Split ecp.c
diff --git a/library/ecp.c b/library/ecp.c
index 969e11d..21e28c8 100644
--- a/library/ecp.c
+++ b/library/ecp.c
@@ -1,5 +1,5 @@
/*
- * Elliptic curves over GF(p)
+ * Elliptic curves over GF(p): generic functions
*
* Copyright (C) 2006-2013, Brainspark B.V.
*
@@ -514,246 +514,6 @@
}
/*
- * Domain parameters for secp192r1
- */
-#define SECP192R1_P \
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF"
-#define SECP192R1_B \
- "64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1"
-#define SECP192R1_GX \
- "188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012"
-#define SECP192R1_GY \
- "07192B95FFC8DA78631011ED6B24CDD573F977A11E794811"
-#define SECP192R1_N \
- "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831"
-
-/*
- * Domain parameters for secp224r1
- */
-#define SECP224R1_P \
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001"
-#define SECP224R1_B \
- "B4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4"
-#define SECP224R1_GX \
- "B70E0CBD6BB4BF7F321390B94A03C1D356C21122343280D6115C1D21"
-#define SECP224R1_GY \
- "BD376388B5F723FB4C22DFE6CD4375A05A07476444D5819985007E34"
-#define SECP224R1_N \
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D"
-
-/*
- * Domain parameters for secp256r1
- */
-#define SECP256R1_P \
- "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF"
-#define SECP256R1_B \
- "5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B"
-#define SECP256R1_GX \
- "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296"
-#define SECP256R1_GY \
- "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5"
-#define SECP256R1_N \
- "FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551"
-
-/*
- * Domain parameters for secp384r1
- */
-#define SECP384R1_P \
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
- "FFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF"
-#define SECP384R1_B \
- "B3312FA7E23EE7E4988E056BE3F82D19181D9C6EFE814112" \
- "0314088F5013875AC656398D8A2ED19D2A85C8EDD3EC2AEF"
-#define SECP384R1_GX \
- "AA87CA22BE8B05378EB1C71EF320AD746E1D3B628BA79B98" \
- "59F741E082542A385502F25DBF55296C3A545E3872760AB7"
-#define SECP384R1_GY \
- "3617DE4A96262C6F5D9E98BF9292DC29F8F41DBD289A147C" \
- "E9DA3113B5F0B8C00A60B1CE1D7E819D7A431D7C90EA0E5F"
-#define SECP384R1_N \
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
- "C7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973"
-
-/*
- * Domain parameters for secp521r1
- */
-#define SECP521R1_P \
- "000001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
- "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
-#define SECP521R1_B \
- "00000051953EB9618E1C9A1F929A21A0B68540EEA2DA725B" \
- "99B315F3B8B489918EF109E156193951EC7E937B1652C0BD" \
- "3BB1BF073573DF883D2C34F1EF451FD46B503F00"
-#define SECP521R1_GX \
- "000000C6858E06B70404E9CD9E3ECB662395B4429C648139" \
- "053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127" \
- "A2FFA8DE3348B3C1856A429BF97E7E31C2E5BD66"
-#define SECP521R1_GY \
- "0000011839296A789A3BC0045C8A5FB42C7D1BD998F54449" \
- "579B446817AFBD17273E662C97EE72995EF42640C550B901" \
- "3FAD0761353C7086A272C24088BE94769FD16650"
-#define SECP521R1_N \
- "000001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
- "FFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148" \
- "F709A5D03BB5C9B8899C47AEBB6FB71E91386409"
-
-/*
- * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
- */
-#define BP256R1_P \
- "A9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377"
-#define BP256R1_A \
- "7D5A0975FC2C3057EEF67530417AFFE7FB8055C126DC5C6CE94A4B44F330B5D9"
-#define BP256R1_B \
- "26DC5C6CE94A4B44F330B5D9BBD77CBF958416295CF7E1CE6BCCDC18FF8C07B6"
-#define BP256R1_GX \
- "8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1E3BD23C23A4453BD9ACE3262"
-#define BP256R1_GY \
- "547EF835C3DAC4FD97F8461A14611DC9C27745132DED8E545C1D54C72F046997"
-#define BP256R1_N \
- "A9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7"
-
-/*
- * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
- */
-#define BP384R1_P \
- "8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB711" \
- "23ACD3A729901D1A71874700133107EC53"
-#define BP384R1_A \
- "7BC382C63D8C150C3C72080ACE05AFA0C2BEA28E4FB22787139165EFBA91F9" \
- "0F8AA5814A503AD4EB04A8C7DD22CE2826"
-#define BP384R1_B \
- "04A8C7DD22CE28268B39B55416F0447C2FB77DE107DCD2A62E880EA53EEB62" \
- "D57CB4390295DBC9943AB78696FA504C11"
-#define BP384R1_GX \
- "1D1C64F068CF45FFA2A63A81B7C13F6B8847A3E77EF14FE3DB7FCAFE0CBD10" \
- "E8E826E03436D646AAEF87B2E247D4AF1E"
-#define BP384R1_GY \
- "8ABE1D7520F9C2A45CB1EB8E95CFD55262B70B29FEEC5864E19C054FF99129" \
- "280E4646217791811142820341263C5315"
-#define BP384R1_N \
- "8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B31F166E6CAC0425" \
- "A7CF3AB6AF6B7FC3103B883202E9046565"
-
-/*
- * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
- */
-#define BP512R1_P \
- "AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308" \
- "717D4D9B009BC66842AECDA12AE6A380E62881FF2F2D82C68528AA6056583A48F3"
-#define BP512R1_A \
- "7830A3318B603B89E2327145AC234CC594CBDD8D3DF91610A83441CAEA9863" \
- "BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CA"
-#define BP512R1_B \
- "3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117" \
- "A72BF2C7B9E7C1AC4D77FC94CADC083E67984050B75EBAE5DD2809BD638016F723"
-#define BP512R1_GX \
- "81AEE4BDD82ED9645A21322E9C4C6A9385ED9F70B5D916C1B43B62EEF4D009" \
- "8EFF3B1F78E2D0D48D50D1687B93B97D5F7C6D5047406A5E688B352209BCB9F822"
-#define BP512R1_GY \
- "7DDE385D566332ECC0EABFA9CF7822FDF209F70024A57B1AA000C55B881F81" \
- "11B2DCDE494A5F485E5BCA4BD88A2763AED1CA2B2FA8F0540678CD1E0F3AD80892"
-#define BP512R1_N \
- "AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308" \
- "70553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90069"
-
-#if defined(POLARSSL_ECP_NIST_OPTIM)
-/* Forward declarations */
-static int ecp_mod_p192( mpi * );
-static int ecp_mod_p224( mpi * );
-static int ecp_mod_p256( mpi * );
-static int ecp_mod_p384( mpi * );
-static int ecp_mod_p521( mpi * );
-#endif
-
-/*
- * Set a group using well-known domain parameters
- */
-int ecp_use_known_dp( ecp_group *grp, ecp_group_id id )
-{
- grp->id = id;
-
- switch( id )
- {
-#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
- case POLARSSL_ECP_DP_SECP192R1:
-#if defined(POLARSSL_ECP_NIST_OPTIM)
- grp->modp = ecp_mod_p192;
-#endif
- return( ecp_group_read_string( grp, 16,
- SECP192R1_P, SECP192R1_B,
- SECP192R1_GX, SECP192R1_GY, SECP192R1_N ) );
-#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
-
-#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
- case POLARSSL_ECP_DP_SECP224R1:
-#if defined(POLARSSL_ECP_NIST_OPTIM)
- grp->modp = ecp_mod_p224;
-#endif
- return( ecp_group_read_string( grp, 16,
- SECP224R1_P, SECP224R1_B,
- SECP224R1_GX, SECP224R1_GY, SECP224R1_N ) );
-#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
-
-#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
- case POLARSSL_ECP_DP_SECP256R1:
-#if defined(POLARSSL_ECP_NIST_OPTIM)
- grp->modp = ecp_mod_p256;
-#endif
- return( ecp_group_read_string( grp, 16,
- SECP256R1_P, SECP256R1_B,
- SECP256R1_GX, SECP256R1_GY, SECP256R1_N ) );
-#endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
-
-#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
- case POLARSSL_ECP_DP_SECP384R1:
-#if defined(POLARSSL_ECP_NIST_OPTIM)
- grp->modp = ecp_mod_p384;
-#endif
- return( ecp_group_read_string( grp, 16,
- SECP384R1_P, SECP384R1_B,
- SECP384R1_GX, SECP384R1_GY, SECP384R1_N ) );
-#endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
-
-#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
- case POLARSSL_ECP_DP_SECP521R1:
-#if defined(POLARSSL_ECP_NIST_OPTIM)
- grp->modp = ecp_mod_p521;
-#endif
- return( ecp_group_read_string( grp, 16,
- SECP521R1_P, SECP521R1_B,
- SECP521R1_GX, SECP521R1_GY, SECP521R1_N ) );
-#endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
-
-#if defined(POLARSSL_ECP_DP_BP256R1_ENABLED)
- case POLARSSL_ECP_DP_BP256R1:
- return( ecp_group_read_string_gen( grp, 16,
- BP256R1_P, BP256R1_A, BP256R1_B,
- BP256R1_GX, BP256R1_GY, BP256R1_N ) );
-#endif /* POLARSSL_ECP_DP_BP256R1_ENABLED */
-
-#if defined(POLARSSL_ECP_DP_BP384R1_ENABLED)
- case POLARSSL_ECP_DP_BP384R1:
- return( ecp_group_read_string_gen( grp, 16,
- BP384R1_P, BP384R1_A, BP384R1_B,
- BP384R1_GX, BP384R1_GY, BP384R1_N ) );
-#endif /* POLARSSL_ECP_DP_BP384R1_ENABLED */
-
-#if defined(POLARSSL_ECP_DP_BP512R1_ENABLED)
- case POLARSSL_ECP_DP_BP512R1:
- return( ecp_group_read_string_gen( grp, 16,
- BP512R1_P, BP512R1_A, BP512R1_B,
- BP512R1_GX, BP512R1_GY, BP512R1_N ) );
-#endif /* POLARSSL_ECP_DP_BP512R1_ENABLED */
-
- default:
- ecp_group_free( grp );
- return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
- }
-}
-
-/*
* Set a group from an ECParameters record (RFC 4492)
*/
int ecp_tls_read_group( ecp_group *grp, const unsigned char **buf, size_t len )
@@ -1705,409 +1465,6 @@
return( ecp_gen_keypair( &key->grp, &key->d, &key->Q, f_rng, p_rng ) );
}
-#if defined(POLARSSL_ECP_NIST_OPTIM)
-/*
- * Fast reduction modulo the primes used by the NIST curves.
- *
- * These functions are: critical for speed, but not need for correct
- * operations. So, we make the choice to heavily rely on the internals of our
- * bignum library, which creates a tight coupling between these functions and
- * our MPI implementation. However, the coupling between the ECP module and
- * MPI remains loose, since these functions can be deactivated at will.
- */
-
-#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
-/*
- * Compared to the way things are presented in FIPS 186-3 D.2,
- * we proceed in columns, from right (least significant chunk) to left,
- * adding chunks to N in place, and keeping a carry for the next chunk.
- * This avoids moving things around in memory, and uselessly adding zeros,
- * compared to the more straightforward, line-oriented approach.
- *
- * For this prime we need to handle data in chunks of 64 bits.
- * Since this is always a multiple of our basic t_uint, we can
- * use a t_uint * to designate such a chunk, and small loops to handle it.
- */
-
-/* Add 64-bit chunks (dst += src) and update carry */
-static inline void add64( t_uint *dst, t_uint *src, t_uint *carry )
-{
- unsigned char i;
- t_uint c = 0;
- for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++, src++ )
- {
- *dst += c; c = ( *dst < c );
- *dst += *src; c += ( *dst < *src );
- }
- *carry += c;
-}
-
-/* Add carry to a 64-bit chunk and update carry */
-static inline void carry64( t_uint *dst, t_uint *carry )
-{
- unsigned char i;
- for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++ )
- {
- *dst += *carry;
- *carry = ( *dst < *carry );
- }
-}
-
-#define WIDTH 8 / sizeof( t_uint )
-#define A( i ) N->p + i * WIDTH
-#define ADD( i ) add64( p, A( i ), &c )
-#define NEXT p += WIDTH; carry64( p, &c )
-#define LAST p += WIDTH; *p = c; while( ++p < end ) *p = 0
-
-/*
- * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
- */
-static int ecp_mod_p192( mpi *N )
-{
- int ret;
- t_uint c = 0;
- t_uint *p, *end;
-
- /* Make sure we have enough blocks so that A(5) is legal */
- MPI_CHK( mpi_grow( N, 6 * WIDTH ) );
-
- p = N->p;
- end = p + N->n;
-
- ADD( 3 ); ADD( 5 ); NEXT; // A0 += A3 + A5
- ADD( 3 ); ADD( 4 ); ADD( 5 ); NEXT; // A1 += A3 + A4 + A5
- ADD( 4 ); ADD( 5 ); LAST; // A2 += A4 + A5
-
-cleanup:
- return( ret );
-}
-
-#undef WIDTH
-#undef A
-#undef ADD
-#undef NEXT
-#undef LAST
-#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
-
-#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED) || \
- defined(POLARSSL_ECP_DP_SECP256R1_ENABLED) || \
- defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
-/*
- * The reader is advised to first understand ecp_mod_p192() since the same
- * general structure is used here, but with additional complications:
- * (1) chunks of 32 bits, and (2) subtractions.
- */
-
-/*
- * For these primes, we need to handle data in chunks of 32 bits.
- * This makes it more complicated if we use 64 bits limbs in MPI,
- * which prevents us from using a uniform access method as for p192.
- *
- * So, we define a mini abstraction layer to access 32 bit chunks,
- * load them in 'cur' for work, and store them back from 'cur' when done.
- *
- * While at it, also define the size of N in terms of 32-bit chunks.
- */
-#define LOAD32 cur = A( i );
-
-#if defined(POLARSSL_HAVE_INT8) /* 8 bit */
-
-#define MAX32 N->n / 4
-#define A( j ) (uint32_t)( N->p[4*j+0] ) | \
- ( N->p[4*j+1] << 8 ) | \
- ( N->p[4*j+2] << 16 ) | \
- ( N->p[4*j+3] << 24 )
-#define STORE32 N->p[4*i+0] = (t_uint)( cur ); \
- N->p[4*i+1] = (t_uint)( cur >> 8 ); \
- N->p[4*i+2] = (t_uint)( cur >> 16 ); \
- N->p[4*i+3] = (t_uint)( cur >> 24 );
-
-#elif defined(POLARSSL_HAVE_INT16) /* 16 bit */
-
-#define MAX32 N->n / 2
-#define A( j ) (uint32_t)( N->p[2*j] ) | ( N->p[2*j+1] << 16 )
-#define STORE32 N->p[2*i+0] = (t_uint)( cur ); \
- N->p[2*i+1] = (t_uint)( cur >> 16 );
-
-#elif defined(POLARSSL_HAVE_INT32) /* 32 bit */
-
-#define MAX32 N->n
-#define A( j ) N->p[j]
-#define STORE32 N->p[i] = cur;
-
-#else /* 64-bit */
-
-#define MAX32 N->n * 2
-#define A( j ) j % 2 ? (uint32_t)( N->p[j/2] >> 32 ) : (uint32_t)( N->p[j/2] )
-#define STORE32 \
- if( i % 2 ) { \
- N->p[i/2] &= 0x00000000FFFFFFFF; \
- N->p[i/2] |= ((t_uint) cur) << 32; \
- } else { \
- N->p[i/2] &= 0xFFFFFFFF00000000; \
- N->p[i/2] |= (t_uint) cur; \
- }
-
-#endif /* sizeof( t_uint ) */
-
-/*
- * Helpers for addition and subtraction of chunks, with signed carry.
- */
-static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
-{
- *dst += src;
- *carry += ( *dst < src );
-}
-
-static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
-{
- *carry -= ( *dst < src );
- *dst -= src;
-}
-
-#define ADD( j ) add32( &cur, A( j ), &c );
-#define SUB( j ) sub32( &cur, A( j ), &c );
-
-/*
- * Helpers for the main 'loop'
- * (see fix_negative for the motivation of C)
- */
-#define INIT( b ) \
- int ret; \
- signed char c = 0, cc; \
- uint32_t cur; \
- size_t i = 0, bits = b; \
- mpi C; \
- t_uint Cp[ b / 8 / sizeof( t_uint) + 1 ]; \
- \
- C.s = 1; \
- C.n = b / 8 / sizeof( t_uint) + 1; \
- C.p = Cp; \
- memset( Cp, 0, C.n * sizeof( t_uint ) ); \
- \
- MPI_CHK( mpi_grow( N, b * 2 / 8 / sizeof( t_uint ) ) ); \
- LOAD32;
-
-#define NEXT \
- STORE32; i++; LOAD32; \
- cc = c; c = 0; \
- if( cc < 0 ) \
- sub32( &cur, -cc, &c ); \
- else \
- add32( &cur, cc, &c ); \
-
-#define LAST \
- STORE32; i++; \
- cur = c > 0 ? c : 0; STORE32; \
- cur = 0; while( ++i < MAX32 ) { STORE32; } \
- if( c < 0 ) fix_negative( N, c, &C, bits );
-
-/*
- * If the result is negative, we get it in the form
- * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
- */
-static inline int fix_negative( mpi *N, signed char c, mpi *C, size_t bits )
-{
- int ret;
-
- /* C = - c * 2^(bits + 32) */
-#if !defined(POLARSSL_HAVE_INT64)
- ((void) bits);
-#else
- if( bits == 224 )
- C->p[ C->n - 1 ] = ((t_uint) -c) << 32;
- else
-#endif
- C->p[ C->n - 1 ] = (t_uint) -c;
-
- /* N = - ( C - N ) */
- MPI_CHK( mpi_sub_abs( N, C, N ) );
- N->s = -1;
-
-cleanup:
-
- return( ret );
-}
-
-#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
-/*
- * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
- */
-static int ecp_mod_p224( mpi *N )
-{
- INIT( 224 );
-
- SUB( 7 ); SUB( 11 ); NEXT; // A0 += -A7 - A11
- SUB( 8 ); SUB( 12 ); NEXT; // A1 += -A8 - A12
- SUB( 9 ); SUB( 13 ); NEXT; // A2 += -A9 - A13
- SUB( 10 ); ADD( 7 ); ADD( 11 ); NEXT; // A3 += -A10 + A7 + A11
- SUB( 11 ); ADD( 8 ); ADD( 12 ); NEXT; // A4 += -A11 + A8 + A12
- SUB( 12 ); ADD( 9 ); ADD( 13 ); NEXT; // A5 += -A12 + A9 + A13
- SUB( 13 ); ADD( 10 ); LAST; // A6 += -A13 + A10
-
-cleanup:
- return( ret );
-}
-#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
-
-#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
-/*
- * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
- */
-static int ecp_mod_p256( mpi *N )
-{
- INIT( 256 );
-
- ADD( 8 ); ADD( 9 );
- SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 ); NEXT; // A0
-
- ADD( 9 ); ADD( 10 );
- SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A1
-
- ADD( 10 ); ADD( 11 );
- SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A2
-
- ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
- SUB( 15 ); SUB( 8 ); SUB( 9 ); NEXT; // A3
-
- ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
- SUB( 9 ); SUB( 10 ); NEXT; // A4
-
- ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
- SUB( 10 ); SUB( 11 ); NEXT; // A5
-
- ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
- SUB( 8 ); SUB( 9 ); NEXT; // A6
-
- ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
- SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 ); LAST; // A7
-
-cleanup:
- return( ret );
-}
-#endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
-
-#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
-/*
- * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
- */
-static int ecp_mod_p384( mpi *N )
-{
- INIT( 384 );
-
- ADD( 12 ); ADD( 21 ); ADD( 20 );
- SUB( 23 ); NEXT; // A0
-
- ADD( 13 ); ADD( 22 ); ADD( 23 );
- SUB( 12 ); SUB( 20 ); NEXT; // A2
-
- ADD( 14 ); ADD( 23 );
- SUB( 13 ); SUB( 21 ); NEXT; // A2
-
- ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
- SUB( 14 ); SUB( 22 ); SUB( 23 ); NEXT; // A3
-
- ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
- SUB( 15 ); SUB( 23 ); SUB( 23 ); NEXT; // A4
-
- ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
- SUB( 16 ); NEXT; // A5
-
- ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
- SUB( 17 ); NEXT; // A6
-
- ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
- SUB( 18 ); NEXT; // A7
-
- ADD( 20 ); ADD( 17 ); ADD( 16 );
- SUB( 19 ); NEXT; // A8
-
- ADD( 21 ); ADD( 18 ); ADD( 17 );
- SUB( 20 ); NEXT; // A9
-
- ADD( 22 ); ADD( 19 ); ADD( 18 );
- SUB( 21 ); NEXT; // A10
-
- ADD( 23 ); ADD( 20 ); ADD( 19 );
- SUB( 22 ); LAST; // A11
-
-cleanup:
- return( ret );
-}
-#endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
-
-#undef A
-#undef LOAD32
-#undef STORE32
-#undef MAX32
-#undef INIT
-#undef NEXT
-#undef LAST
-
-#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED ||
- POLARSSL_ECP_DP_SECP256R1_ENABLED ||
- POLARSSL_ECP_DP_SECP384R1_ENABLED */
-
-#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
-/*
- * Here we have an actual Mersenne prime, so things are more straightforward.
- * However, chunks are aligned on a 'weird' boundary (521 bits).
- */
-
-/* Size of p521 in terms of t_uint */
-#define P521_WIDTH ( 521 / 8 / sizeof( t_uint ) + 1 )
-
-/* Bits to keep in the most significant t_uint */
-#if defined(POLARSSL_HAVE_INT8)
-#define P521_MASK 0x01
-#else
-#define P521_MASK 0x01FF
-#endif
-
-/*
- * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
- * Write N as A1 + 2^521 A0, return A0 + A1
- */
-static int ecp_mod_p521( mpi *N )
-{
- int ret;
- size_t i;
- mpi M;
- t_uint Mp[P521_WIDTH + 1];
- /* Worst case for the size of M is when t_uint is 16 bits:
- * we need to hold bits 513 to 1056, which is 34 limbs, that is
- * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
-
- if( N->n < P521_WIDTH )
- return( 0 );
-
- /* M = A1 */
- M.s = 1;
- M.n = N->n - ( P521_WIDTH - 1 );
- if( M.n > P521_WIDTH + 1 )
- M.n = P521_WIDTH + 1;
- M.p = Mp;
- memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( t_uint ) );
- MPI_CHK( mpi_shift_r( &M, 521 % ( 8 * sizeof( t_uint ) ) ) );
-
- /* N = A0 */
- N->p[P521_WIDTH - 1] &= P521_MASK;
- for( i = P521_WIDTH; i < N->n; i++ )
- N->p[i] = 0;
-
- /* N = A0 + A1 */
- MPI_CHK( mpi_add_abs( N, N, &M ) );
-
-cleanup:
- return( ret );
-}
-
-#undef P521_WIDTH
-#undef P521_MASK
-#endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
-
-#endif /* POLARSSL_ECP_NIST_OPTIM */
-
#if defined(POLARSSL_SELF_TEST)
/*