Switch to the new code style
Signed-off-by: David Horstmann <david.horstmann@arm.com>
diff --git a/library/rsa_alt_helpers.c b/library/rsa_alt_helpers.c
index dff2d93..3451469 100644
--- a/library/rsa_alt_helpers.c
+++ b/library/rsa_alt_helpers.c
@@ -59,9 +59,9 @@
* of (a) and (b) above to attempt to factor N.
*
*/
-int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N,
- mbedtls_mpi const *E, mbedtls_mpi const *D,
- mbedtls_mpi *P, mbedtls_mpi *Q )
+int mbedtls_rsa_deduce_primes(mbedtls_mpi const *N,
+ mbedtls_mpi const *E, mbedtls_mpi const *D,
+ mbedtls_mpi *P, mbedtls_mpi *Q)
{
int ret = 0;
@@ -74,48 +74,46 @@
mbedtls_mpi K; /* Temporary holding the current candidate */
const unsigned char primes[] = { 2,
- 3, 5, 7, 11, 13, 17, 19, 23,
- 29, 31, 37, 41, 43, 47, 53, 59,
- 61, 67, 71, 73, 79, 83, 89, 97,
- 101, 103, 107, 109, 113, 127, 131, 137,
- 139, 149, 151, 157, 163, 167, 173, 179,
- 181, 191, 193, 197, 199, 211, 223, 227,
- 229, 233, 239, 241, 251
- };
+ 3, 5, 7, 11, 13, 17, 19, 23,
+ 29, 31, 37, 41, 43, 47, 53, 59,
+ 61, 67, 71, 73, 79, 83, 89, 97,
+ 101, 103, 107, 109, 113, 127, 131, 137,
+ 139, 149, 151, 157, 163, 167, 173, 179,
+ 181, 191, 193, 197, 199, 211, 223, 227,
+ 229, 233, 239, 241, 251 };
- const size_t num_primes = sizeof( primes ) / sizeof( *primes );
+ const size_t num_primes = sizeof(primes) / sizeof(*primes);
- if( P == NULL || Q == NULL || P->p != NULL || Q->p != NULL )
- return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
+ if (P == NULL || Q == NULL || P->p != NULL || Q->p != NULL) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
- if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 ||
- mbedtls_mpi_cmp_int( D, 1 ) <= 0 ||
- mbedtls_mpi_cmp_mpi( D, N ) >= 0 ||
- mbedtls_mpi_cmp_int( E, 1 ) <= 0 ||
- mbedtls_mpi_cmp_mpi( E, N ) >= 0 )
- {
- return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
+ if (mbedtls_mpi_cmp_int(N, 0) <= 0 ||
+ mbedtls_mpi_cmp_int(D, 1) <= 0 ||
+ mbedtls_mpi_cmp_mpi(D, N) >= 0 ||
+ mbedtls_mpi_cmp_int(E, 1) <= 0 ||
+ mbedtls_mpi_cmp_mpi(E, N) >= 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
}
/*
* Initializations and temporary changes
*/
- mbedtls_mpi_init( &K );
- mbedtls_mpi_init( &T );
+ mbedtls_mpi_init(&K);
+ mbedtls_mpi_init(&T);
/* T := DE - 1 */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, D, E ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &T, &T, 1 ) );
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, D, E));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&T, &T, 1));
- if( ( order = (uint16_t) mbedtls_mpi_lsb( &T ) ) == 0 )
- {
+ if ((order = (uint16_t) mbedtls_mpi_lsb(&T)) == 0) {
ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
goto cleanup;
}
/* After this operation, T holds the largest odd divisor of DE - 1. */
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &T, order ) );
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&T, order));
/*
* Actual work
@@ -123,49 +121,49 @@
/* Skip trying 2 if N == 1 mod 8 */
attempt = 0;
- if( N->p[0] % 8 == 1 )
+ if (N->p[0] % 8 == 1) {
attempt = 1;
+ }
- for( ; attempt < num_primes; ++attempt )
- {
- mbedtls_mpi_lset( &K, primes[attempt] );
+ for (; attempt < num_primes; ++attempt) {
+ mbedtls_mpi_lset(&K, primes[attempt]);
/* Check if gcd(K,N) = 1 */
- MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) );
- if( mbedtls_mpi_cmp_int( P, 1 ) != 0 )
+ MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N));
+ if (mbedtls_mpi_cmp_int(P, 1) != 0) {
continue;
+ }
/* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ...
* and check whether they have nontrivial GCD with N. */
- MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &K, &K, &T, N,
- Q /* temporarily use Q for storing Montgomery
- * multiplication helper values */ ) );
+ MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&K, &K, &T, N,
+ Q /* temporarily use Q for storing Montgomery
+ * multiplication helper values */));
- for( iter = 1; iter <= order; ++iter )
- {
+ for (iter = 1; iter <= order; ++iter) {
/* If we reach 1 prematurely, there's no point
* in continuing to square K */
- if( mbedtls_mpi_cmp_int( &K, 1 ) == 0 )
+ if (mbedtls_mpi_cmp_int(&K, 1) == 0) {
break;
+ }
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &K, &K, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) );
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&K, &K, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N));
- if( mbedtls_mpi_cmp_int( P, 1 ) == 1 &&
- mbedtls_mpi_cmp_mpi( P, N ) == -1 )
- {
+ if (mbedtls_mpi_cmp_int(P, 1) == 1 &&
+ mbedtls_mpi_cmp_mpi(P, N) == -1) {
/*
* Have found a nontrivial divisor P of N.
* Set Q := N / P.
*/
- MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( Q, NULL, N, P ) );
+ MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(Q, NULL, N, P));
goto cleanup;
}
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &K ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, N ) );
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &K));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, N));
}
/*
@@ -175,8 +173,7 @@
* Check if that's the case and abort if not, to avoid very long,
* yet eventually failing, computations if N,D,E were not sane.
*/
- if( mbedtls_mpi_cmp_int( &K, 1 ) != 0 )
- {
+ if (mbedtls_mpi_cmp_int(&K, 1) != 0) {
break;
}
}
@@ -185,106 +182,103 @@
cleanup:
- mbedtls_mpi_free( &K );
- mbedtls_mpi_free( &T );
- return( ret );
+ mbedtls_mpi_free(&K);
+ mbedtls_mpi_free(&T);
+ return ret;
}
/*
* Given P, Q and the public exponent E, deduce D.
* This is essentially a modular inversion.
*/
-int mbedtls_rsa_deduce_private_exponent( mbedtls_mpi const *P,
- mbedtls_mpi const *Q,
- mbedtls_mpi const *E,
- mbedtls_mpi *D )
+int mbedtls_rsa_deduce_private_exponent(mbedtls_mpi const *P,
+ mbedtls_mpi const *Q,
+ mbedtls_mpi const *E,
+ mbedtls_mpi *D)
{
int ret = 0;
mbedtls_mpi K, L;
- if( D == NULL || mbedtls_mpi_cmp_int( D, 0 ) != 0 )
- return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
-
- if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 ||
- mbedtls_mpi_cmp_int( Q, 1 ) <= 0 ||
- mbedtls_mpi_cmp_int( E, 0 ) == 0 )
- {
- return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
+ if (D == NULL || mbedtls_mpi_cmp_int(D, 0) != 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
}
- mbedtls_mpi_init( &K );
- mbedtls_mpi_init( &L );
+ if (mbedtls_mpi_cmp_int(P, 1) <= 0 ||
+ mbedtls_mpi_cmp_int(Q, 1) <= 0 ||
+ mbedtls_mpi_cmp_int(E, 0) == 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ mbedtls_mpi_init(&K);
+ mbedtls_mpi_init(&L);
/* Temporarily put K := P-1 and L := Q-1 */
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) );
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1));
/* Temporarily put D := gcd(P-1, Q-1) */
- MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( D, &K, &L ) );
+ MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(D, &K, &L));
/* K := LCM(P-1, Q-1) */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &L ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &K, NULL, &K, D ) );
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &L));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&K, NULL, &K, D));
/* Compute modular inverse of E in LCM(P-1, Q-1) */
- MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( D, E, &K ) );
+ MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(D, E, &K));
cleanup:
- mbedtls_mpi_free( &K );
- mbedtls_mpi_free( &L );
+ mbedtls_mpi_free(&K);
+ mbedtls_mpi_free(&L);
- return( ret );
+ return ret;
}
-int mbedtls_rsa_deduce_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q,
- const mbedtls_mpi *D, mbedtls_mpi *DP,
- mbedtls_mpi *DQ, mbedtls_mpi *QP )
+int mbedtls_rsa_deduce_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q,
+ const mbedtls_mpi *D, mbedtls_mpi *DP,
+ mbedtls_mpi *DQ, mbedtls_mpi *QP)
{
int ret = 0;
mbedtls_mpi K;
- mbedtls_mpi_init( &K );
+ mbedtls_mpi_init(&K);
/* DP = D mod P-1 */
- if( DP != NULL )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DP, D, &K ) );
+ if (DP != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DP, D, &K));
}
/* DQ = D mod Q-1 */
- if( DQ != NULL )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DQ, D, &K ) );
+ if (DQ != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DQ, D, &K));
}
/* QP = Q^{-1} mod P */
- if( QP != NULL )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( QP, Q, P ) );
+ if (QP != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(QP, Q, P));
}
cleanup:
- mbedtls_mpi_free( &K );
+ mbedtls_mpi_free(&K);
- return( ret );
+ return ret;
}
/*
* Check that core RSA parameters are sane.
*/
-int mbedtls_rsa_validate_params( const mbedtls_mpi *N, const mbedtls_mpi *P,
- const mbedtls_mpi *Q, const mbedtls_mpi *D,
- const mbedtls_mpi *E,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng )
+int mbedtls_rsa_validate_params(const mbedtls_mpi *N, const mbedtls_mpi *P,
+ const mbedtls_mpi *Q, const mbedtls_mpi *D,
+ const mbedtls_mpi *E,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
{
int ret = 0;
mbedtls_mpi K, L;
- mbedtls_mpi_init( &K );
- mbedtls_mpi_init( &L );
+ mbedtls_mpi_init(&K);
+ mbedtls_mpi_init(&L);
/*
* Step 1: If PRNG provided, check that P and Q are prime
@@ -296,16 +290,14 @@
* rate of at most 2^-100 and we are aiming for the same certainty here as
* well.
*/
- if( f_rng != NULL && P != NULL &&
- ( ret = mbedtls_mpi_is_prime_ext( P, 50, f_rng, p_rng ) ) != 0 )
- {
+ if (f_rng != NULL && P != NULL &&
+ (ret = mbedtls_mpi_is_prime_ext(P, 50, f_rng, p_rng)) != 0) {
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
goto cleanup;
}
- if( f_rng != NULL && Q != NULL &&
- ( ret = mbedtls_mpi_is_prime_ext( Q, 50, f_rng, p_rng ) ) != 0 )
- {
+ if (f_rng != NULL && Q != NULL &&
+ (ret = mbedtls_mpi_is_prime_ext(Q, 50, f_rng, p_rng)) != 0) {
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
goto cleanup;
}
@@ -318,12 +310,10 @@
* Step 2: Check that 1 < N = P * Q
*/
- if( P != NULL && Q != NULL && N != NULL )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, P, Q ) );
- if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 ||
- mbedtls_mpi_cmp_mpi( &K, N ) != 0 )
- {
+ if (P != NULL && Q != NULL && N != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, P, Q));
+ if (mbedtls_mpi_cmp_int(N, 1) <= 0 ||
+ mbedtls_mpi_cmp_mpi(&K, N) != 0) {
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
goto cleanup;
}
@@ -333,13 +323,11 @@
* Step 3: Check and 1 < D, E < N if present.
*/
- if( N != NULL && D != NULL && E != NULL )
- {
- if ( mbedtls_mpi_cmp_int( D, 1 ) <= 0 ||
- mbedtls_mpi_cmp_int( E, 1 ) <= 0 ||
- mbedtls_mpi_cmp_mpi( D, N ) >= 0 ||
- mbedtls_mpi_cmp_mpi( E, N ) >= 0 )
- {
+ if (N != NULL && D != NULL && E != NULL) {
+ if (mbedtls_mpi_cmp_int(D, 1) <= 0 ||
+ mbedtls_mpi_cmp_int(E, 1) <= 0 ||
+ mbedtls_mpi_cmp_mpi(D, N) >= 0 ||
+ mbedtls_mpi_cmp_mpi(E, N) >= 0) {
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
goto cleanup;
}
@@ -349,33 +337,29 @@
* Step 4: Check that D, E are inverse modulo P-1 and Q-1
*/
- if( P != NULL && Q != NULL && D != NULL && E != NULL )
- {
- if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 ||
- mbedtls_mpi_cmp_int( Q, 1 ) <= 0 )
- {
+ if (P != NULL && Q != NULL && D != NULL && E != NULL) {
+ if (mbedtls_mpi_cmp_int(P, 1) <= 0 ||
+ mbedtls_mpi_cmp_int(Q, 1) <= 0) {
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
goto cleanup;
}
/* Compute DE-1 mod P-1 */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, P, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) );
- if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
- {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, P, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L));
+ if (mbedtls_mpi_cmp_int(&K, 0) != 0) {
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
goto cleanup;
}
/* Compute DE-1 mod Q-1 */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) );
- if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
- {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L));
+ if (mbedtls_mpi_cmp_int(&K, 0) != 0) {
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
goto cleanup;
}
@@ -383,85 +367,75 @@
cleanup:
- mbedtls_mpi_free( &K );
- mbedtls_mpi_free( &L );
+ mbedtls_mpi_free(&K);
+ mbedtls_mpi_free(&L);
/* Wrap MPI error codes by RSA check failure error code */
- if( ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED )
- {
+ if (ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED) {
ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
}
- return( ret );
+ return ret;
}
/*
* Check that RSA CRT parameters are in accordance with core parameters.
*/
-int mbedtls_rsa_validate_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q,
- const mbedtls_mpi *D, const mbedtls_mpi *DP,
- const mbedtls_mpi *DQ, const mbedtls_mpi *QP )
+int mbedtls_rsa_validate_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q,
+ const mbedtls_mpi *D, const mbedtls_mpi *DP,
+ const mbedtls_mpi *DQ, const mbedtls_mpi *QP)
{
int ret = 0;
mbedtls_mpi K, L;
- mbedtls_mpi_init( &K );
- mbedtls_mpi_init( &L );
+ mbedtls_mpi_init(&K);
+ mbedtls_mpi_init(&L);
/* Check that DP - D == 0 mod P - 1 */
- if( DP != NULL )
- {
- if( P == NULL )
- {
+ if (DP != NULL) {
+ if (P == NULL) {
ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
goto cleanup;
}
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DP, D ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) );
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DP, D));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K));
- if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 )
- {
+ if (mbedtls_mpi_cmp_int(&L, 0) != 0) {
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
goto cleanup;
}
}
/* Check that DQ - D == 0 mod Q - 1 */
- if( DQ != NULL )
- {
- if( Q == NULL )
- {
+ if (DQ != NULL) {
+ if (Q == NULL) {
ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
goto cleanup;
}
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DQ, D ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) );
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DQ, D));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K));
- if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 )
- {
+ if (mbedtls_mpi_cmp_int(&L, 0) != 0) {
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
goto cleanup;
}
}
/* Check that QP * Q - 1 == 0 mod P */
- if( QP != NULL )
- {
- if( P == NULL || Q == NULL )
- {
+ if (QP != NULL) {
+ if (P == NULL || Q == NULL) {
ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
goto cleanup;
}
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, QP, Q ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, P ) );
- if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
- {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, QP, Q));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, P));
+ if (mbedtls_mpi_cmp_int(&K, 0) != 0) {
ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
goto cleanup;
}
@@ -470,17 +444,16 @@
cleanup:
/* Wrap MPI error codes by RSA check failure error code */
- if( ret != 0 &&
+ if (ret != 0 &&
ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED &&
- ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA )
- {
+ ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA) {
ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
}
- mbedtls_mpi_free( &K );
- mbedtls_mpi_free( &L );
+ mbedtls_mpi_free(&K);
+ mbedtls_mpi_free(&L);
- return( ret );
+ return ret;
}
#endif /* MBEDTLS_RSA_C */