Move n from struct curve to its own constant
diff --git a/tinycrypt/ecc_dsa.c b/tinycrypt/ecc_dsa.c
index fc2a3fe..c22ebd0 100644
--- a/tinycrypt/ecc_dsa.c
+++ b/tinycrypt/ecc_dsa.c
@@ -84,6 +84,8 @@
uECC_word_t carry;
uECC_word_t *ptr;
+ (void) curve;
+
if (bits_size > num_n_bytes) {
bits_size = num_n_bytes;
}
@@ -103,8 +105,8 @@
}
/* Reduce mod curve_n */
- if (uECC_vli_cmp_unsafe(curve->n, native) != 1) {
- uECC_vli_sub(native, native, curve->n);
+ if (uECC_vli_cmp_unsafe(curve_n, native) != 1) {
+ uECC_vli_sub(native, native, curve_n);
}
}
@@ -122,7 +124,7 @@
/* Make sure 0 < k < curve_n */
if (uECC_vli_isZero(k) ||
- uECC_vli_cmp(curve->n, k) != 1) {
+ uECC_vli_cmp(curve_n, k) != 1) {
return 0;
}
@@ -137,15 +139,15 @@
uECC_vli_clear(tmp);
tmp[0] = 1;
}
- else if (!uECC_generate_random_int(tmp, curve->n, num_n_words)) {
+ else if (!uECC_generate_random_int(tmp, curve_n, num_n_words)) {
return 0;
}
/* Prevent side channel analysis of uECC_vli_modInv() to determine
bits of k / the private key by premultiplying by a random number */
- uECC_vli_modMult(k, k, tmp, curve->n); /* k' = rand * k */
- uECC_vli_modInv(k, k, curve->n); /* k = 1 / k' */
- uECC_vli_modMult(k, k, tmp, curve->n); /* k = 1 / k */
+ uECC_vli_modMult(k, k, tmp, curve_n); /* k' = rand * k */
+ uECC_vli_modInv(k, k, curve_n); /* k = 1 / k' */
+ uECC_vli_modMult(k, k, tmp, curve_n); /* k = 1 / k */
uECC_vli_nativeToBytes(signature, NUM_ECC_BYTES, p); /* store r */
@@ -154,11 +156,11 @@
s[num_n_words - 1] = 0;
uECC_vli_set(s, p);
- uECC_vli_modMult(s, tmp, s, curve->n); /* s = r*d */
+ uECC_vli_modMult(s, tmp, s, curve_n); /* s = r*d */
bits2int(tmp, message_hash, hash_size, curve);
- uECC_vli_modAdd(s, tmp, s, curve->n); /* s = e + r*d */
- uECC_vli_modMult(s, s, k, curve->n); /* s = (e + r*d) / k */
+ uECC_vli_modAdd(s, tmp, s, curve_n); /* s = e + r*d */
+ uECC_vli_modMult(s, s, k, curve_n); /* s = (e + r*d) / k */
if (uECC_vli_numBits(s) > (bitcount_t)NUM_ECC_BYTES * 8) {
return 0;
}
@@ -183,7 +185,7 @@
}
// computing k as modular reduction of _random (see FIPS 186.4 B.5.1):
- uECC_vli_mmod(k, _random, curve->n);
+ uECC_vli_mmod(k, _random, curve_n);
if (uECC_sign_with_k(private_key, message_hash, hash_size, k, signature,
curve)) {
@@ -241,17 +243,17 @@
}
/* r, s must be < n. */
- if (uECC_vli_cmp_unsafe(curve->n, r) != 1 ||
- uECC_vli_cmp_unsafe(curve->n, s) != 1) {
+ if (uECC_vli_cmp_unsafe(curve_n, r) != 1 ||
+ uECC_vli_cmp_unsafe(curve_n, s) != 1) {
return UECC_FAILURE;
}
/* Calculate u1 and u2. */
- uECC_vli_modInv(z, s, curve->n); /* z = 1/s */
+ uECC_vli_modInv(z, s, curve_n); /* z = 1/s */
u1[num_n_words - 1] = 0;
bits2int(u1, message_hash, hash_size, curve);
- uECC_vli_modMult(u1, u1, z, curve->n); /* u1 = e/s */
- uECC_vli_modMult(u2, r, z, curve->n); /* u2 = r/s */
+ uECC_vli_modMult(u1, u1, z, curve_n); /* u1 = e/s */
+ uECC_vli_modMult(u2, r, z, curve_n); /* u2 = r/s */
/* Calculate sum = G + Q. */
uECC_vli_set(sum, _public);
@@ -298,8 +300,8 @@
apply_z(rx, ry, z);
/* v = x1 (mod n) */
- if (uECC_vli_cmp_unsafe(curve->n, rx) != 1) {
- uECC_vli_sub(rx, rx, curve->n);
+ if (uECC_vli_cmp_unsafe(curve_n, rx) != 1) {
+ uECC_vli_sub(rx, rx, curve_n);
}
/* Accept only if v == r. */