blob: 9841010c72186712be25934f5ea1175354a3b133 [file] [log] [blame]
Paul Bakker9dcc3222011-03-08 14:16:06 +00001BEGIN_HEADER
2#include <polarssl/config.h>
3#include <polarssl/rsa.h>
4#include <polarssl/md.h>
5#include <polarssl/md2.h>
6#include <polarssl/md4.h>
7#include <polarssl/md5.h>
8#include <polarssl/sha1.h>
9#include <polarssl/sha2.h>
10#include <polarssl/sha4.h>
11END_HEADER
12
13BEGIN_CASE
14pkcs1_rsaes_oaep_encrypt:mod:radix_N:input_N:radix_E:input_E:hash:message_hex_string:seed:result_hex_str:result
15{
16 unsigned char message_str[1000];
17 unsigned char output[1000];
18 unsigned char output_str[1000];
19 unsigned char rnd_buf[1000];
20 rsa_context ctx;
21 int msg_len;
22 rnd_info info;
23
24 info.length = unhexify( rnd_buf, {seed} );
25 info.buf = rnd_buf;
26 info.per_call = 1;
27
28 rsa_init( &ctx, RSA_PKCS_V21, {hash} );
29 memset( message_str, 0x00, 1000 );
30 memset( output, 0x00, 1000 );
31 memset( output_str, 0x00, 1000 );
32
33 ctx.len = {mod} / 8 + ( ( {mod} % 8 ) ? 1 : 0 );
34 TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 );
35 TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 );
36
37 TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 );
38
39 msg_len = unhexify( message_str, {message_hex_string} );
40
41 TEST_ASSERT( rsa_pkcs1_encrypt( &ctx, &rnd_buffer_rand, &info, RSA_PUBLIC, msg_len, message_str, output ) == {result} );
42 if( {result} == 0 )
43 {
44 hexify( output_str, output, ctx.len );
45
46 TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 );
47 }
48}
49END_CASE
50
51BEGIN_CASE
52pkcs1_rsaes_oaep_decrypt:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:hash:result_hex_str:seed:message_hex_string:result
53{
54 unsigned char message_str[1000];
55 unsigned char output[1000];
56 unsigned char output_str[1000];
57 rsa_context ctx;
58 mpi P1, Q1, H, G;
59 int output_len;
60 int msg_len;
61
62 mpi_init( &P1, &Q1, &H, &G, NULL );
63 rsa_init( &ctx, RSA_PKCS_V21, {hash} );
64
65 memset( message_str, 0x00, 1000 );
66 memset( output, 0x00, 1000 );
67 memset( output_str, 0x00, 1000 );
68
69 ctx.len = {mod} / 8 + ( ( {mod} % 8 ) ? 1 : 0 );
70 TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 );
71 TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 );
72 TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 );
73 TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 );
74
75 TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 );
76 TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 );
77 TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 );
78 TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H ) == 0 );
79 TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H ) == 0 );
80 TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 );
81 TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 );
82 TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 );
83
84 TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 );
85
86 msg_len = unhexify( message_str, {message_hex_string} );
87
88 TEST_ASSERT( rsa_pkcs1_decrypt( &ctx, RSA_PRIVATE, &output_len, message_str, output, 1000 ) == {result} );
89 if( {result} == 0 )
90 {
91 hexify( output_str, output, ctx.len );
92
93 TEST_ASSERT( strncasecmp( (char *) output_str, {result_hex_str}, strlen( {result_hex_str} ) ) == 0 );
94 }
95}
96END_CASE
97
98BEGIN_CASE
99pkcs1_rsassa_pss_sign:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:digest:hash:message_hex_string:salt:result_hex_str:result
100{
101 unsigned char message_str[1000];
102 unsigned char hash_result[1000];
103 unsigned char output[1000];
104 unsigned char output_str[1000];
105 unsigned char rnd_buf[1000];
106 rsa_context ctx;
107 mpi P1, Q1, H, G;
108 int msg_len;
109 rnd_info info;
110
111 info.length = unhexify( rnd_buf, {salt} );
112 info.buf = rnd_buf;
113 info.per_call = 1;
114
115 mpi_init( &P1, &Q1, &H, &G, NULL );
116 rsa_init( &ctx, RSA_PKCS_V21, {hash} );
117
118 memset( message_str, 0x00, 1000 );
119 memset( hash_result, 0x00, 1000 );
120 memset( output, 0x00, 1000 );
121 memset( output_str, 0x00, 1000 );
122
123 ctx.len = {mod} / 8 + ( ( {mod} % 8 ) ? 1 : 0 );
124 TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 );
125 TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 );
126 TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 );
127 TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 );
128
129 TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 );
130 TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 );
131 TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 );
132 TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H ) == 0 );
133 TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H ) == 0 );
134 TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 );
135 TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 );
136 TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 );
137
138 TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 );
139
140 msg_len = unhexify( message_str, {message_hex_string} );
141
142 switch( {digest} )
143 {
144#ifdef POLARSSL_MD2_C
145 case SIG_RSA_MD2:
146 md2( message_str, msg_len, hash_result );
147 break;
148#endif
149#ifdef POLARSSL_MD4_C
150 case SIG_RSA_MD4:
151 md4( message_str, msg_len, hash_result );
152 break;
153#endif
154#ifdef POLARSSL_MD5_C
155 case SIG_RSA_MD5:
156 md5( message_str, msg_len, hash_result );
157 break;
158#endif
159#ifdef POLARSSL_SHA1_C
160 case SIG_RSA_SHA1:
161 sha1( message_str, msg_len, hash_result );
162 break;
163#endif
164#ifdef POLARSSL_SHA2_C
165 case SIG_RSA_SHA224:
166 sha2( message_str, msg_len, hash_result, 1 );
167 break;
168 case SIG_RSA_SHA256:
169 sha2( message_str, msg_len, hash_result, 0 );
170 break;
171#endif
172#ifdef POLARSSL_SHA4_C
173 case SIG_RSA_SHA384:
174 sha4( message_str, msg_len, hash_result, 1 );
175 break;
176 case SIG_RSA_SHA512:
177 sha4( message_str, msg_len, hash_result, 0 );
178 break;
179#endif
180 }
181
182 TEST_ASSERT( rsa_pkcs1_sign( &ctx, &rnd_buffer_rand, &info, RSA_PRIVATE, {digest}, 0, hash_result, output ) == {result} );
183 if( {result} == 0 )
184 {
185 hexify( output_str, output, ctx.len);
186
187 TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 );
188 }
189}
190END_CASE
191
192BEGIN_CASE
193pkcs1_rsassa_pss_verify:mod:radix_N:input_N:radix_E:input_E:digest:hash:message_hex_string:salt:result_hex_str:result
194{
195 unsigned char message_str[1000];
196 unsigned char hash_result[1000];
197 unsigned char result_str[1000];
198 rsa_context ctx;
199 int msg_len;
200
201 rsa_init( &ctx, RSA_PKCS_V21, {hash} );
202 memset( message_str, 0x00, 1000 );
203 memset( hash_result, 0x00, 1000 );
204 memset( result_str, 0x00, 1000 );
205
206 ctx.len = {mod} / 8 + ( ( {mod} % 8 ) ? 1 : 0 );
207 TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 );
208 TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 );
209
210 TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 );
211
212 msg_len = unhexify( message_str, {message_hex_string} );
213 unhexify( result_str, {result_hex_str} );
214
215 switch( {digest} )
216 {
217#ifdef POLARSSL_MD2_C
218 case SIG_RSA_MD2:
219 md2( message_str, msg_len, hash_result );
220 break;
221#endif
222#ifdef POLARSSL_MD4_C
223 case SIG_RSA_MD4:
224 md4( message_str, msg_len, hash_result );
225 break;
226#endif
227#ifdef POLARSSL_MD5_C
228 case SIG_RSA_MD5:
229 md5( message_str, msg_len, hash_result );
230 break;
231#endif
232#ifdef POLARSSL_SHA1_C
233 case SIG_RSA_SHA1:
234 sha1( message_str, msg_len, hash_result );
235 break;
236#endif
237#ifdef POLARSSL_SHA2_C
238 case SIG_RSA_SHA224:
239 sha2( message_str, msg_len, hash_result, 1 );
240 break;
241 case SIG_RSA_SHA256:
242 sha2( message_str, msg_len, hash_result, 0 );
243 break;
244#endif
245#ifdef POLARSSL_SHA4_C
246 case SIG_RSA_SHA384:
247 sha4( message_str, msg_len, hash_result, 1 );
248 break;
249 case SIG_RSA_SHA512:
250 sha4( message_str, msg_len, hash_result, 0 );
251 break;
252#endif
253 }
254
255 TEST_ASSERT( rsa_pkcs1_verify( &ctx, RSA_PUBLIC, {digest}, 0, hash_result, result_str ) == {result} );
256}
257END_CASE