Switch to the new code style

Signed-off-by: David Horstmann <david.horstmann@arm.com>
diff --git a/library/rsa_alt_helpers.c b/library/rsa_alt_helpers.c
index dff2d93..3451469 100644
--- a/library/rsa_alt_helpers.c
+++ b/library/rsa_alt_helpers.c
@@ -59,9 +59,9 @@
  * of (a) and (b) above to attempt to factor N.
  *
  */
-int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N,
-                     mbedtls_mpi const *E, mbedtls_mpi const *D,
-                     mbedtls_mpi *P, mbedtls_mpi *Q )
+int mbedtls_rsa_deduce_primes(mbedtls_mpi const *N,
+                              mbedtls_mpi const *E, mbedtls_mpi const *D,
+                              mbedtls_mpi *P, mbedtls_mpi *Q)
 {
     int ret = 0;
 
@@ -74,48 +74,46 @@
     mbedtls_mpi K;  /* Temporary holding the current candidate */
 
     const unsigned char primes[] = { 2,
-           3,    5,    7,   11,   13,   17,   19,   23,
-          29,   31,   37,   41,   43,   47,   53,   59,
-          61,   67,   71,   73,   79,   83,   89,   97,
-         101,  103,  107,  109,  113,  127,  131,  137,
-         139,  149,  151,  157,  163,  167,  173,  179,
-         181,  191,  193,  197,  199,  211,  223,  227,
-         229,  233,  239,  241,  251
-    };
+                                     3,    5,    7,   11,   13,   17,   19,   23,
+                                     29,   31,   37,   41,   43,   47,   53,   59,
+                                     61,   67,   71,   73,   79,   83,   89,   97,
+                                     101,  103,  107,  109,  113,  127,  131,  137,
+                                     139,  149,  151,  157,  163,  167,  173,  179,
+                                     181,  191,  193,  197,  199,  211,  223,  227,
+                                     229,  233,  239,  241,  251 };
 
-    const size_t num_primes = sizeof( primes ) / sizeof( *primes );
+    const size_t num_primes = sizeof(primes) / sizeof(*primes);
 
-    if( P == NULL || Q == NULL || P->p != NULL || Q->p != NULL )
-        return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
+    if (P == NULL || Q == NULL || P->p != NULL || Q->p != NULL) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
 
-    if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 ||
-        mbedtls_mpi_cmp_int( D, 1 ) <= 0 ||
-        mbedtls_mpi_cmp_mpi( D, N ) >= 0 ||
-        mbedtls_mpi_cmp_int( E, 1 ) <= 0 ||
-        mbedtls_mpi_cmp_mpi( E, N ) >= 0 )
-    {
-        return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
+    if (mbedtls_mpi_cmp_int(N, 0) <= 0 ||
+        mbedtls_mpi_cmp_int(D, 1) <= 0 ||
+        mbedtls_mpi_cmp_mpi(D, N) >= 0 ||
+        mbedtls_mpi_cmp_int(E, 1) <= 0 ||
+        mbedtls_mpi_cmp_mpi(E, N) >= 0) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
     }
 
     /*
      * Initializations and temporary changes
      */
 
-    mbedtls_mpi_init( &K );
-    mbedtls_mpi_init( &T );
+    mbedtls_mpi_init(&K);
+    mbedtls_mpi_init(&T);
 
     /* T := DE - 1 */
-    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, D,  E ) );
-    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &T, &T, 1 ) );
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, D,  E));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&T, &T, 1));
 
-    if( ( order = (uint16_t) mbedtls_mpi_lsb( &T ) ) == 0 )
-    {
+    if ((order = (uint16_t) mbedtls_mpi_lsb(&T)) == 0) {
         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
         goto cleanup;
     }
 
     /* After this operation, T holds the largest odd divisor of DE - 1. */
-    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &T, order ) );
+    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&T, order));
 
     /*
      * Actual work
@@ -123,49 +121,49 @@
 
     /* Skip trying 2 if N == 1 mod 8 */
     attempt = 0;
-    if( N->p[0] % 8 == 1 )
+    if (N->p[0] % 8 == 1) {
         attempt = 1;
+    }
 
-    for( ; attempt < num_primes; ++attempt )
-    {
-        mbedtls_mpi_lset( &K, primes[attempt] );
+    for (; attempt < num_primes; ++attempt) {
+        mbedtls_mpi_lset(&K, primes[attempt]);
 
         /* Check if gcd(K,N) = 1 */
-        MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) );
-        if( mbedtls_mpi_cmp_int( P, 1 ) != 0 )
+        MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N));
+        if (mbedtls_mpi_cmp_int(P, 1) != 0) {
             continue;
+        }
 
         /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ...
          * and check whether they have nontrivial GCD with N. */
-        MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &K, &K, &T, N,
-                             Q /* temporarily use Q for storing Montgomery
-                                * multiplication helper values */ ) );
+        MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&K, &K, &T, N,
+                                            Q /* temporarily use Q for storing Montgomery
+                                               * multiplication helper values */));
 
-        for( iter = 1; iter <= order; ++iter )
-        {
+        for (iter = 1; iter <= order; ++iter) {
             /* If we reach 1 prematurely, there's no point
              * in continuing to square K */
-            if( mbedtls_mpi_cmp_int( &K, 1 ) == 0 )
+            if (mbedtls_mpi_cmp_int(&K, 1) == 0) {
                 break;
+            }
 
-            MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &K, &K, 1 ) );
-            MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) );
+            MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&K, &K, 1));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N));
 
-            if( mbedtls_mpi_cmp_int( P, 1 ) ==  1 &&
-                mbedtls_mpi_cmp_mpi( P, N ) == -1 )
-            {
+            if (mbedtls_mpi_cmp_int(P, 1) ==  1 &&
+                mbedtls_mpi_cmp_mpi(P, N) == -1) {
                 /*
                  * Have found a nontrivial divisor P of N.
                  * Set Q := N / P.
                  */
 
-                MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( Q, NULL, N, P ) );
+                MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(Q, NULL, N, P));
                 goto cleanup;
             }
 
-            MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
-            MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &K ) );
-            MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, N ) );
+            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &K));
+            MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, N));
         }
 
         /*
@@ -175,8 +173,7 @@
          * Check if that's the case and abort if not, to avoid very long,
          * yet eventually failing, computations if N,D,E were not sane.
          */
-        if( mbedtls_mpi_cmp_int( &K, 1 ) != 0 )
-        {
+        if (mbedtls_mpi_cmp_int(&K, 1) != 0) {
             break;
         }
     }
@@ -185,106 +182,103 @@
 
 cleanup:
 
-    mbedtls_mpi_free( &K );
-    mbedtls_mpi_free( &T );
-    return( ret );
+    mbedtls_mpi_free(&K);
+    mbedtls_mpi_free(&T);
+    return ret;
 }
 
 /*
  * Given P, Q and the public exponent E, deduce D.
  * This is essentially a modular inversion.
  */
-int mbedtls_rsa_deduce_private_exponent( mbedtls_mpi const *P,
-                                         mbedtls_mpi const *Q,
-                                         mbedtls_mpi const *E,
-                                         mbedtls_mpi *D )
+int mbedtls_rsa_deduce_private_exponent(mbedtls_mpi const *P,
+                                        mbedtls_mpi const *Q,
+                                        mbedtls_mpi const *E,
+                                        mbedtls_mpi *D)
 {
     int ret = 0;
     mbedtls_mpi K, L;
 
-    if( D == NULL || mbedtls_mpi_cmp_int( D, 0 ) != 0 )
-        return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
-
-    if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 ||
-        mbedtls_mpi_cmp_int( Q, 1 ) <= 0 ||
-        mbedtls_mpi_cmp_int( E, 0 ) == 0 )
-    {
-        return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
+    if (D == NULL || mbedtls_mpi_cmp_int(D, 0) != 0) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
     }
 
-    mbedtls_mpi_init( &K );
-    mbedtls_mpi_init( &L );
+    if (mbedtls_mpi_cmp_int(P, 1) <= 0 ||
+        mbedtls_mpi_cmp_int(Q, 1) <= 0 ||
+        mbedtls_mpi_cmp_int(E, 0) == 0) {
+        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+    }
+
+    mbedtls_mpi_init(&K);
+    mbedtls_mpi_init(&L);
 
     /* Temporarily put K := P-1 and L := Q-1 */
-    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
-    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) );
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1));
 
     /* Temporarily put D := gcd(P-1, Q-1) */
-    MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( D, &K, &L ) );
+    MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(D, &K, &L));
 
     /* K := LCM(P-1, Q-1) */
-    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &L ) );
-    MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &K, NULL, &K, D ) );
+    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &L));
+    MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&K, NULL, &K, D));
 
     /* Compute modular inverse of E in LCM(P-1, Q-1) */
-    MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( D, E, &K ) );
+    MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(D, E, &K));
 
 cleanup:
 
-    mbedtls_mpi_free( &K );
-    mbedtls_mpi_free( &L );
+    mbedtls_mpi_free(&K);
+    mbedtls_mpi_free(&L);
 
-    return( ret );
+    return ret;
 }
 
-int mbedtls_rsa_deduce_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q,
-                            const mbedtls_mpi *D, mbedtls_mpi *DP,
-                            mbedtls_mpi *DQ, mbedtls_mpi *QP )
+int mbedtls_rsa_deduce_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q,
+                           const mbedtls_mpi *D, mbedtls_mpi *DP,
+                           mbedtls_mpi *DQ, mbedtls_mpi *QP)
 {
     int ret = 0;
     mbedtls_mpi K;
-    mbedtls_mpi_init( &K );
+    mbedtls_mpi_init(&K);
 
     /* DP = D mod P-1 */
-    if( DP != NULL )
-    {
-        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1  ) );
-        MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DP, D, &K ) );
+    if (DP != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DP, D, &K));
     }
 
     /* DQ = D mod Q-1 */
-    if( DQ != NULL )
-    {
-        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1  ) );
-        MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DQ, D, &K ) );
+    if (DQ != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DQ, D, &K));
     }
 
     /* QP = Q^{-1} mod P */
-    if( QP != NULL )
-    {
-        MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( QP, Q, P ) );
+    if (QP != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(QP, Q, P));
     }
 
 cleanup:
-    mbedtls_mpi_free( &K );
+    mbedtls_mpi_free(&K);
 
-    return( ret );
+    return ret;
 }
 
 /*
  * Check that core RSA parameters are sane.
  */
-int mbedtls_rsa_validate_params( const mbedtls_mpi *N, const mbedtls_mpi *P,
-                                 const mbedtls_mpi *Q, const mbedtls_mpi *D,
-                                 const mbedtls_mpi *E,
-                                 int (*f_rng)(void *, unsigned char *, size_t),
-                                 void *p_rng )
+int mbedtls_rsa_validate_params(const mbedtls_mpi *N, const mbedtls_mpi *P,
+                                const mbedtls_mpi *Q, const mbedtls_mpi *D,
+                                const mbedtls_mpi *E,
+                                int (*f_rng)(void *, unsigned char *, size_t),
+                                void *p_rng)
 {
     int ret = 0;
     mbedtls_mpi K, L;
 
-    mbedtls_mpi_init( &K );
-    mbedtls_mpi_init( &L );
+    mbedtls_mpi_init(&K);
+    mbedtls_mpi_init(&L);
 
     /*
      * Step 1: If PRNG provided, check that P and Q are prime
@@ -296,16 +290,14 @@
      * rate of at most 2^-100 and we are aiming for the same certainty here as
      * well.
      */
-    if( f_rng != NULL && P != NULL &&
-        ( ret = mbedtls_mpi_is_prime_ext( P, 50, f_rng, p_rng ) ) != 0 )
-    {
+    if (f_rng != NULL && P != NULL &&
+        (ret = mbedtls_mpi_is_prime_ext(P, 50, f_rng, p_rng)) != 0) {
         ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
         goto cleanup;
     }
 
-    if( f_rng != NULL && Q != NULL &&
-        ( ret = mbedtls_mpi_is_prime_ext( Q, 50, f_rng, p_rng ) ) != 0 )
-    {
+    if (f_rng != NULL && Q != NULL &&
+        (ret = mbedtls_mpi_is_prime_ext(Q, 50, f_rng, p_rng)) != 0) {
         ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
         goto cleanup;
     }
@@ -318,12 +310,10 @@
      * Step 2: Check that 1 < N = P * Q
      */
 
-    if( P != NULL && Q != NULL && N != NULL )
-    {
-        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, P, Q ) );
-        if( mbedtls_mpi_cmp_int( N, 1 )  <= 0 ||
-            mbedtls_mpi_cmp_mpi( &K, N ) != 0 )
-        {
+    if (P != NULL && Q != NULL && N != NULL) {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, P, Q));
+        if (mbedtls_mpi_cmp_int(N, 1)  <= 0 ||
+            mbedtls_mpi_cmp_mpi(&K, N) != 0) {
             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
             goto cleanup;
         }
@@ -333,13 +323,11 @@
      * Step 3: Check and 1 < D, E < N if present.
      */
 
-    if( N != NULL && D != NULL && E != NULL )
-    {
-        if ( mbedtls_mpi_cmp_int( D, 1 ) <= 0 ||
-             mbedtls_mpi_cmp_int( E, 1 ) <= 0 ||
-             mbedtls_mpi_cmp_mpi( D, N ) >= 0 ||
-             mbedtls_mpi_cmp_mpi( E, N ) >= 0 )
-        {
+    if (N != NULL && D != NULL && E != NULL) {
+        if (mbedtls_mpi_cmp_int(D, 1) <= 0 ||
+            mbedtls_mpi_cmp_int(E, 1) <= 0 ||
+            mbedtls_mpi_cmp_mpi(D, N) >= 0 ||
+            mbedtls_mpi_cmp_mpi(E, N) >= 0) {
             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
             goto cleanup;
         }
@@ -349,33 +337,29 @@
      * Step 4: Check that D, E are inverse modulo P-1 and Q-1
      */
 
-    if( P != NULL && Q != NULL && D != NULL && E != NULL )
-    {
-        if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 ||
-            mbedtls_mpi_cmp_int( Q, 1 ) <= 0 )
-        {
+    if (P != NULL && Q != NULL && D != NULL && E != NULL) {
+        if (mbedtls_mpi_cmp_int(P, 1) <= 0 ||
+            mbedtls_mpi_cmp_int(Q, 1) <= 0) {
             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
             goto cleanup;
         }
 
         /* Compute DE-1 mod P-1 */
-        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) );
-        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
-        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, P, 1 ) );
-        MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) );
-        if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
-        {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, P, 1));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L));
+        if (mbedtls_mpi_cmp_int(&K, 0) != 0) {
             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
             goto cleanup;
         }
 
         /* Compute DE-1 mod Q-1 */
-        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) );
-        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
-        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) );
-        MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) );
-        if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
-        {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L));
+        if (mbedtls_mpi_cmp_int(&K, 0) != 0) {
             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
             goto cleanup;
         }
@@ -383,85 +367,75 @@
 
 cleanup:
 
-    mbedtls_mpi_free( &K );
-    mbedtls_mpi_free( &L );
+    mbedtls_mpi_free(&K);
+    mbedtls_mpi_free(&L);
 
     /* Wrap MPI error codes by RSA check failure error code */
-    if( ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED )
-    {
+    if (ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED) {
         ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
     }
 
-    return( ret );
+    return ret;
 }
 
 /*
  * Check that RSA CRT parameters are in accordance with core parameters.
  */
-int mbedtls_rsa_validate_crt( const mbedtls_mpi *P,  const mbedtls_mpi *Q,
-                              const mbedtls_mpi *D,  const mbedtls_mpi *DP,
-                              const mbedtls_mpi *DQ, const mbedtls_mpi *QP )
+int mbedtls_rsa_validate_crt(const mbedtls_mpi *P,  const mbedtls_mpi *Q,
+                             const mbedtls_mpi *D,  const mbedtls_mpi *DP,
+                             const mbedtls_mpi *DQ, const mbedtls_mpi *QP)
 {
     int ret = 0;
 
     mbedtls_mpi K, L;
-    mbedtls_mpi_init( &K );
-    mbedtls_mpi_init( &L );
+    mbedtls_mpi_init(&K);
+    mbedtls_mpi_init(&L);
 
     /* Check that DP - D == 0 mod P - 1 */
-    if( DP != NULL )
-    {
-        if( P == NULL )
-        {
+    if (DP != NULL) {
+        if (P == NULL) {
             ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
             goto cleanup;
         }
 
-        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
-        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DP, D ) );
-        MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) );
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DP, D));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K));
 
-        if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 )
-        {
+        if (mbedtls_mpi_cmp_int(&L, 0) != 0) {
             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
             goto cleanup;
         }
     }
 
     /* Check that DQ - D == 0 mod Q - 1 */
-    if( DQ != NULL )
-    {
-        if( Q == NULL )
-        {
+    if (DQ != NULL) {
+        if (Q == NULL) {
             ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
             goto cleanup;
         }
 
-        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) );
-        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DQ, D ) );
-        MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) );
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DQ, D));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K));
 
-        if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 )
-        {
+        if (mbedtls_mpi_cmp_int(&L, 0) != 0) {
             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
             goto cleanup;
         }
     }
 
     /* Check that QP * Q - 1 == 0 mod P */
-    if( QP != NULL )
-    {
-        if( P == NULL || Q == NULL )
-        {
+    if (QP != NULL) {
+        if (P == NULL || Q == NULL) {
             ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
             goto cleanup;
         }
 
-        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, QP, Q ) );
-        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
-        MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, P ) );
-        if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
-        {
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, QP, Q));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
+        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, P));
+        if (mbedtls_mpi_cmp_int(&K, 0) != 0) {
             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
             goto cleanup;
         }
@@ -470,17 +444,16 @@
 cleanup:
 
     /* Wrap MPI error codes by RSA check failure error code */
-    if( ret != 0 &&
+    if (ret != 0 &&
         ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED &&
-        ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA )
-    {
+        ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA) {
         ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
     }
 
-    mbedtls_mpi_free( &K );
-    mbedtls_mpi_free( &L );
+    mbedtls_mpi_free(&K);
+    mbedtls_mpi_free(&L);
 
-    return( ret );
+    return ret;
 }
 
 #endif /* MBEDTLS_RSA_C */