24 17:18:19 +0200608
609 /*
610 * 8. Wait until STAT.operating_mode[1:0]==11 indicating that the
611 * DWC_ddr_umctl2 core is in self-refresh mode.
612 * Ensure transition to self-refresh was due to software
613 * by checking that STAT.selfref_type[1:0]=2.
614 */
615 stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_SR);
616
617 /*
618 * 9. Set the MSTR.dll_off_mode = 1.
619 * warning: MSTR.dll_off_mode is a quasi-dynamic type 2 field
620 */
621 stm32mp1_start_sw_done(priv->ctl);
622
Yann Gautier4156d4d2019-01-17 14:35:22 +0100623 mmio_setbits_32((uintptr_t)&priv->ctl->mstr, DDRCTRL_MSTR_DLL_OFF_MODE);
624 VERBOSE("[0x%lx] mstr = 0x%x\n",
625 (uintptr_t)&priv->ctl->mstr,
626 mmio_read_32((uintptr_t)&priv->ctl->mstr));
Yann Gautier10a511c2018-07-24 17:18:19 +0200627
628 stm32mp1_wait_sw_done_ack(priv->ctl);
629
630 /* 10. Change the clock frequency to the desired value. */
631
632 /*
633 * 11. Update any registers which may be required to change for the new
634 * frequency. This includes static and dynamic registers.
635 * This includes both uMCTL2 registers and PHY registers.
636 */
637
638 /* Change Bypass Mode Frequency Range */
Yann Gautier3f9c9782019-02-14 11:13:39 +0100639 if (stm32mp_clk_get_rate(DDRPHYC) < 100000000U) {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100640 mmio_clrbits_32((uintptr_t)&priv->phy->dllgcr,
Yann Gautier10a511c2018-07-24 17:18:19 +0200641 DDRPHYC_DLLGCR_BPS200);
642 } else {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100643 mmio_setbits_32((uintptr_t)&priv->phy->dllgcr,
Yann Gautier10a511c2018-07-24 17:18:19 +0200644 DDRPHYC_DLLGCR_BPS200);
645 }
646
Yann Gautier4156d4d2019-01-17 14:35:22 +0100647 mmio_setbits_32((uintptr_t)&priv->phy->acdllcr, DDRPHYC_ACDLLCR_DLLDIS);
Yann Gautier10a511c2018-07-24 17:18:19 +0200648
Yann Gautier4156d4d2019-01-17 14:35:22 +0100649 mmio_setbits_32((uintptr_t)&priv->phy->dx0dllcr,
Yann Gautier10a511c2018-07-24 17:18:19 +0200650 DDRPHYC_DXNDLLCR_DLLDIS);
Yann Gautier4156d4d2019-01-17 14:35:22 +0100651 mmio_setbits_32((uintptr_t)&priv->phy->dx1dllcr,
Yann Gautier10a511c2018-07-24 17:18:19 +0200652 DDRPHYC_DXNDLLCR_DLLDIS);
Yann Gautier4156d4d2019-01-17 14:35:22 +0100653 mmio_setbits_32((uintptr_t)&priv->phy->dx2dllcr,
Yann Gautier10a511c2018-07-24 17:18:19 +0200654 DDRPHYC_DXNDLLCR_DLLDIS);
Yann Gautier4156d4d2019-01-17 14:35:22 +0100655 mmio_setbits_32((uintptr_t)&priv->phy->dx3dllcr,
Yann Gautier10a511c2018-07-24 17:18:19 +0200656 DDRPHYC_DXNDLLCR_DLLDIS);
657
658 /* 12. Exit the self-refresh state by setting PWRCTL.selfref_sw = 0. */
Yann Gautier4156d4d2019-01-17 14:35:22 +0100659 mmio_clrbits_32((uintptr_t)&priv->ctl->pwrctl,
Yann Gautier10a511c2018-07-24 17:18:19 +0200660 DDRCTRL_PWRCTL_SELFREF_SW);
661 stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL);
662
663 /*
664 * 13. If ZQCTL0.dis_srx_zqcl = 0, the uMCTL2 performs a ZQCL command
665 * at this point.
666 */
667
668 /*
669 * 14. Perform MRS commands as required to re-program timing registers
670 * in the SDRAM for the new frequency
671 * (in particular, CL, CWL and WR may need to be changed).
672 */
673
674 /* 15. Write DBG1.dis_hif = 0 to re-enable reads and writes. */
Yann Gautier4156d4d2019-01-17 14:35:22 +0100675 mmio_clrbits_32((uintptr_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF);
676 VERBOSE("[0x%lx] dbg1 = 0x%x\n",
677 (uintptr_t)&priv->ctl->dbg1,
678 mmio_read_32((uintptr_t)&priv->ctl->dbg1));
Yann Gautier10a511c2018-07-24 17:18:19 +0200679}
680
681static void stm32mp1_refresh_disable(struct stm32mp1_ddrctl *ctl)
682{
683 stm32mp1_start_sw_done(ctl);
684 /* Quasi-dynamic register update*/
Yann Gautier4156d4d2019-01-17 14:35:22 +0100685 mmio_setbits_32((uintptr_t)&ctl->rfshctl3,
Yann Gautier10a511c2018-07-24 17:18:19 +0200686 DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH);
Yann Gautier4156d4d2019-01-17 14:35:22 +0100687 mmio_clrbits_32((uintptr_t)&ctl->pwrctl, DDRCTRL_PWRCTL_POWERDOWN_EN);
688 mmio_clrbits_32((uintptr_t)&ctl->dfimisc,
Yann Gautier10a511c2018-07-24 17:18:19 +0200689 DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
690 stm32mp1_wait_sw_done_ack(ctl);
691}
692
693static void stm32mp1_refresh_restore(struct stm32mp1_ddrctl *ctl,
694 uint32_t rfshctl3, uint32_t pwrctl)
695{
696 stm32mp1_start_sw_done(ctl);
697 if ((rfshctl3 & DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH) == 0U) {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100698 mmio_clrbits_32((uintptr_t)&ctl->rfshctl3,
Yann Gautier10a511c2018-07-24 17:18:19 +0200699 DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH);
700 }
701 if ((pwrctl & DDRCTRL_PWRCTL_POWERDOWN_EN) != 0U) {
Yann Gautier4156d4d2019-01-17 14:35:22 +0100702 mmio_setbits_32((uintptr_t)&ctl->pwrctl,
Yann Gautier10a511c2018-07-24 17:18:19 +0200703 DDRCTRL_PWRCTL_POWERDOWN_EN);
704 }
Yann Gautier4156d4d2019-01-17 14:35:22 +0100705 mmio_setbits_32((uintptr_t)&ctl->dfimisc,
Yann Gautier10a511c2018-07-24 17:18:19 +0200706 DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
707 stm32mp1_wait_sw_done_ack(ctl);
708}
709
710static int board_ddr_power_init(enum ddr_type ddr_type)
711{
712 if (dt_check_pmic()) {
713 return pmic_ddr_power_init(ddr_type);
714 }
715
716 return 0;
717}
718
719void stm32mp1_ddr_init(struct ddr_info *priv,
720 struct stm32mp1_ddr_config *config)
721{
722 uint32_t pir;
Yann Gautier4156d4d2019-01-17 14:35:22 +0100723 int ret = -EINVAL;
Yann Gautier10a511c2018-07-24 17:18:19 +0200724
725 if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) {
726 ret = board_ddr_power_init(STM32MP_DDR3);
Yann Gautier4156d4d2019-01-17 14:35:22 +0100727 } else if ((config->c_reg.mstr & DDRCTRL_MSTR_LPDDR2) != 0U) {
Yann Gautier10a511c2018-07-24 17:18:19 +0200728 ret = board_ddr_power_init(STM32MP_LPDDR2);
Yann Gautier4156d4d2019-01-17 14:35:22 +0100729 } else {
730 ERROR("DDR type not supported\n");
Yann Gautier10a511c2018-07-24 17:18:19 +0200731 }
732
733 if (ret != 0) {
734 panic();
735 }
736
737 VERBOSE("name = %s\n", config->info.name);
Yann Gautierc948f772019-01-17 19:16:03 +0100738 VERBOSE("speed = %d kHz\n", config->info.speed);
Yann Gautier10a511c2018-07-24 17:18:19 +0200739 VERBOSE("size = 0x%x\n", config->info.size);
740
741 /* DDR INIT SEQUENCE */
742
743 /*
744 * 1. Program the DWC_ddr_umctl2 registers
745 * nota: check DFIMISC.dfi_init_complete = 0
746 */
747
748 /* 1.1 RESETS: presetn, core_ddrc_rstn, aresetn */
749 mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST);
750 mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST);
751 mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST);
752 mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST);
753 mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST);
754 mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST);
755
756 /* 1.2. start CLOCK */
757 if (stm32mp1_ddr_clk_enable(priv, config->info.speed) != 0) {
758 panic();
759 }
760
761 /* 1.3. deassert reset */
762 /* De-assert PHY rstn and ctl_rstn via DPHYRST and DPHYCTLRST. */
763 mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST);
764 mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST);
765 /*
766 * De-assert presetn once the clocks are active
767 * and stable via DDRCAPBRST bit.
768 */
769 mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST);
770
771 /* 1.4. wait 128 cycles to permit initialization of end logic */
772 udelay(2);
773 /* For PCLK = 133MHz => 1 us is enough, 2 to allow lower frequency */
774
775 /* 1.5. initialize registers ddr_umctl2 */
776 /* Stop uMCTL2 before PHY is ready */
Yann Gautier4156d4d2019-01-17 14:35:22 +0100777 mmio_clrbits_32((uintptr_t)&priv->ctl->dfimisc,
Yann Gautier10a511c2018-07-24 17:18:19 +0200778 DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
Yann Gautier4156d4d2019-01-17 14:35:22 +0100779 VERBOSE("[0x%lx] dfimisc = 0x%x\n",
780 (uintptr_t)&priv->ctl->dfimisc,
781 mmio_read_32((uintptr_t)&priv->ctl->dfimisc));
Yann Gautier10a511c2018-07-24 17:18:19 +0200782
783 set_reg(priv, REG_REG, &config->c_reg);
784
785 /* DDR3 = don't set DLLOFF for init mode */
786 if ((config->c_reg.mstr &
787 (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE))
788 == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) {
789 VERBOSE("deactivate DLL OFF in mstr\n");
Yann Gautier4156d4d2019-01-17 14:35:22 +0100790 mmio_clrbits_32((uintptr_t)&priv->ctl->mstr,
Yann Gautier10a511c2018-07-24 17:18:19 +0200791 DDRCTRL_MSTR_DLL_OFF_MODE);
Yann Gautier4156d4d2019-01-17 14:35:22 +0100792 VERBOSE("[0x%lx] mstr = 0x%x\n",
793 (uintptr_t)&priv->ctl->mstr,
794 mmio_read_32((uintptr_t)&priv->ctl->mstr));
Yann Gautier10a511c2018-07-24 17:18:19 +0200795 }
796
797 set_reg(priv, REG_TIMING, &config->c_timing);
798 set_reg(priv, REG_MAP, &config->c_map);
799
800 /* Skip CTRL init, SDRAM init is done by PHY PUBL */
Yann Gautier4156d4d2019-01-17 14:35:22 +0100801 mmio_clrsetbits_32((uintptr_t)&priv->ctl->init0,
Yann Gautier10a511c2018-07-24 17:18:19 +0200802 DDRCTRL_INIT0_SKIP_DRAM_INIT_MASK,
803 DDRCTRL_INIT0_SKIP_DRAM_INIT_NORMAL);
Yann Gautier4156d4d2019-01-17 14:35:22 +0100804 VERBOSE("[0x%lx] init0 = 0x%x\n",
805 (uintptr_t)&priv->ctl->init0,
806 mmio_read_32((uintptr_t)&priv->ctl->init0));
Yann Gautier10a511c2018-07-24 17:18:19 +0200807
808 set_reg(priv, REG_PERF, &config->c_perf);
809
810 /* 2. deassert reset signal core_ddrc_rstn, aresetn and presetn */
811 mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST);
812 mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST);
813 mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST);
814
815 /*
816 * 3. start PHY init by accessing relevant PUBL registers
817 * (DXGCR, DCR, PTR*, MR*, DTPR*)
818 */
819 set_reg(priv, REGPHY_REG, &config->p_reg);
820 set_reg(priv, REGPHY_TIMING, &config->p_timing);
821 set_reg(priv, REGPHY_CAL, &config->p_cal);
822
823 /* DDR3 = don't set DLLOFF for init mode */
824 if ((config->c_reg.mstr &
825 (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE))
826 == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) {
827 VERBOSE("deactivate DLL OFF in mr1\n");
Yann Gautier4156d4d2019-01-17 14:35:22 +0100828 mmio_clrbits_32((uintptr_t)&priv->phy->mr1, BIT(0));
829 VERBOSE("[0x%lx] mr1 = 0x%x\n",
830 (uintptr_t)&priv->phy->mr1,
831 mmio_read_32((uintptr_t)&priv->phy->mr1));
Yann Gautier10a511c2018-07-24 17:18:19 +0200832 }
833
834 /*
835 * 4. Monitor PHY init status by polling PUBL register PGSR.IDONE
836 * Perform DDR PHY DRAM initialization and Gate Training Evaluation
837 */
838 stm32mp1_ddrphy_idone_wait(priv->phy);
839
840 /*
841 * 5. Indicate to PUBL that controller performs SDRAM initialization
842 * by setting PIR.INIT and PIR CTLDINIT and pool PGSR.IDONE
843 * DRAM init is done by PHY, init0.skip_dram.init = 1
844 */
845
846 pir = DDRPHYC_PIR_DLLSRST | DDRPHYC_PIR_DLLLOCK | DDRPHYC_PIR_ZCAL |
847 DDRPHYC_PIR_ITMSRST | DDRPHYC_PIR_DRAMINIT | DDRPHYC_PIR_ICPC;
848
849 if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) {
850 pir |= DDRPHYC_PIR_DRAMRST; /* Only for DDR3 */
851 }
852
853 stm32mp1_ddrphy_init(priv->phy, pir);
854
855 /*
856 * 6. SET DFIMISC.dfi_init_complete_en to 1
857 * Enable quasi-dynamic register programming.
858 */
859 stm32mp1_start_sw_done(priv->ctl);
860
Yann Gautier4156d4d2019-01-17 14:35:22 +0100861 mmio_setbits_32((uintptr_t)&priv->ctl->dfimisc,
Yann Gautier10a511c2018-07-24 17:18:19 +0200862 DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
Yann Gautier4156d4d2019-01-17 14:35:22 +0100863 VERBOSE("[0x%lx] dfimisc = 0x%x\n",
864 (uintptr_t)&priv->ctl->dfimisc,
865 mmio_read_32((uintptr_t)&priv->ctl->dfimisc));
Yann Gautier10a511c2018-07-24 17:18:19 +0200866
867 stm32mp1_wait_sw_done_ack(priv->ctl);
868
869 /*
870 * 7. Wait for DWC_ddr_umctl2 to move to normal operation mode
871 * by monitoring STAT.operating_mode signal
872 */
873
874 /* Wait uMCTL2 ready */
875 stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL);
876
877 /* Switch to DLL OFF mode */
878 if ((config->c_reg.mstr & DDRCTRL_MSTR_DLL_OFF_MODE) != 0U) {
879 stm32mp1_ddr3_dll_off(priv);
880 }
881
882 VERBOSE("DDR DQS training : ");
883
884 /*
885 * 8. Disable Auto refresh and power down by setting
886 * - RFSHCTL3.dis_au_refresh = 1
887 * - PWRCTL.powerdown_en = 0
888 * - DFIMISC.dfiinit_complete_en = 0
889 */
890 stm32mp1_refresh_disable(priv->ctl);
891
892 /*
893 * 9. Program PUBL PGCR to enable refresh during training
894 * and rank to train
895 * not done => keep the programed value in PGCR
896 */
897
898 /*
899 * 10. configure PUBL PIR register to specify which training step
900 * to run
901 * Warning : RVTRN is not supported by this PUBL
902 */
903 stm32mp1_ddrphy_init(priv->phy, DDRPHYC_PIR_QSTRN);
904
905 /* 11. monitor PUB PGSR.IDONE to poll cpmpletion of training sequence */
906 stm32mp1_ddrphy_idone_wait(priv->phy);
907
908 /*
909 * 12. set back registers in step 8 to the orginal values if desidered
910 */
911 stm32mp1_refresh_restore(priv->ctl, config->c_reg.rfshctl3,
912 config->c_reg.pwrctl);
913
914 /* Enable uMCTL2 AXI port 0 */
Yann Gautier4156d4d2019-01-17 14:35:22 +0100915 mmio_setbits_32((uintptr_t)&priv->ctl->pctrl_0,
916 DDRCTRL_PCTRL_N_PORT_EN);
917 VERBOSE("[0x%lx] pctrl_0 = 0x%x\n",
918 (uintptr_t)&priv->ctl->pctrl_0,
919 mmio_read_32((uintptr_t)&priv->ctl->pctrl_0));
Yann Gautier10a511c2018-07-24 17:18:19 +0200920
921 /* Enable uMCTL2 AXI port 1 */
Yann Gautier4156d4d2019-01-17 14:35:22 +0100922 mmio_setbits_32((uintptr_t)&priv->ctl->pctrl_1,
923 DDRCTRL_PCTRL_N_PORT_EN);
924 VERBOSE("[0x%lx] pctrl_1 = 0x%x\n",
925 (uintptr_t)&priv->ctl->pctrl_1,
926 mmio_read_32((uintptr_t)&priv->ctl->pctrl_1));
Yann Gautier10a511c2018-07-24 17:18:19 +0200927}