- Renamed t_s_int, t_int and t_dbl to respectively t_sint, t_uint and t_udbl for clarity
diff --git a/library/bignum.c b/library/bignum.c
index 3d8b383..a2b132d 100644
--- a/library/bignum.c
+++ b/library/bignum.c
@@ -40,7 +40,7 @@
#include <stdlib.h>
#include <stdarg.h>
-#define ciL ((int) sizeof(t_int)) /* chars in limb */
+#define ciL ((int) sizeof(t_uint)) /* chars in limb */
#define biL (ciL << 3) /* bits in limb */
#define biH (ciL << 2) /* half limb size */
@@ -103,11 +103,11 @@
*/
int mpi_grow( mpi *X, size_t nblimbs )
{
- t_int *p;
+ t_uint *p;
if( X->n < nblimbs )
{
- if( ( p = (t_int *) malloc( nblimbs * ciL ) ) == NULL )
+ if( ( p = (t_uint *) malloc( nblimbs * ciL ) ) == NULL )
return( 1 );
memset( p, 0, nblimbs * ciL );
@@ -169,7 +169,7 @@
/*
* Set value from integer
*/
-int mpi_lset( mpi *X, t_s_int z )
+int mpi_lset( mpi *X, t_sint z )
{
int ret;
@@ -228,7 +228,7 @@
/*
* Convert an ASCII character to digit value
*/
-static int mpi_get_digit( t_int *d, int radix, char c )
+static int mpi_get_digit( t_uint *d, int radix, char c )
{
*d = 255;
@@ -236,7 +236,7 @@
if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
- if( *d >= (t_int) radix )
+ if( *d >= (t_uint) radix )
return( POLARSSL_ERR_MPI_INVALID_CHARACTER );
return( 0 );
@@ -249,7 +249,7 @@
{
int ret;
size_t i, j, slen, n;
- t_int d;
+ t_uint d;
mpi T;
if( radix < 2 || radix > 16 )
@@ -317,7 +317,7 @@
static int mpi_write_hlp( mpi *X, int radix, char **p )
{
int ret;
- t_int r;
+ t_uint r;
if( radix < 2 || radix > 16 )
return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );
@@ -412,7 +412,7 @@
*/
int mpi_read_file( mpi *X, int radix, FILE *fin )
{
- t_int d;
+ t_uint d;
size_t slen;
char *p;
char s[1024];
@@ -485,7 +485,7 @@
MPI_CHK( mpi_lset( X, 0 ) );
for( i = buflen, j = 0; i > n; i--, j++ )
- X->p[j / ciL] |= ((t_int) buf[i - 1]) << ((j % ciL) << 3);
+ X->p[j / ciL] |= ((t_uint) buf[i - 1]) << ((j % ciL) << 3);
cleanup:
@@ -519,7 +519,7 @@
{
int ret;
size_t i, v0, t1;
- t_int r0 = 0, r1;
+ t_uint r0 = 0, r1;
v0 = count / (biL );
t1 = count & (biL - 1);
@@ -568,7 +568,7 @@
int mpi_shift_r( mpi *X, size_t count )
{
size_t i, v0, v1;
- t_int r0 = 0, r1;
+ t_uint r0 = 0, r1;
v0 = count / biL;
v1 = count & (biL - 1);
@@ -668,10 +668,10 @@
/*
* Compare signed values
*/
-int mpi_cmp_int( const mpi *X, t_s_int z )
+int mpi_cmp_int( const mpi *X, t_sint z )
{
mpi Y;
- t_int p[1];
+ t_uint p[1];
*p = ( z < 0 ) ? -z : z;
Y.s = ( z < 0 ) ? -1 : 1;
@@ -688,7 +688,7 @@
{
int ret;
size_t i, j;
- t_int *o, *p, c;
+ t_uint *o, *p, c;
if( X == B )
{
@@ -736,10 +736,10 @@
/*
* Helper for mpi substraction
*/
-static void mpi_sub_hlp( size_t n, t_int *s, t_int *d )
+static void mpi_sub_hlp( size_t n, t_uint *s, t_uint *d )
{
size_t i;
- t_int c, z;
+ t_uint c, z;
for( i = c = 0; i < n; i++, s++, d++ )
{
@@ -862,10 +862,10 @@
/*
* Signed addition: X = A + b
*/
-int mpi_add_int( mpi *X, const mpi *A, t_s_int b )
+int mpi_add_int( mpi *X, const mpi *A, t_sint b )
{
mpi _B;
- t_int p[1];
+ t_uint p[1];
p[0] = ( b < 0 ) ? -b : b;
_B.s = ( b < 0 ) ? -1 : 1;
@@ -878,10 +878,10 @@
/*
* Signed substraction: X = A - b
*/
-int mpi_sub_int( mpi *X, const mpi *A, t_s_int b )
+int mpi_sub_int( mpi *X, const mpi *A, t_sint b )
{
mpi _B;
- t_int p[1];
+ t_uint p[1];
p[0] = ( b < 0 ) ? -b : b;
_B.s = ( b < 0 ) ? -1 : 1;
@@ -894,9 +894,9 @@
/*
* Helper for mpi multiplication
*/
-static void mpi_mul_hlp( size_t i, t_int *s, t_int *d, t_int b )
+static void mpi_mul_hlp( size_t i, t_uint *s, t_uint *d, t_uint b )
{
- t_int c = 0, t = 0;
+ t_uint c = 0, t = 0;
#if defined(MULADDC_HUIT)
for( ; i >= 8; i -= 8 )
@@ -995,10 +995,10 @@
/*
* Baseline multiplication: X = A * b
*/
-int mpi_mul_int( mpi *X, const mpi *A, t_s_int b )
+int mpi_mul_int( mpi *X, const mpi *A, t_sint b )
{
mpi _B;
- t_int p[1];
+ t_uint p[1];
_B.s = 1;
_B.n = 1;
@@ -1073,13 +1073,13 @@
if( r > ((t_dbl) 1 << biL) - 1)
r = ((t_dbl) 1 << biL) - 1;
- Z.p[i - t - 1] = (t_int) r;
+ Z.p[i - t - 1] = (t_uint) r;
#else
/*
* __udiv_qrnnd_c, from gmp/longlong.h
*/
- t_int q0, q1, r0, r1;
- t_int d0, d1, d, m;
+ t_uint q0, q1, r0, r1;
+ t_uint d0, d1, d, m;
d = Y.p[t];
d0 = ( d << biH ) >> biH;
@@ -1177,10 +1177,10 @@
* 1 if memory allocation failed
* POLARSSL_ERR_MPI_DIVISION_BY_ZERO if b == 0
*/
-int mpi_div_int( mpi *Q, mpi *R, const mpi *A, t_s_int b )
+int mpi_div_int( mpi *Q, mpi *R, const mpi *A, t_sint b )
{
mpi _B;
- t_int p[1];
+ t_uint p[1];
p[0] = ( b < 0 ) ? -b : b;
_B.s = ( b < 0 ) ? -1 : 1;
@@ -1216,10 +1216,10 @@
/*
* Modulo: r = A mod b
*/
-int mpi_mod_int( t_int *r, const mpi *A, t_s_int b )
+int mpi_mod_int( t_uint *r, const mpi *A, t_sint b )
{
size_t i;
- t_int x, y, z;
+ t_uint x, y, z;
if( b == 0 )
return( POLARSSL_ERR_MPI_DIVISION_BY_ZERO );
@@ -1273,9 +1273,9 @@
/*
* Fast Montgomery initialization (thanks to Tom St Denis)
*/
-static void mpi_montg_init( t_int *mm, const mpi *N )
+static void mpi_montg_init( t_uint *mm, const mpi *N )
{
- t_int x, m0 = N->p[0];
+ t_uint x, m0 = N->p[0];
x = m0;
x += ( ( m0 + 2 ) & 4 ) << 1;
@@ -1291,10 +1291,10 @@
/*
* Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
*/
-static void mpi_montmul( mpi *A, const mpi *B, const mpi *N, t_int mm, const mpi *T )
+static void mpi_montmul( mpi *A, const mpi *B, const mpi *N, t_uint mm, const mpi *T )
{
size_t i, n, m;
- t_int u0, u1, *d;
+ t_uint u0, u1, *d;
memset( T->p, 0, T->n * ciL );
@@ -1328,9 +1328,9 @@
/*
* Montgomery reduction: A = A * R^-1 mod N
*/
-static void mpi_montred( mpi *A, const mpi *N, t_int mm, const mpi *T )
+static void mpi_montred( mpi *A, const mpi *N, t_uint mm, const mpi *T )
{
- t_int z = 1;
+ t_uint z = 1;
mpi U;
U.n = U.s = z;
@@ -1348,7 +1348,7 @@
size_t wbits, wsize, one = 1;
size_t i, j, nblimbs;
size_t bufsize, nbits;
- t_int ei, mm, state;
+ t_uint ei, mm, state;
mpi RR, T, W[64];
if( mpi_cmp_int( N, 0 ) < 0 || ( N->p[0] & 1 ) == 0 )
@@ -1439,7 +1439,7 @@
if( nblimbs-- == 0 )
break;
- bufsize = sizeof( t_int ) << 3;
+ bufsize = sizeof( t_uint ) << 3;
}
bufsize--;
@@ -1735,7 +1735,7 @@
for( i = 0; small_prime[i] > 0; i++ )
{
- t_int r;
+ t_uint r;
if( mpi_cmp_int( X, small_prime[i] ) <= 0 )
return( 0 );