big improvement to preferred serialization tests; variable name tweak
diff --git a/test/float_tests.c b/test/float_tests.c
index 8886ab8..a66ef04 100644
--- a/test/float_tests.c
+++ b/test/float_tests.c
@@ -21,8 +21,9 @@
 #include "half_to_double_from_rfc7049.h"
 
 
-// A series of half precision values to test half-precision decoding
 /*
+ Half-precision values that are input to test half-precision decoding
+
  As decoded by http://cbor.me
  {"zero": 0.0,
  "infinitity": Infinity,
@@ -101,6 +102,12 @@
 };
 
 
+inline static bool CheckDouble(double d, uint64_t u)
+{
+   return UsefulBufUtil_CopyDoubleToUint64(d) != u;
+}
+
+
 int32_t HalfPrecisionDecodeBasicTests()
 {
    UsefulBufC HalfPrecision = UsefulBuf_FROM_BYTE_ARRAY_LITERAL(spExpectedHalf);
@@ -130,8 +137,8 @@
       return -4;
    }
 
-   // TODO: NAN-related is this really converting right? It is carrying payload, but
-   // this confuses things.
+   // TODO: NAN-related is this really converting right? It is carrying
+   // payload, but this confuses things.
    QCBORDecode_GetNext(&DC, &Item);
    if(Item.uDataType != QCBOR_TYPE_DOUBLE || !isnan(Item.val.dfnum)) {
       return -5;
@@ -192,22 +199,22 @@
    // TODO: NAN-related double check these four tests
    QCBORDecode_GetNext(&DC, &Item); // qNaN
    if(Item.uDataType != QCBOR_TYPE_DOUBLE ||
-      UsefulBufUtil_CopyDoubleToUint64(Item.val.dfnum) != 0x7ff8000000000000ULL) {
+      CheckDouble(Item.val.dfnum, 0x7ff8000000000000ULL)) {
       return -15;
    }
    QCBORDecode_GetNext(&DC, &Item); // sNaN
    if(Item.uDataType != QCBOR_TYPE_DOUBLE ||
-      UsefulBufUtil_CopyDoubleToUint64(Item.val.dfnum) != 0x7ff0000000000001ULL) {
+      CheckDouble(Item.val.dfnum, 0x7ff0000000000001ULL)) {
       return -16;
    }
    QCBORDecode_GetNext(&DC, &Item); // qNaN with payload 0x0f
    if(Item.uDataType != QCBOR_TYPE_DOUBLE ||
-      UsefulBufUtil_CopyDoubleToUint64(Item.val.dfnum) != 0x7ff800000000000fULL) {
+      CheckDouble(Item.val.dfnum, 0x7ff800000000000fULL)) {
       return -17;
    }
    QCBORDecode_GetNext(&DC, &Item); // sNaN with payload 0x0f
    if(Item.uDataType != QCBOR_TYPE_DOUBLE ||
-      UsefulBufUtil_CopyDoubleToUint64(Item.val.dfnum) != 0x7ff000000000000fULL) {
+      CheckDouble(Item.val.dfnum, 0x7ff000000000000fULL)) {
       return -18;
    }
 
@@ -271,209 +278,279 @@
 
 
 /*
- {"zero": 0.0,
-  "negative zero": -0.0,
-  "infinitity": Infinity,
-  "negative infinitity": -Infinity,
-  "NaN": NaN,
-  "one": 1.0,
-  "one third": 0.333251953125,
-  "largest half-precision": 65504.0,
-  "largest half-precision point one": 65504.1,
-  "too-large half-precision": 65536.0,
-  "smallest subnormal": 5.96046448e-8,
-  "smallest normal": 0.00006103515261202119,
-  "biggest subnormal": 0.00006103515625,
-  "subnormal single": 4.00000646641519e-40,
-  3: -2.0,
-  "large single exp": 2.5521177519070385e+38,
-  "too-large single exp": 5.104235503814077e+38,
-  "biggest single with prec": 16777216.0,
-  "first single with prec loss": 16777217.0,
-  1: "fin"}
+ Expected output from preferred serialization of some of floating-point numbers
+{"zero": 0.0,
+ "negative zero": -0.0,
+ "infinitity": Infinity,
+ "negative infinitity": -Infinity,
+ "NaN": NaN,
+ "one": 1.0,
+ "one third": 0.333251953125,
+ "largest half-precision": 65504.0,
+ "largest half-precision point one": 65504.1,
+ "too-large half-precision": 65536.0,
+ "smallest half subnormal": 5.960464477539063e-8,
+ "smallest half normal": 0.00006103515625,
+ "smallest half normal plus": 0.00006103515625000001,
+ "smallest normal minus": 0.000030517578125,
+ "largest single": 3.4028234663852886e+38,
+ "largest single plus": 6.805646932770577e+38,
+ "smallest single": 1.1754943508222875e-38,
+ "smallest single plus": 1.1754943508222878e-38,
+ "smallest single minus": 1.1754943508222874e-38,
+ "smallest single minus more": 5.877471754111438e-39,
+ 3: -2.0, "single precision": 16777216.0,
+ "single with precision loss": 16777217.0,
+ 1: "fin"}
  */
+// TODO: check these values in hex against expected encoded by hand
 static const uint8_t spExpectedSmallest[] = {
-    0xB4, 0x64, 0x7A, 0x65, 0x72, 0x6F, 0xF9, 0x00, 0x00, 0x6D,
-    0x6E, 0x65, 0x67, 0x61, 0x74, 0x69, 0x76, 0x65, 0x20, 0x7A,
-    0x65, 0x72, 0x6F, 0xF9, 0x80, 0x00, 0x6A, 0x69, 0x6E, 0x66,
-    0x69, 0x6E, 0x69, 0x74, 0x69, 0x74, 0x79, 0xF9, 0x7C, 0x00,
-    0x73, 0x6E, 0x65, 0x67, 0x61, 0x74, 0x69, 0x76, 0x65, 0x20,
-    0x69, 0x6E, 0x66, 0x69, 0x6E, 0x69, 0x74, 0x69, 0x74, 0x79,
-    0xF9, 0xFC, 0x00, 0x63, 0x4E, 0x61, 0x4E, 0xF9, 0x7E, 0x00,
-    0x63, 0x6F, 0x6E, 0x65, 0xF9, 0x3C, 0x00, 0x69, 0x6F, 0x6E,
-    0x65, 0x20, 0x74, 0x68, 0x69, 0x72, 0x64, 0xF9, 0x35, 0x55,
-    0x76, 0x6C, 0x61, 0x72, 0x67, 0x65, 0x73, 0x74, 0x20, 0x68,
-    0x61, 0x6C, 0x66, 0x2D, 0x70, 0x72, 0x65, 0x63, 0x69, 0x73,
-    0x69, 0x6F, 0x6E, 0xF9, 0x7B, 0xFF, 0x78, 0x20, 0x6C, 0x61,
-    0x72, 0x67, 0x65, 0x73, 0x74, 0x20, 0x68, 0x61, 0x6C, 0x66,
-    0x2D, 0x70, 0x72, 0x65, 0x63, 0x69, 0x73, 0x69, 0x6F, 0x6E,
-    0x20, 0x70, 0x6F, 0x69, 0x6E, 0x74, 0x20, 0x6F, 0x6E, 0x65,
-    0xFB, 0x40, 0xEF, 0xFC, 0x03, 0x33, 0x33, 0x33, 0x33, 0x78,
-    0x18, 0x74, 0x6F, 0x6F, 0x2D, 0x6C, 0x61, 0x72, 0x67, 0x65,
-    0x20, 0x68, 0x61, 0x6C, 0x66, 0x2D, 0x70, 0x72, 0x65, 0x63,
-    0x69, 0x73, 0x69, 0x6F, 0x6E, 0xFA, 0x47, 0x80, 0x00, 0x00,
-    0x72, 0x73, 0x6D, 0x61, 0x6C, 0x6C, 0x65, 0x73, 0x74, 0x20,
-    0x73, 0x75, 0x62, 0x6E, 0x6F, 0x72, 0x6D, 0x61, 0x6C, 0xFB,
-    0x3E, 0x70, 0x00, 0x00, 0x00, 0x1C, 0x5F, 0x68, 0x6F, 0x73,
-    0x6D, 0x61, 0x6C, 0x6C, 0x65, 0x73, 0x74, 0x20, 0x6E, 0x6F,
-    0x72, 0x6D, 0x61, 0x6C, 0xFA, 0x38, 0x7F, 0xFF, 0xFF, 0x71,
-    0x62, 0x69, 0x67, 0x67, 0x65, 0x73, 0x74, 0x20, 0x73, 0x75,
-    0x62, 0x6E, 0x6F, 0x72, 0x6D, 0x61, 0x6C, 0xF9, 0x04, 0x00,
-    0x70, 0x73, 0x75, 0x62, 0x6E, 0x6F, 0x72, 0x6D, 0x61, 0x6C,
-    0x20, 0x73, 0x69, 0x6E, 0x67, 0x6C, 0x65, 0xFB, 0x37, 0xC1,
-    0x6C, 0x28, 0x00, 0x00, 0x00, 0x00, 0x03, 0xF9, 0xC0, 0x00,
-    0x70, 0x6C, 0x61, 0x72, 0x67, 0x65, 0x20, 0x73, 0x69, 0x6E,
-    0x67, 0x6C, 0x65, 0x20, 0x65, 0x78, 0x70, 0xFA, 0x7F, 0x40,
-    0x00, 0x00, 0x74, 0x74, 0x6F, 0x6F, 0x2D, 0x6C, 0x61, 0x72,
-    0x67, 0x65, 0x20, 0x73, 0x69, 0x6E, 0x67, 0x6C, 0x65, 0x20,
-    0x65, 0x78, 0x70, 0xFB, 0x47, 0xF8, 0x00, 0x00, 0x00, 0x00,
-    0x00, 0x00, 0x78, 0x18, 0x62, 0x69, 0x67, 0x67, 0x65, 0x73,
-    0x74, 0x20, 0x73, 0x69, 0x6E, 0x67, 0x6C, 0x65, 0x20, 0x77,
-    0x69, 0x74, 0x68, 0x20, 0x70, 0x72, 0x65, 0x63, 0xFA, 0x4B,
-    0x80, 0x00, 0x00, 0x78, 0x1B, 0x66, 0x69, 0x72, 0x73, 0x74,
-    0x20, 0x73, 0x69, 0x6E, 0x67, 0x6C, 0x65, 0x20, 0x77, 0x69,
-    0x74, 0x68, 0x20, 0x70, 0x72, 0x65, 0x63, 0x20, 0x6C, 0x6F,
-    0x73, 0x73, 0xFB, 0x41, 0x70, 0x00, 0x00, 0x10, 0x00, 0x00,
-    0x00, 0x01, 0x63, 0x66, 0x69, 0x6E
+   0xB8, 0x1A, 0x64, 0x7A, 0x65, 0x72, 0x6F, 0xF9, 0x00, 0x00,
+   0x6D, 0x6E, 0x65, 0x67, 0x61, 0x74, 0x69, 0x76, 0x65, 0x20,
+   0x7A, 0x65, 0x72, 0x6F, 0xF9, 0x80, 0x00, 0x6A, 0x69, 0x6E,
+   0x66, 0x69, 0x6E, 0x69, 0x74, 0x69, 0x74, 0x79, 0xF9, 0x7C,
+   0x00, 0x73, 0x6E, 0x65, 0x67, 0x61, 0x74, 0x69, 0x76, 0x65,
+   0x20, 0x69, 0x6E, 0x66, 0x69, 0x6E, 0x69, 0x74, 0x69, 0x74,
+   0x79, 0xF9, 0xFC, 0x00, 0x63, 0x4E, 0x61, 0x4E, 0xF9, 0x7E,
+   0x00, 0x63, 0x6F, 0x6E, 0x65, 0xF9, 0x3C, 0x00, 0x69, 0x6F,
+   0x6E, 0x65, 0x20, 0x74, 0x68, 0x69, 0x72, 0x64, 0xF9, 0x35,
+   0x55, 0x76, 0x6C, 0x61, 0x72, 0x67, 0x65, 0x73, 0x74, 0x20,
+   0x68, 0x61, 0x6C, 0x66, 0x2D, 0x70, 0x72, 0x65, 0x63, 0x69,
+   0x73, 0x69, 0x6F, 0x6E, 0xF9, 0x7B, 0xFF, 0x78, 0x20, 0x6C,
+   0x61, 0x72, 0x67, 0x65, 0x73, 0x74, 0x20, 0x68, 0x61, 0x6C,
+   0x66, 0x2D, 0x70, 0x72, 0x65, 0x63, 0x69, 0x73, 0x69, 0x6F,
+   0x6E, 0x20, 0x70, 0x6F, 0x69, 0x6E, 0x74, 0x20, 0x6F, 0x6E,
+   0x65, 0xFB, 0x40, 0xEF, 0xFC, 0x03, 0x33, 0x33, 0x33, 0x33,
+   0x78, 0x18, 0x74, 0x6F, 0x6F, 0x2D, 0x6C, 0x61, 0x72, 0x67,
+   0x65, 0x20, 0x68, 0x61, 0x6C, 0x66, 0x2D, 0x70, 0x72, 0x65,
+   0x63, 0x69, 0x73, 0x69, 0x6F, 0x6E, 0xFA, 0x47, 0x80, 0x00,
+   0x00, 0x77, 0x73, 0x6D, 0x61, 0x6C, 0x6C, 0x65, 0x73, 0x74,
+   0x20, 0x68, 0x61, 0x6C, 0x66, 0x20, 0x73, 0x75, 0x62, 0x6E,
+   0x6F, 0x72, 0x6D, 0x61, 0x6C, 0xFA, 0x33, 0x80, 0x00, 0x00,
+   0x74, 0x73, 0x6D, 0x61, 0x6C, 0x6C, 0x65, 0x73, 0x74, 0x20,
+   0x68, 0x61, 0x6C, 0x66, 0x20, 0x6E, 0x6F, 0x72, 0x6D, 0x61,
+   0x6C, 0xF9, 0x04, 0x00, 0x78, 0x19, 0x73, 0x6D, 0x61, 0x6C,
+   0x6C, 0x65, 0x73, 0x74, 0x20, 0x68, 0x61, 0x6C, 0x66, 0x20,
+   0x6E, 0x6F, 0x72, 0x6D, 0x61, 0x6C, 0x20, 0x70, 0x6C, 0x75,
+   0x73, 0xFB, 0x3F, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
+   0x75, 0x73, 0x6D, 0x61, 0x6C, 0x6C, 0x65, 0x73, 0x74, 0x20,
+   0x6E, 0x6F, 0x72, 0x6D, 0x61, 0x6C, 0x20, 0x6D, 0x69, 0x6E,
+   0x75, 0x73, 0xFB, 0x3F, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+   0xFF, 0x75, 0x73, 0x6D, 0x61, 0x6C, 0x6C, 0x65, 0x73, 0x74,
+   0x20, 0x6E, 0x6F, 0x72, 0x6D, 0x61, 0x6C, 0x20, 0x6D, 0x69,
+   0x6E, 0x75, 0x73, 0xFA, 0x38, 0x00, 0x00, 0x00, 0x6E, 0x6C,
+   0x61, 0x72, 0x67, 0x65, 0x73, 0x74, 0x20, 0x73, 0x69, 0x6E,
+   0x67, 0x6C, 0x65, 0xFA, 0x7F, 0x7F, 0xFF, 0xFF, 0x73, 0x6C,
+   0x61, 0x72, 0x67, 0x65, 0x73, 0x74, 0x20, 0x73, 0x69, 0x6E,
+   0x67, 0x6C, 0x65, 0x20, 0x70, 0x6C, 0x75, 0x73, 0xFB, 0x47,
+   0xEF, 0xFF, 0xFF, 0xE0, 0x00, 0x00, 0x01, 0x73, 0x6C, 0x61,
+   0x72, 0x67, 0x65, 0x73, 0x74, 0x20, 0x73, 0x69, 0x6E, 0x67,
+   0x6C, 0x65, 0x20, 0x70, 0x6C, 0x75, 0x73, 0xFB, 0x47, 0xFF,
+   0xFF, 0xFF, 0xE0, 0x00, 0x00, 0x00, 0x6F, 0x73, 0x6D, 0x61,
+   0x6C, 0x6C, 0x65, 0x73, 0x74, 0x20, 0x73, 0x69, 0x6E, 0x67,
+   0x6C, 0x65, 0xFA, 0x00, 0x80, 0x00, 0x00, 0x74, 0x73, 0x6D,
+   0x61, 0x6C, 0x6C, 0x65, 0x73, 0x74, 0x20, 0x73, 0x69, 0x6E,
+   0x67, 0x6C, 0x65, 0x20, 0x70, 0x6C, 0x75, 0x73, 0xFB, 0x38,
+   0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x75, 0x73, 0x6D,
+   0x61, 0x6C, 0x6C, 0x65, 0x73, 0x74, 0x20, 0x73, 0x69, 0x6E,
+   0x67, 0x6C, 0x65, 0x20, 0x6D, 0x69, 0x6E, 0x75, 0x73, 0xFB,
+   0x38, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x78, 0x1A,
+   0x73, 0x6D, 0x61, 0x6C, 0x6C, 0x65, 0x73, 0x74, 0x20, 0x73,
+   0x69, 0x6E, 0x67, 0x6C, 0x65, 0x20, 0x6D, 0x69, 0x6E, 0x75,
+   0x73, 0x20, 0x6D, 0x6F, 0x72, 0x65, 0xFB, 0x38, 0x00, 0x00,
+   0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0xF9, 0xC0, 0x00, 0x70,
+   0x73, 0x69, 0x6E, 0x67, 0x6C, 0x65, 0x20, 0x70, 0x72, 0x65,
+   0x63, 0x69, 0x73, 0x69, 0x6F, 0x6E, 0xFA, 0x4B, 0x80, 0x00,
+   0x00, 0x78, 0x1A, 0x73, 0x69, 0x6E, 0x67, 0x6C, 0x65, 0x20,
+   0x77, 0x69, 0x74, 0x68, 0x20, 0x70, 0x72, 0x65, 0x63, 0x69,
+   0x73, 0x69, 0x6F, 0x6E, 0x20, 0x6C, 0x6F, 0x73, 0x73, 0xFB,
+   0x41, 0x70, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, 0x63,
+   0x66, 0x69, 0x6E
 };
 
 
+/*
+ Makes a double from a uint64_t by copying the bits, not
+ by converting the value.
+ */
+#define MAKE_DOUBLE(x) UsefulBufUtil_CopyUint64ToDouble(x)
+
+
 int32_t DoubleAsSmallestTest()
 {
-    UsefulBuf_MAKE_STACK_UB(EncodedHalfsMem, 420);
+   UsefulBuf_MAKE_STACK_UB(EncodedHalfsMem, sizeof(spExpectedSmallest));
 
-#define QCBOREncode_AddDoubleToMap QCBOREncode_AddDoubleToMap
+   QCBOREncodeContext EC;
+   QCBOREncode_Init(&EC, EncodedHalfsMem);
+   QCBOREncode_OpenMap(&EC);
 
+   // Many of these are from
+   // https://en.wikipedia.org/wiki/Half-precision_floating-point_format
+   // and
+   // https://en.wikipedia.org/wiki/Single-precision_floating-point_format
 
-    QCBOREncodeContext EC;
-    QCBOREncode_Init(&EC, EncodedHalfsMem);
-    // These are mostly from https://en.wikipedia.org/wiki/Half-precision_floating-point_format
-    QCBOREncode_OpenMap(&EC);
-    // 64                                   # text(4)
-    //    7A65726F                          # "zero"
-    // F9 0000                              # primitive(0)
-    QCBOREncode_AddDoubleToMap(&EC, "zero", 0.00);
+   // 64                                   # text(4)
+   //    7A65726F                          # "zero"
+   // F9 0000                              # primitive(0)
+   QCBOREncode_AddDoubleToMap(&EC, "zero", 0.00);
 
-    // 64                                   # text(4)
-    //    7A65726F                          # "negative zero"
-    // F9 8000                              # primitive(0)
-    QCBOREncode_AddDoubleToMap(&EC, "negative zero", -0.00);
+   // 64                                   # text(4)
+   //    7A65726F                          # "negative zero"
+   // F9 8000                              # primitive(0)
+   QCBOREncode_AddDoubleToMap(&EC, "negative zero", -0.00);
 
-    // 6A                                   # text(10)
-    //    696E66696E6974697479              # "infinitity"
-    // F9 7C00                              # primitive(31744)
-    QCBOREncode_AddDoubleToMap(&EC, "infinitity", INFINITY);
+   // 6A                                   # text(10)
+   //    696E66696E6974697479              # "infinitity"
+   // F9 7C00                              # primitive(31744)
+   QCBOREncode_AddDoubleToMap(&EC, "infinitity", INFINITY);
 
-    // 73                                   # text(19)
-    //    6E6567617469766520696E66696E6974697479 # "negative infinitity"
-    // F9 FC00                              # primitive(64512)
-    QCBOREncode_AddDoubleToMap(&EC, "negative infinitity", -INFINITY);
+   // 73                                   # text(19)
+   //    6E6567617469766520696E66696E6974697479 # "negative infinitity"
+   // F9 FC00                              # primitive(64512)
+   QCBOREncode_AddDoubleToMap(&EC, "negative infinitity", -INFINITY);
 
-    // 63                                   # text(3)
-    //    4E614E                            # "NaN"
-    // F9 7E00                              # primitive(32256)
-    QCBOREncode_AddDoubleToMap(&EC, "NaN", NAN);
+   // 63                                   # text(3)
+   //    4E614E                            # "NaN"
+   // F9 7E00                              # primitive(32256)
+   QCBOREncode_AddDoubleToMap(&EC, "NaN", NAN);
 
-    // TODO: test a few NaN variants
+   // TODO: test a few NaN variants
 
-    // 63                                   # text(3)
-    //    6F6E65                            # "one"
-    // F9 3C00                              # primitive(15360)
-    QCBOREncode_AddDoubleToMap(&EC, "one", 1.0);
+   // 63                                   # text(3)
+   //    6F6E65                            # "one"
+   // F9 3C00                              # primitive(15360)
+   QCBOREncode_AddDoubleToMap(&EC, "one", 1.0);
 
-    // 69                                   # text(9)
-    //    6F6E65207468697264                # "one third"
-    // F9 3555                              # primitive(13653)
-    QCBOREncode_AddDoubleToMap(&EC, "one third", 0.333251953125);
+   // 69                                   # text(9)
+   //    6F6E65207468697264                # "one third"
+   // F9 3555                              # primitive(13653)
+   QCBOREncode_AddDoubleToMap(&EC, "one third", 0.333251953125);
 
-    // 76                                   # text(22)
-    //   6C6172676573742068616C662D707265636973696F6E # "largest half-precision"
-    // F9 7BFF                              # primitive(31743)
-    QCBOREncode_AddDoubleToMap(&EC, "largest half-precision",65504.0);
+   // 65504.0, converts to the large possible half-precision.
+   QCBOREncode_AddDoubleToMap(&EC, "largest half-precision", 65504.0);
 
-    // 76                                   # text(22)
-    //   6C6172676573742068616C662D707265636973696F6E # "largest half-precision"
-    // F9 7BFF                              # primitive(31743)
-    QCBOREncode_AddDoubleToMap(&EC, "largest half-precision point one",65504.1);
+   // 65504.1, the double that has both to large an exponent and too
+   // much precision, so no conversion.
+   QCBOREncode_AddDoubleToMap(&EC, "largest half-precision point one", 65504.1);
 
-    // Float 65536.0F is 0x47800000 in hex. It has an exponent of 16, which
-    // is larger than 15, the largest half-precision exponent
-    // 78 18                                # text(24)
-    //    746F6F2D6C617267652068616C662D707265636973696F6E # "too-large half-precision"
-    // FA 47800000                          # primitive(31743)
-    QCBOREncode_AddDoubleToMap(&EC, "too-large half-precision", 65536.0);
+   // 65536.0 has an exponent of 16, which is larger than 15, the
+   // largest half-precision exponent. It is the exponent, not
+   // precision loss that prevents conversion to half. It does convert
+   // to single precision.
+   QCBOREncode_AddDoubleToMap(&EC, "too-large half-precision", 65536.0);
 
-    // The smallest possible half-precision subnormal, but digitis are lost converting
-    // to half, so this turns into a double
-    // 72                                   # text(18)
-    //    736D616C6C657374207375626E6F726D616C # "smallest subnormal"
-    // FB 3E700000001C5F68                  # primitive(4499096027744984936)
-    QCBOREncode_AddDoubleToMap(&EC, "smallest subnormal", 0.0000000596046448);
+   // 5.9604644775390625E-8, the smallest possible half-precision
+   // subnormal, but digitis are lost converting to half, so this is
+   // output as a double.
+   QCBOREncode_AddDoubleToMap(&EC,
+                              "smallest half subnormal",
+                              MAKE_DOUBLE(0x3e70000000000000));
 
-    // The smallest possible half-precision snormal, but digitis are lost converting
-    // to half, so this turns into a single TODO: confirm this is right
-    // 6F                                   # text(15)
-    //    736D616C6C657374206E6F726D616C    # "smallest normal"
-    // FA 387FFFFF                          # primitive(947912703)
-    // in hex single is 0x387fffff, exponent -15, significand 7fffff
-    QCBOREncode_AddDoubleToMap(&EC, "smallest normal",    0.0000610351526F);
+   // 0.00006103515625, the double value that converts to the smallest
+   // possible half-precision normal.  which is what should appear in
+   // the output.
+   QCBOREncode_AddDoubleToMap(&EC,
+                              "smallest half normal",
+                              MAKE_DOUBLE(0x3f10000000000000));
 
-    // 71                                   # text(17)
-    //    62696767657374207375626E6F726D616C # "biggest subnormal"
-    // F9 0400                              # primitive(1024)
-    // in hex single is 0x38800000, exponent -14, significand 0
-    QCBOREncode_AddDoubleToMap(&EC, "biggest subnormal",  0.0000610351563F);
+   // 0.000061035156250000014 ,the double value that is a tiny bit
+   // greater than smallest possible half-precision normal. It will be
+   // output as a double because converting it will reduce precision.
+   QCBOREncode_AddDoubleToMap(&EC,
+                              "smallest half normal plus",
+                              MAKE_DOUBLE(0x3f10000000000001));
 
-    // 70                                   # text(16)
-    //    7375626E6F726D616C2073696E676C65  # "subnormal single"
-    // FB 37C16C2800000000                  # primitive(4017611261645684736)
-    QCBOREncode_AddDoubleToMap(&EC, "subnormal single", 4e-40F);
+   // 0.000061035156249999993, the double value that is a tiny bit
+   // smaller than the smallest half-precision normal. This will fail
+   // to convert to a half-precision because both the exponent is too
+   // small and the precision is too large for a half-precision.
+   QCBOREncode_AddDoubleToMap(&EC,
+                              "smallest normal minus",
+                              MAKE_DOUBLE(0x3f0fffffffffffff));
 
-    // 03                                   # unsigned(3)
-    // F9 C000                              # primitive(49152)
-    QCBOREncode_AddDoubleToMapN(&EC, 3, -2.0);
+   // 0.000030517578125, the double value that is too small to fit
+   // into a half-precision because the exponent won't fit, not
+   // because precision would be lost. (This would fit into a
+   // half-precision subnormal, but there is no converstion to
+   // that). This ends up encoded as a single-precision.
+   QCBOREncode_AddDoubleToMap(&EC,
+                              "smallest normal minus",
+                              MAKE_DOUBLE(0x3f00000000000000));
 
-    // 70                                   # text(16)
-    //    6C617267652073696E676C6520657870  # "large single exp"
-    // FA 7F400000                          # primitive(2134900736)
-    // (0x01LL << (DOUBLE_NUM_SIGNIFICAND_BITS-1)) | ((127LL + DOUBLE_EXPONENT_BIAS) << DOUBLE_EXPONENT_SHIFT);
-    QCBOREncode_AddDoubleToMap(&EC, "large single exp", 2.5521177519070385E+38); // Exponent fits  single
+   // 3.4028234664e38, the value that converts to the largest possible
+   // single-precision.
+   QCBOREncode_AddDoubleToMap(&EC,
+                              "largest single",
+                              MAKE_DOUBLE(0x47efffffe0000000));
 
-    // 74                                   # text(20)
-    //    746F6F2D6C617267652073696E676C6520657870 # "too-large single exp"
-    // FB 47F8000000000000                  # primitive(5185894970917126144)
-    // (0x01LL << (DOUBLE_NUM_SIGNIFICAND_BITS-1)) | ((128LL + DOUBLE_EXPONENT_BIAS) << DOUBLE_EXPONENT_SHIFT);
-    // Exponent too large for single
-    QCBOREncode_AddDoubleToMap(&EC, "too-large single exp", 5.104235503814077E+38);
+   // 3.402823466385289E38, sightly larger than the largest possible
+   // possible precision.  Conversion fails because precision would be
+   // lost.
+   QCBOREncode_AddDoubleToMap(&EC,
+                              "largest single plus",
+                              MAKE_DOUBLE(0x47efffffe0000001));
 
-    // 66                                   # text(6)
-    //    646664666465                      # "dfdfde"
-    // FA 4B800000                          # primitive(1266679808)
-    // Single with no precision loss
-    QCBOREncode_AddDoubleToMap(&EC, "biggest single with prec", 16777216);
+   // 6.8056469327705772E38, slightly more larger than the largers
+   // possible single precision.  Conversion fails because exponent is
+   // too large.
+   QCBOREncode_AddDoubleToMap(&EC,
+                              "largest single plus",
+                              MAKE_DOUBLE(0x47ffffffe0000000));
 
-    // 78 18                                # text(24)
-    //    626967676573742073696E676C6520776974682070726563 # "biggest single with prec"
-    // FA 4B800000                          # primitive(1266679808)
-    // Double becuase of precision loss
-    QCBOREncode_AddDoubleToMap(&EC, "first single with prec loss", 16777217);
+   // 1.1754943508222875E-38, The double value that converts to the
+   // smallest possible single-precision normal
+   QCBOREncode_AddDoubleToMap(&EC,
+                              "smallest single",
+                              MAKE_DOUBLE(0x3810000000000000));
 
-    // Just a convenient marker when cutting and pasting encoded CBOR
-    QCBOREncode_AddSZStringToMapN(&EC, 1, "fin");
+   // 1.1754943508222878E-38, double value that is slightly larger
+   // than the smallest single-precision normal. Conversion fails
+   // because of precision
+   QCBOREncode_AddDoubleToMap(&EC,
+                              "smallest single plus",
+                              MAKE_DOUBLE(0x3810000000000001));
 
-    QCBOREncode_CloseMap(&EC);
+   // 1.1754943508222874E-38, slightly smaller than the smallest
+   // single-precision normal.  Conversion fails because of precsiion
+   QCBOREncode_AddDoubleToMap(&EC,
+                              "smallest single minus",
+                              MAKE_DOUBLE(0x380fffffffffffff));
 
-    UsefulBufC EncodedHalfs;
-    QCBORError uErr = QCBOREncode_Finish(&EC, &EncodedHalfs);
-    if(uErr) {
-        return -1;
-    }
+   // 5.8774717541114375E-39, slightly smaller than the smallest
+   // single-precision normal.  Conversion fails because the exponent
+   // is too small.
+   QCBOREncode_AddDoubleToMap(&EC,
+                              "smallest single minus more",
+                              MAKE_DOUBLE(0x3800000000000000));
 
-    if(UsefulBuf_Compare(EncodedHalfs, UsefulBuf_FROM_BYTE_ARRAY_LITERAL(spExpectedSmallest))) {
-        return -3;
-    }
+   // Just -2, which converts to a negative half-precision
+   // F9 C000                              # primitive(49152)
+   QCBOREncode_AddDoubleToMapN(&EC, 3, -2.0);
 
-    return 0;
+   // 16777216, No precision loss converting to single
+   // FA 4B800000                          # primitive(1266679808)
+   QCBOREncode_AddDoubleToMap(&EC, "single precision", 16777216);
+
+   // 16777217, One more than above. Too much precision for a single
+   // so no conversion.
+   QCBOREncode_AddDoubleToMap(&EC, "single with precision loss", 16777217);
+
+   // Just a convenient marker when cutting and pasting encoded CBOR
+   QCBOREncode_AddSZStringToMapN(&EC, 1, "fin");
+
+   QCBOREncode_CloseMap(&EC);
+
+   UsefulBufC EncodedHalfs;
+   QCBORError uErr = QCBOREncode_Finish(&EC, &EncodedHalfs);
+   if(uErr) {
+      return -1;
+   }
+
+   if(UsefulBuf_Compare(EncodedHalfs, UsefulBuf_FROM_BYTE_ARRAY_LITERAL(spExpectedSmallest))) {
+      return -3;
+   }
+
+   return 0;
 }
 #endif /* QCBOR_DISABLE_PREFERRED_FLOAT */
 
@@ -545,13 +622,14 @@
 
 int32_t GeneralFloatEncodeTests()
 {
+   UsefulBufC ExpectedFloats;
 #ifndef QCBOR_DISABLE_PREFERRED_FLOAT
    UsefulBuf_MAKE_STACK_UB(OutBuffer, sizeof(spExpectedFloats));
-   UsefulBufC ExpectedFloats = UsefulBuf_FROM_BYTE_ARRAY_LITERAL(spExpectedFloats);
+   ExpectedFloats = UsefulBuf_FROM_BYTE_ARRAY_LITERAL(spExpectedFloats);
    (void)spExpectedFloatsNoHalf; // Avoid unused variable error
 #else
    UsefulBuf_MAKE_STACK_UB(OutBuffer, sizeof(spExpectedFloatsNoHalf));
-   UsefulBufC ExpectedFloats = UsefulBuf_FROM_BYTE_ARRAY_LITERAL(spExpectedFloatsNoHalf);
+   ExpectedFloats = UsefulBuf_FROM_BYTE_ARRAY_LITERAL(spExpectedFloatsNoHalf);
    (void)spExpectedFloats; // Avoid unused variable error
 #endif /* QCBOR_DISABLE_PREFERRED_FLOAT */