blob: 3d96d4d7926a9cdceb9885973ebee5c08de8f3dd [file] [log] [blame]
Paul Bakker5121ce52009-01-03 21:22:43 +00001/*
2 * HAVEGE: HArdware Volatile Entropy Gathering and Expansion
3 *
Paul Bakkerfc8c4362010-03-21 17:37:16 +00004 * Copyright (C) 2006-2010, Paul Bakker <polarssl_maintainer at polarssl.org>
Paul Bakker77b385e2009-07-28 17:23:11 +00005 * All rights reserved.
Paul Bakkere0ccd0a2009-01-04 16:27:10 +00006 *
Paul Bakker5121ce52009-01-03 21:22:43 +00007 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20 */
21/*
22 * The HAVEGE RNG was designed by Andre Seznec in 2002.
23 *
24 * http://www.irisa.fr/caps/projects/hipsor/publi.php
25 *
26 * Contact: seznec(at)irisa_dot_fr - orocheco(at)irisa_dot_fr
27 */
28
29#include <string.h>
30#include <time.h>
31
Paul Bakker40e46942009-01-03 21:51:57 +000032#include "polarssl/config.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000033
Paul Bakker40e46942009-01-03 21:51:57 +000034#if defined(POLARSSL_HAVEGE_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000035
Paul Bakker40e46942009-01-03 21:51:57 +000036#include "polarssl/havege.h"
37#include "polarssl/timing.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000038
39/* ------------------------------------------------------------------------
40 * On average, one iteration accesses two 8-word blocks in the havege WALK
41 * table, and generates 16 words in the RES array.
42 *
43 * The data read in the WALK table is updated and permuted after each use.
44 * The result of the hardware clock counter read is used for this update.
45 *
46 * 25 conditional tests are present. The conditional tests are grouped in
47 * two nested groups of 12 conditional tests and 1 test that controls the
48 * permutation; on average, there should be 6 tests executed and 3 of them
49 * should be mispredicted.
50 * ------------------------------------------------------------------------
51 */
52
53#define SWAP(X,Y) { int *T = X; X = Y; Y = T; }
54
55#define TST1_ENTER if( PTEST & 1 ) { PTEST ^= 3; PTEST >>= 1;
56#define TST2_ENTER if( PTEST & 1 ) { PTEST ^= 3; PTEST >>= 1;
57
58#define TST1_LEAVE U1++; }
59#define TST2_LEAVE U2++; }
60
61#define ONE_ITERATION \
62 \
63 PTEST = PT1 >> 20; \
64 \
65 TST1_ENTER TST1_ENTER TST1_ENTER TST1_ENTER \
66 TST1_ENTER TST1_ENTER TST1_ENTER TST1_ENTER \
67 TST1_ENTER TST1_ENTER TST1_ENTER TST1_ENTER \
68 \
69 TST1_LEAVE TST1_LEAVE TST1_LEAVE TST1_LEAVE \
70 TST1_LEAVE TST1_LEAVE TST1_LEAVE TST1_LEAVE \
71 TST1_LEAVE TST1_LEAVE TST1_LEAVE TST1_LEAVE \
72 \
73 PTX = (PT1 >> 18) & 7; \
74 PT1 &= 0x1FFF; \
75 PT2 &= 0x1FFF; \
76 CLK = (int) hardclock(); \
77 \
78 i = 0; \
79 A = &WALK[PT1 ]; RES[i++] ^= *A; \
80 B = &WALK[PT2 ]; RES[i++] ^= *B; \
81 C = &WALK[PT1 ^ 1]; RES[i++] ^= *C; \
82 D = &WALK[PT2 ^ 4]; RES[i++] ^= *D; \
83 \
84 IN = (*A >> (1)) ^ (*A << (31)) ^ CLK; \
85 *A = (*B >> (2)) ^ (*B << (30)) ^ CLK; \
86 *B = IN ^ U1; \
87 *C = (*C >> (3)) ^ (*C << (29)) ^ CLK; \
88 *D = (*D >> (4)) ^ (*D << (28)) ^ CLK; \
89 \
90 A = &WALK[PT1 ^ 2]; RES[i++] ^= *A; \
91 B = &WALK[PT2 ^ 2]; RES[i++] ^= *B; \
92 C = &WALK[PT1 ^ 3]; RES[i++] ^= *C; \
93 D = &WALK[PT2 ^ 6]; RES[i++] ^= *D; \
94 \
95 if( PTEST & 1 ) SWAP( A, C ); \
96 \
97 IN = (*A >> (5)) ^ (*A << (27)) ^ CLK; \
98 *A = (*B >> (6)) ^ (*B << (26)) ^ CLK; \
99 *B = IN; CLK = (int) hardclock(); \
100 *C = (*C >> (7)) ^ (*C << (25)) ^ CLK; \
101 *D = (*D >> (8)) ^ (*D << (24)) ^ CLK; \
102 \
103 A = &WALK[PT1 ^ 4]; \
104 B = &WALK[PT2 ^ 1]; \
105 \
106 PTEST = PT2 >> 1; \
107 \
108 PT2 = (RES[(i - 8) ^ PTY] ^ WALK[PT2 ^ PTY ^ 7]); \
109 PT2 = ((PT2 & 0x1FFF) & (~8)) ^ ((PT1 ^ 8) & 0x8); \
110 PTY = (PT2 >> 10) & 7; \
111 \
112 TST2_ENTER TST2_ENTER TST2_ENTER TST2_ENTER \
113 TST2_ENTER TST2_ENTER TST2_ENTER TST2_ENTER \
114 TST2_ENTER TST2_ENTER TST2_ENTER TST2_ENTER \
115 \
116 TST2_LEAVE TST2_LEAVE TST2_LEAVE TST2_LEAVE \
117 TST2_LEAVE TST2_LEAVE TST2_LEAVE TST2_LEAVE \
118 TST2_LEAVE TST2_LEAVE TST2_LEAVE TST2_LEAVE \
119 \
120 C = &WALK[PT1 ^ 5]; \
121 D = &WALK[PT2 ^ 5]; \
122 \
123 RES[i++] ^= *A; \
124 RES[i++] ^= *B; \
125 RES[i++] ^= *C; \
126 RES[i++] ^= *D; \
127 \
128 IN = (*A >> ( 9)) ^ (*A << (23)) ^ CLK; \
129 *A = (*B >> (10)) ^ (*B << (22)) ^ CLK; \
130 *B = IN ^ U2; \
131 *C = (*C >> (11)) ^ (*C << (21)) ^ CLK; \
132 *D = (*D >> (12)) ^ (*D << (20)) ^ CLK; \
133 \
134 A = &WALK[PT1 ^ 6]; RES[i++] ^= *A; \
135 B = &WALK[PT2 ^ 3]; RES[i++] ^= *B; \
136 C = &WALK[PT1 ^ 7]; RES[i++] ^= *C; \
137 D = &WALK[PT2 ^ 7]; RES[i++] ^= *D; \
138 \
139 IN = (*A >> (13)) ^ (*A << (19)) ^ CLK; \
140 *A = (*B >> (14)) ^ (*B << (18)) ^ CLK; \
141 *B = IN; \
142 *C = (*C >> (15)) ^ (*C << (17)) ^ CLK; \
143 *D = (*D >> (16)) ^ (*D << (16)) ^ CLK; \
144 \
145 PT1 = ( RES[(i - 8) ^ PTX] ^ \
146 WALK[PT1 ^ PTX ^ 7] ) & (~1); \
147 PT1 ^= (PT2 ^ 0x10) & 0x10; \
148 \
149 for( n++, i = 0; i < 16; i++ ) \
150 hs->pool[n % COLLECT_SIZE] ^= RES[i];
151
152/*
153 * Entropy gathering function
154 */
155static void havege_fill( havege_state *hs )
156{
157 int i, n = 0;
158 int U1, U2, *A, *B, *C, *D;
159 int PT1, PT2, *WALK, RES[16];
160 int PTX, PTY, CLK, PTEST, IN;
161
162 WALK = hs->WALK;
163 PT1 = hs->PT1;
164 PT2 = hs->PT2;
165
166 PTX = U1 = 0;
167 PTY = U2 = 0;
168
169 memset( RES, 0, sizeof( RES ) );
170
171 while( n < COLLECT_SIZE * 4 )
172 {
173 ONE_ITERATION
174 ONE_ITERATION
175 ONE_ITERATION
176 ONE_ITERATION
177 }
178
179 hs->PT1 = PT1;
180 hs->PT2 = PT2;
181
182 hs->offset[0] = 0;
183 hs->offset[1] = COLLECT_SIZE / 2;
184}
185
186/*
187 * HAVEGE initialization
188 */
189void havege_init( havege_state *hs )
190{
191 memset( hs, 0, sizeof( havege_state ) );
192
193 havege_fill( hs );
194}
195
196/*
197 * HAVEGE rand function
198 */
199int havege_rand( void *p_rng )
200{
201 int ret;
202 havege_state *hs = (havege_state *) p_rng;
203
204 if( hs->offset[1] >= COLLECT_SIZE )
205 havege_fill( hs );
206
207 ret = hs->pool[hs->offset[0]++];
208 ret ^= hs->pool[hs->offset[1]++];
209
210 return( ret );
211}
212
Paul Bakker40e46942009-01-03 21:51:57 +0000213#if defined(POLARSSL_RAND_TEST)
Paul Bakker5121ce52009-01-03 21:22:43 +0000214
215#include <stdio.h>
216
217int main( int argc, char *argv[] )
218{
219 FILE *f;
220 time_t t;
221 int i, j, k;
222 havege_state hs;
223 unsigned char buf[1024];
224
225 if( argc < 2 )
226 {
227 fprintf( stderr, "usage: %s <output filename>\n", argv[0] );
228 return( 1 );
229 }
230
231 if( ( f = fopen( argv[1], "wb+" ) ) == NULL )
232 {
233 printf( "failed to open '%s' for writing.\n", argv[0] );
234 return( 1 );
235 }
236
237 havege_init( &hs );
238
239 t = time( NULL );
240
241 for( i = 0, k = 32768; i < k; i++ )
242 {
243 for( j = 0; j < sizeof( buf ); j++ )
244 buf[j] = havege_rand( &hs );
245
246 fwrite( buf, sizeof( buf ), 1, f );
247
248 printf( "Generating 32Mb of data in file '%s'... %04.1f" \
249 "%% done\r", argv[1], (100 * (float) (i + 1)) / k );
250 fflush( stdout );
251 }
252
253 if( t == time( NULL ) )
254 t--;
255
256 fclose( f );
257 return( 0 );
258}
259
260#endif
261
262#endif