Reorder functions in bignum_core.[ch]
Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
diff --git a/library/bignum_core.c b/library/bignum_core.c
index 4e5012b..35510e6 100644
--- a/library/bignum_core.c
+++ b/library/bignum_core.c
@@ -293,6 +293,89 @@
return( 0 );
}
+mbedtls_mpi_uint mbedtls_mpi_core_add_if( mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ size_t limbs,
+ unsigned cond )
+{
+ mbedtls_mpi_uint c = 0, t;
+ for( size_t i = 0; i < limbs; i++ )
+ {
+ mbedtls_mpi_uint add = cond * B[i];
+ t = c;
+ t += A[i]; c = ( t < A[i] );
+ t += add; c += ( t < add );
+ A[i] = t;
+ }
+ return( c );
+}
+
+mbedtls_mpi_uint mbedtls_mpi_core_sub( mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ size_t limbs )
+{
+ mbedtls_mpi_uint c = 0;
+
+ for( size_t i = 0; i < limbs; i++ )
+ {
+ mbedtls_mpi_uint z = ( A[i] < c );
+ mbedtls_mpi_uint t = A[i] - c;
+ c = ( t < B[i] ) + z;
+ X[i] = t - B[i];
+ }
+
+ return( c );
+}
+
+mbedtls_mpi_uint mbedtls_mpi_core_mla( mbedtls_mpi_uint *d, size_t d_len,
+ const mbedtls_mpi_uint *s, size_t s_len,
+ mbedtls_mpi_uint b )
+{
+ mbedtls_mpi_uint c = 0; /* carry */
+ if( d_len < s_len )
+ s_len = d_len;
+ size_t excess_len = d_len - s_len;
+ size_t steps_x8 = s_len / 8;
+ size_t steps_x1 = s_len & 7;
+
+ while( steps_x8-- )
+ {
+ MULADDC_X8_INIT
+ MULADDC_X8_CORE
+ MULADDC_X8_STOP
+ }
+
+ while( steps_x1-- )
+ {
+ MULADDC_X1_INIT
+ MULADDC_X1_CORE
+ MULADDC_X1_STOP
+ }
+
+ while( excess_len-- )
+ {
+ *d += c; c = ( *d < c ); d++;
+ }
+
+ return( c );
+}
+
+/*
+ * Fast Montgomery initialization (thanks to Tom St Denis).
+ */
+mbedtls_mpi_uint mbedtls_mpi_montg_init( const mbedtls_mpi_uint *N )
+{
+ mbedtls_mpi_uint x = N[0];
+
+ x += ( ( N[0] + 2 ) & 4 ) << 1;
+
+ for( unsigned int i = biL; i >= 8; i /= 2 )
+ x *= ( 2 - ( N[0] * x ) );
+
+ return( ~x + 1 );
+}
+
void mbedtls_mpi_core_montmul( mbedtls_mpi_uint *X,
const mbedtls_mpi_uint *A,
const mbedtls_mpi_uint *B,
@@ -345,87 +428,4 @@
mbedtls_ct_mpi_uint_cond_assign( AN_limbs, X, T, (unsigned char) ( carry ^ borrow ) );
}
-/*
- * Fast Montgomery initialization (thanks to Tom St Denis).
- */
-mbedtls_mpi_uint mbedtls_mpi_montg_init( const mbedtls_mpi_uint *N )
-{
- mbedtls_mpi_uint x = N[0];
-
- x += ( ( N[0] + 2 ) & 4 ) << 1;
-
- for( unsigned int i = biL; i >= 8; i /= 2 )
- x *= ( 2 - ( N[0] * x ) );
-
- return( ~x + 1 );
-}
-
-mbedtls_mpi_uint mbedtls_mpi_core_mla( mbedtls_mpi_uint *d, size_t d_len,
- const mbedtls_mpi_uint *s, size_t s_len,
- mbedtls_mpi_uint b )
-{
- mbedtls_mpi_uint c = 0; /* carry */
- if( d_len < s_len )
- s_len = d_len;
- size_t excess_len = d_len - s_len;
- size_t steps_x8 = s_len / 8;
- size_t steps_x1 = s_len & 7;
-
- while( steps_x8-- )
- {
- MULADDC_X8_INIT
- MULADDC_X8_CORE
- MULADDC_X8_STOP
- }
-
- while( steps_x1-- )
- {
- MULADDC_X1_INIT
- MULADDC_X1_CORE
- MULADDC_X1_STOP
- }
-
- while( excess_len-- )
- {
- *d += c; c = ( *d < c ); d++;
- }
-
- return( c );
-}
-
-mbedtls_mpi_uint mbedtls_mpi_core_sub( mbedtls_mpi_uint *X,
- const mbedtls_mpi_uint *A,
- const mbedtls_mpi_uint *B,
- size_t limbs )
-{
- mbedtls_mpi_uint c = 0;
-
- for( size_t i = 0; i < limbs; i++ )
- {
- mbedtls_mpi_uint z = ( A[i] < c );
- mbedtls_mpi_uint t = A[i] - c;
- c = ( t < B[i] ) + z;
- X[i] = t - B[i];
- }
-
- return( c );
-}
-
-mbedtls_mpi_uint mbedtls_mpi_core_add_if( mbedtls_mpi_uint *A,
- const mbedtls_mpi_uint *B,
- size_t limbs,
- unsigned cond )
-{
- mbedtls_mpi_uint c = 0, t;
- for( size_t i = 0; i < limbs; i++ )
- {
- mbedtls_mpi_uint add = cond * B[i];
- t = c;
- t += A[i]; c = ( t < A[i] );
- t += add; c += ( t < add );
- A[i] = t;
- }
- return( c );
-}
-
#endif /* MBEDTLS_BIGNUM_C */
diff --git a/library/bignum_core.h b/library/bignum_core.h
index cf7caee..279dca2 100644
--- a/library/bignum_core.h
+++ b/library/bignum_core.h
@@ -156,86 +156,6 @@
( ( (X)[(i) / ciL] >> ( ( (i) % ciL ) * 8 ) ) & 0xff )
/**
- * \brief Montgomery multiplication: X = A * B * R^-1 mod N (HAC 14.36)
- *
- * \param[out] X The destination MPI, as a little-endian array of
- * length \p AN_limbs.
- * On successful completion, X contains the result of
- * the multiplication A * B * R^-1 mod N where
- * R = (2^ciL)^AN_limbs.
- * \param[in] A Little-endian presentation of first operand.
- * Must have exactly \p AN_limbs limbs.
- * \param[in] B Little-endian presentation of second operand.
- * \param[in] B_limbs The number of limbs in \p B.
- * \param[in] N Little-endian presentation of the modulus.
- * This must be odd and have exactly \p AN_limbs limbs.
- * \param[in] AN_limbs The number of limbs in \p X, \p A, \p N.
- * \param mm The Montgomery constant for \p N: -N^-1 mod 2^ciL.
- * This can be calculated by `mbedtls_mpi_montg_init()`.
- * \param[in,out] T Temporary storage of size at least 2*AN_limbs+1 limbs.
- * Its initial content is unused and
- * its final content is indeterminate.
- */
-void mbedtls_mpi_core_montmul( mbedtls_mpi_uint *X,
- const mbedtls_mpi_uint *A,
- const mbedtls_mpi_uint *B, size_t B_limbs,
- const mbedtls_mpi_uint *N, size_t AN_limbs,
- mbedtls_mpi_uint mm, mbedtls_mpi_uint *T );
-
-/**
- * \brief Calculate initialisation value for fast Montgomery modular
- * multiplication
- *
- * \param[in] N Little-endian presentation of the modulus. This must have
- * at least one limb.
- *
- * \return The initialisation value for fast Montgomery modular multiplication
- */
-mbedtls_mpi_uint mbedtls_mpi_montg_init( const mbedtls_mpi_uint *N );
-
-/**
- * \brief Perform a known-size multiply accumulate operation: A += c * B
- *
- * \param[in,out] A The pointer to the (little-endian) array
- * representing the bignum to accumulate onto.
- * \param A_limbs The number of limbs of \p A. This must be
- * at least \p B_limbs.
- * \param[in] B The pointer to the (little-endian) array
- * representing the bignum to multiply with.
- * This may be the same as \p A. Otherwise,
- * it must be disjoint from \p A.
- * \param B_limbs The number of limbs of \p B.
- * \param c A scalar to multiply with.
- *
- * \return The carry at the end of the operation.
- */
-mbedtls_mpi_uint mbedtls_mpi_core_mla( mbedtls_mpi_uint *A, size_t A_limbs,
- const mbedtls_mpi_uint *B, size_t B_limbs,
- mbedtls_mpi_uint c );
-
-/**
- * \brief Subtract two known-size large unsigned integers, returning the borrow.
- *
- * Calculate A - B where A and B have the same size.
- * This function operates modulo (2^ciL)^limbs and returns the carry
- * (1 if there was a wraparound, i.e. if `A < B`, and 0 otherwise).
- *
- * X may be aliased to A or B.
- *
- * \param[out] X The result of the subtraction.
- * \param[in] A Little-endian presentation of left operand.
- * \param[in] B Little-endian presentation of right operand.
- * \param limbs Number of limbs of \p X, \p A and \p B.
- *
- * \return 1 if `A < B`.
- * 0 if `A >= B`.
- */
-mbedtls_mpi_uint mbedtls_mpi_core_sub( mbedtls_mpi_uint *X,
- const mbedtls_mpi_uint *A,
- const mbedtls_mpi_uint *B,
- size_t limbs );
-
-/**
* \brief Conditional addition of two known-size large unsigned integers,
* returning the carry.
*
@@ -267,4 +187,84 @@
size_t limbs,
unsigned cond );
+/**
+ * \brief Subtract two known-size large unsigned integers, returning the borrow.
+ *
+ * Calculate A - B where A and B have the same size.
+ * This function operates modulo (2^ciL)^limbs and returns the carry
+ * (1 if there was a wraparound, i.e. if `A < B`, and 0 otherwise).
+ *
+ * X may be aliased to A or B.
+ *
+ * \param[out] X The result of the subtraction.
+ * \param[in] A Little-endian presentation of left operand.
+ * \param[in] B Little-endian presentation of right operand.
+ * \param limbs Number of limbs of \p X, \p A and \p B.
+ *
+ * \return 1 if `A < B`.
+ * 0 if `A >= B`.
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_sub( mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ size_t limbs );
+
+/**
+ * \brief Perform a known-size multiply accumulate operation: A += c * B
+ *
+ * \param[in,out] A The pointer to the (little-endian) array
+ * representing the bignum to accumulate onto.
+ * \param A_limbs The number of limbs of \p A. This must be
+ * at least \p B_limbs.
+ * \param[in] B The pointer to the (little-endian) array
+ * representing the bignum to multiply with.
+ * This may be the same as \p A. Otherwise,
+ * it must be disjoint from \p A.
+ * \param B_limbs The number of limbs of \p B.
+ * \param c A scalar to multiply with.
+ *
+ * \return The carry at the end of the operation.
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_mla( mbedtls_mpi_uint *A, size_t A_limbs,
+ const mbedtls_mpi_uint *B, size_t B_limbs,
+ mbedtls_mpi_uint c );
+
+/**
+ * \brief Calculate initialisation value for fast Montgomery modular
+ * multiplication
+ *
+ * \param[in] N Little-endian presentation of the modulus. This must have
+ * at least one limb.
+ *
+ * \return The initialisation value for fast Montgomery modular multiplication
+ */
+mbedtls_mpi_uint mbedtls_mpi_montg_init( const mbedtls_mpi_uint *N );
+
+/**
+ * \brief Montgomery multiplication: X = A * B * R^-1 mod N (HAC 14.36)
+ *
+ * \param[out] X The destination MPI, as a little-endian array of
+ * length \p AN_limbs.
+ * On successful completion, X contains the result of
+ * the multiplication A * B * R^-1 mod N where
+ * R = (2^ciL)^AN_limbs.
+ * \param[in] A Little-endian presentation of first operand.
+ * Must have exactly \p AN_limbs limbs.
+ * \param[in] B Little-endian presentation of second operand.
+ * \param[in] B_limbs The number of limbs in \p B.
+ * \param[in] N Little-endian presentation of the modulus.
+ * This must be odd and have exactly \p AN_limbs limbs.
+ * \param[in] AN_limbs The number of limbs in \p X, \p A, \p N.
+ * \param mm The Montgomery constant for \p N: -N^-1 mod 2^ciL.
+ * This can be calculated by `mbedtls_mpi_montg_init()`.
+ * \param[in,out] T Temporary storage of size at least 2*AN_limbs+1 limbs.
+ * Its initial content is unused and
+ * its final content is indeterminate.
+ */
+void mbedtls_mpi_core_montmul( mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B, size_t B_limbs,
+ const mbedtls_mpi_uint *N, size_t AN_limbs,
+ mbedtls_mpi_uint mm, mbedtls_mpi_uint *T );
+
#endif /* MBEDTLS_BIGNUM_CORE_H */