blob: e2dfae74f7b4de48d61655d6cc15cb83d14e01bc [file] [log] [blame]
Paul Bakker5121ce52009-01-03 21:22:43 +00001/*
2 * Multi-precision integer library
3 *
Bence Szépkúti1e148272020-08-07 13:07:28 +02004 * Copyright The Mbed TLS Contributors
Manuel Pégourié-Gonnard37ff1402015-09-04 14:21:07 +02005 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
Paul Bakker5121ce52009-01-03 21:22:43 +000018 */
Simon Butcher15b15d12015-11-26 19:35:03 +000019
Paul Bakker5121ce52009-01-03 21:22:43 +000020/*
Simon Butcher15b15d12015-11-26 19:35:03 +000021 * The following sources were referenced in the design of this Multi-precision
22 * Integer library:
Paul Bakker5121ce52009-01-03 21:22:43 +000023 *
Simon Butcher15b15d12015-11-26 19:35:03 +000024 * [1] Handbook of Applied Cryptography - 1997
25 * Menezes, van Oorschot and Vanstone
26 *
27 * [2] Multi-Precision Math
28 * Tom St Denis
29 * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
30 *
31 * [3] GNU Multi-Precision Arithmetic Library
32 * https://gmplib.org/manual/index.html
33 *
Simon Butcherf5ba0452015-12-27 23:01:55 +000034 */
Paul Bakker5121ce52009-01-03 21:22:43 +000035
Gilles Peskinedb09ef62020-06-03 01:43:33 +020036#include "common.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000037
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020038#if defined(MBEDTLS_BIGNUM_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000039
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000040#include "mbedtls/bignum.h"
41#include "mbedtls/bn_mul.h"
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050042#include "mbedtls/platform_util.h"
Janos Follath24eed8d2019-11-22 13:21:35 +000043#include "mbedtls/error.h"
Gabor Mezeic0ae1cf2021-10-20 12:09:35 +020044#include "constant_time_internal.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000045
Tom Cosgrove58efe612021-11-15 09:59:53 +000046#include <limits.h>
Rich Evans00ab4702015-02-06 13:43:58 +000047#include <string.h>
48
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000049#include "mbedtls/platform.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020050
Hanno Becker73d7d792018-12-11 10:35:51 +000051#define MPI_VALIDATE_RET( cond ) \
52 MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
53#define MPI_VALIDATE( cond ) \
54 MBEDTLS_INTERNAL_VALIDATE( cond )
55
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020056#define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
Paul Bakker5121ce52009-01-03 21:22:43 +000057#define biL (ciL << 3) /* bits in limb */
58#define biH (ciL << 2) /* half limb size */
59
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +010060#define MPI_SIZE_T_MAX ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
61
Paul Bakker5121ce52009-01-03 21:22:43 +000062/*
63 * Convert between bits/chars and number of limbs
Manuel Pégourié-Gonnard58fb4952015-09-28 13:48:04 +020064 * Divide first in order to avoid potential overflows
Paul Bakker5121ce52009-01-03 21:22:43 +000065 */
Manuel Pégourié-Gonnard58fb4952015-09-28 13:48:04 +020066#define BITS_TO_LIMBS(i) ( (i) / biL + ( (i) % biL != 0 ) )
67#define CHARS_TO_LIMBS(i) ( (i) / ciL + ( (i) % ciL != 0 ) )
Paul Bakker5121ce52009-01-03 21:22:43 +000068
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050069/* Implementation that should never be optimized out by the compiler */
Andres Amaya Garcia6698d2f2018-04-24 08:39:07 -050070static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n )
71{
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050072 mbedtls_platform_zeroize( v, ciL * n );
73}
74
Paul Bakker5121ce52009-01-03 21:22:43 +000075/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000076 * Initialize one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000077 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020078void mbedtls_mpi_init( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000079{
Hanno Becker73d7d792018-12-11 10:35:51 +000080 MPI_VALIDATE( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +000081
Paul Bakker6c591fa2011-05-05 11:49:20 +000082 X->s = 1;
83 X->n = 0;
84 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000085}
86
87/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000088 * Unallocate one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000089 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020090void mbedtls_mpi_free( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000091{
Paul Bakker6c591fa2011-05-05 11:49:20 +000092 if( X == NULL )
93 return;
Paul Bakker5121ce52009-01-03 21:22:43 +000094
Paul Bakker6c591fa2011-05-05 11:49:20 +000095 if( X->p != NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +000096 {
Alexey Skalozube17a8da2016-01-13 17:19:33 +020097 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020098 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +000099 }
100
Paul Bakker6c591fa2011-05-05 11:49:20 +0000101 X->s = 1;
102 X->n = 0;
103 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +0000104}
105
106/*
107 * Enlarge to the specified number of limbs
108 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200109int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs )
Paul Bakker5121ce52009-01-03 21:22:43 +0000110{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200111 mbedtls_mpi_uint *p;
Hanno Becker73d7d792018-12-11 10:35:51 +0000112 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000113
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200114 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200115 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakkerf9688572011-05-05 10:00:45 +0000116
Paul Bakker5121ce52009-01-03 21:22:43 +0000117 if( X->n < nblimbs )
118 {
Simon Butcher29176892016-05-20 00:19:09 +0100119 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200120 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakker5121ce52009-01-03 21:22:43 +0000121
Paul Bakker5121ce52009-01-03 21:22:43 +0000122 if( X->p != NULL )
123 {
124 memcpy( p, X->p, X->n * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200125 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200126 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +0000127 }
128
129 X->n = nblimbs;
130 X->p = p;
131 }
132
133 return( 0 );
134}
135
136/*
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100137 * Resize down as much as possible,
138 * while keeping at least the specified number of limbs
139 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200140int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100141{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200142 mbedtls_mpi_uint *p;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100143 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000144 MPI_VALIDATE_RET( X != NULL );
145
146 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
147 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100148
Gilles Peskinee2f563e2020-01-20 21:17:43 +0100149 /* Actually resize up if there are currently fewer than nblimbs limbs. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100150 if( X->n <= nblimbs )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200151 return( mbedtls_mpi_grow( X, nblimbs ) );
Gilles Peskine322752b2020-01-21 13:59:51 +0100152 /* After this point, then X->n > nblimbs and in particular X->n > 0. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100153
154 for( i = X->n - 1; i > 0; i-- )
155 if( X->p[i] != 0 )
156 break;
157 i++;
158
159 if( i < nblimbs )
160 i = nblimbs;
161
Simon Butcher29176892016-05-20 00:19:09 +0100162 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200163 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100164
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100165 if( X->p != NULL )
166 {
167 memcpy( p, X->p, i * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200168 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200169 mbedtls_free( X->p );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100170 }
171
172 X->n = i;
173 X->p = p;
174
175 return( 0 );
176}
177
Gilles Peskine3130ce22021-06-02 22:17:52 +0200178/* Resize X to have exactly n limbs and set it to 0. */
179static int mbedtls_mpi_resize_clear( mbedtls_mpi *X, size_t limbs )
180{
181 if( limbs == 0 )
182 {
183 mbedtls_mpi_free( X );
184 return( 0 );
185 }
186 else if( X->n == limbs )
187 {
188 memset( X->p, 0, limbs * ciL );
189 X->s = 1;
190 return( 0 );
191 }
192 else
193 {
194 mbedtls_mpi_free( X );
195 return( mbedtls_mpi_grow( X, limbs ) );
196 }
197}
198
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100199/*
Gilles Peskinef643e8e2021-06-08 23:17:42 +0200200 * Copy the contents of Y into X.
201 *
202 * This function is not constant-time. Leading zeros in Y may be removed.
203 *
204 * Ensure that X does not shrink. This is not guaranteed by the public API,
205 * but some code in the bignum module relies on this property, for example
206 * in mbedtls_mpi_exp_mod().
Paul Bakker5121ce52009-01-03 21:22:43 +0000207 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200208int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000209{
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100210 int ret = 0;
Paul Bakker23986e52011-04-24 08:57:21 +0000211 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000212 MPI_VALIDATE_RET( X != NULL );
213 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000214
215 if( X == Y )
216 return( 0 );
217
Gilles Peskinedb420622020-01-20 21:12:50 +0100218 if( Y->n == 0 )
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200219 {
Gilles Peskinef643e8e2021-06-08 23:17:42 +0200220 if( X->n != 0 )
221 {
222 X->s = 1;
223 memset( X->p, 0, X->n * ciL );
224 }
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200225 return( 0 );
226 }
227
Paul Bakker5121ce52009-01-03 21:22:43 +0000228 for( i = Y->n - 1; i > 0; i-- )
229 if( Y->p[i] != 0 )
230 break;
231 i++;
232
233 X->s = Y->s;
234
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100235 if( X->n < i )
236 {
237 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
238 }
239 else
240 {
241 memset( X->p + i, 0, ( X->n - i ) * ciL );
242 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000243
Paul Bakker5121ce52009-01-03 21:22:43 +0000244 memcpy( X->p, Y->p, i * ciL );
245
246cleanup:
247
248 return( ret );
249}
250
251/*
252 * Swap the contents of X and Y
253 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200254void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000255{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200256 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000257 MPI_VALIDATE( X != NULL );
258 MPI_VALIDATE( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000259
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200260 memcpy( &T, X, sizeof( mbedtls_mpi ) );
261 memcpy( X, Y, sizeof( mbedtls_mpi ) );
262 memcpy( Y, &T, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000263}
264
265/*
266 * Set value from integer
267 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200268int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +0000269{
Janos Follath24eed8d2019-11-22 13:21:35 +0000270 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +0000271 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000272
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200273 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000274 memset( X->p, 0, X->n * ciL );
275
276 X->p[0] = ( z < 0 ) ? -z : z;
277 X->s = ( z < 0 ) ? -1 : 1;
278
279cleanup:
280
281 return( ret );
282}
283
284/*
Paul Bakker2f5947e2011-05-18 15:47:11 +0000285 * Get a specific bit
286 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200287int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000288{
Hanno Becker73d7d792018-12-11 10:35:51 +0000289 MPI_VALIDATE_RET( X != NULL );
290
Paul Bakker2f5947e2011-05-18 15:47:11 +0000291 if( X->n * biL <= pos )
292 return( 0 );
293
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200294 return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000295}
296
Gilles Peskine11cdb052018-11-20 16:47:47 +0100297/* Get a specific byte, without range checks. */
298#define GET_BYTE( X, i ) \
299 ( ( ( X )->p[( i ) / ciL] >> ( ( ( i ) % ciL ) * 8 ) ) & 0xff )
300
Paul Bakker2f5947e2011-05-18 15:47:11 +0000301/*
302 * Set a bit to a specific value of 0 or 1
303 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200304int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000305{
306 int ret = 0;
307 size_t off = pos / biL;
308 size_t idx = pos % biL;
Hanno Becker73d7d792018-12-11 10:35:51 +0000309 MPI_VALIDATE_RET( X != NULL );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000310
311 if( val != 0 && val != 1 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200312 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker9af723c2014-05-01 13:03:14 +0200313
Paul Bakker2f5947e2011-05-18 15:47:11 +0000314 if( X->n * biL <= pos )
315 {
316 if( val == 0 )
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200317 return( 0 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000318
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200319 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000320 }
321
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200322 X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );
323 X->p[off] |= (mbedtls_mpi_uint) val << idx;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000324
325cleanup:
Paul Bakker9af723c2014-05-01 13:03:14 +0200326
Paul Bakker2f5947e2011-05-18 15:47:11 +0000327 return( ret );
328}
329
330/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200331 * Return the number of less significant zero-bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000332 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200333size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000334{
Paul Bakker23986e52011-04-24 08:57:21 +0000335 size_t i, j, count = 0;
Hanno Beckerf25ee7f2018-12-19 16:51:02 +0000336 MBEDTLS_INTERNAL_VALIDATE_RET( X != NULL, 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000337
338 for( i = 0; i < X->n; i++ )
Paul Bakkerf9688572011-05-05 10:00:45 +0000339 for( j = 0; j < biL; j++, count++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000340 if( ( ( X->p[i] >> j ) & 1 ) != 0 )
341 return( count );
342
343 return( 0 );
344}
345
346/*
Simon Butcher15b15d12015-11-26 19:35:03 +0000347 * Count leading zero bits in a given integer
348 */
349static size_t mbedtls_clz( const mbedtls_mpi_uint x )
350{
351 size_t j;
Manuel Pégourié-Gonnarde3e8edf2015-12-01 09:31:52 +0100352 mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
Simon Butcher15b15d12015-11-26 19:35:03 +0000353
354 for( j = 0; j < biL; j++ )
355 {
356 if( x & mask ) break;
357
358 mask >>= 1;
359 }
360
361 return j;
362}
363
364/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200365 * Return the number of bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000366 */
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200367size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000368{
Paul Bakker23986e52011-04-24 08:57:21 +0000369 size_t i, j;
Paul Bakker5121ce52009-01-03 21:22:43 +0000370
Manuel Pégourié-Gonnard770b5e12015-04-29 17:02:01 +0200371 if( X->n == 0 )
372 return( 0 );
373
Paul Bakker5121ce52009-01-03 21:22:43 +0000374 for( i = X->n - 1; i > 0; i-- )
375 if( X->p[i] != 0 )
376 break;
377
Simon Butcher15b15d12015-11-26 19:35:03 +0000378 j = biL - mbedtls_clz( X->p[i] );
Paul Bakker5121ce52009-01-03 21:22:43 +0000379
Paul Bakker23986e52011-04-24 08:57:21 +0000380 return( ( i * biL ) + j );
Paul Bakker5121ce52009-01-03 21:22:43 +0000381}
382
383/*
384 * Return the total size in bytes
385 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200386size_t mbedtls_mpi_size( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000387{
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200388 return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000389}
390
391/*
392 * Convert an ASCII character to digit value
393 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200394static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c )
Paul Bakker5121ce52009-01-03 21:22:43 +0000395{
396 *d = 255;
397
398 if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
399 if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
400 if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
401
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200402 if( *d >= (mbedtls_mpi_uint) radix )
403 return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );
Paul Bakker5121ce52009-01-03 21:22:43 +0000404
405 return( 0 );
406}
407
408/*
409 * Import from an ASCII string
410 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200411int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000412{
Janos Follath24eed8d2019-11-22 13:21:35 +0000413 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000414 size_t i, j, slen, n;
Gilles Peskine80f56732021-04-03 18:26:13 +0200415 int sign = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200416 mbedtls_mpi_uint d;
417 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000418 MPI_VALIDATE_RET( X != NULL );
419 MPI_VALIDATE_RET( s != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000420
421 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000422 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000423
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200424 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000425
Gilles Peskined4876132021-06-08 18:32:34 +0200426 if( s[0] == 0 )
427 {
428 mbedtls_mpi_free( X );
429 return( 0 );
430 }
431
Gilles Peskine80f56732021-04-03 18:26:13 +0200432 if( s[0] == '-' )
433 {
434 ++s;
435 sign = -1;
436 }
437
Paul Bakkerff60ee62010-03-16 21:09:09 +0000438 slen = strlen( s );
439
Paul Bakker5121ce52009-01-03 21:22:43 +0000440 if( radix == 16 )
441 {
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +0100442 if( slen > MPI_SIZE_T_MAX >> 2 )
Manuel Pégourié-Gonnard58fb4952015-09-28 13:48:04 +0200443 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
444
Paul Bakkerff60ee62010-03-16 21:09:09 +0000445 n = BITS_TO_LIMBS( slen << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000446
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200447 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );
448 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000449
Paul Bakker23986e52011-04-24 08:57:21 +0000450 for( i = slen, j = 0; i > 0; i--, j++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000451 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200452 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
Paul Bakker66d5d072014-06-17 16:39:18 +0200453 X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000454 }
455 }
456 else
457 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200458 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000459
Paul Bakkerff60ee62010-03-16 21:09:09 +0000460 for( i = 0; i < slen; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000461 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200462 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
463 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );
Gilles Peskine80f56732021-04-03 18:26:13 +0200464 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000465 }
466 }
467
Gilles Peskine80f56732021-04-03 18:26:13 +0200468 if( sign < 0 && mbedtls_mpi_bitlen( X ) != 0 )
469 X->s = -1;
470
Paul Bakker5121ce52009-01-03 21:22:43 +0000471cleanup:
472
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200473 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000474
475 return( ret );
476}
477
478/*
Ron Eldora16fa292018-11-20 14:07:01 +0200479 * Helper to write the digits high-order first.
Paul Bakker5121ce52009-01-03 21:22:43 +0000480 */
Ron Eldora16fa292018-11-20 14:07:01 +0200481static int mpi_write_hlp( mbedtls_mpi *X, int radix,
482 char **p, const size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000483{
Janos Follath24eed8d2019-11-22 13:21:35 +0000484 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200485 mbedtls_mpi_uint r;
Ron Eldora16fa292018-11-20 14:07:01 +0200486 size_t length = 0;
487 char *p_end = *p + buflen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000488
Ron Eldora16fa292018-11-20 14:07:01 +0200489 do
490 {
491 if( length >= buflen )
492 {
493 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
494 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000495
Ron Eldora16fa292018-11-20 14:07:01 +0200496 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );
497 MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );
498 /*
499 * Write the residue in the current position, as an ASCII character.
500 */
501 if( r < 0xA )
502 *(--p_end) = (char)( '0' + r );
503 else
504 *(--p_end) = (char)( 'A' + ( r - 0xA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000505
Ron Eldora16fa292018-11-20 14:07:01 +0200506 length++;
507 } while( mbedtls_mpi_cmp_int( X, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000508
Ron Eldora16fa292018-11-20 14:07:01 +0200509 memmove( *p, p_end, length );
510 *p += length;
Paul Bakker5121ce52009-01-03 21:22:43 +0000511
512cleanup:
513
514 return( ret );
515}
516
517/*
518 * Export into an ASCII string
519 */
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100520int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,
521 char *buf, size_t buflen, size_t *olen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000522{
Paul Bakker23986e52011-04-24 08:57:21 +0000523 int ret = 0;
524 size_t n;
Paul Bakker5121ce52009-01-03 21:22:43 +0000525 char *p;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200526 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000527 MPI_VALIDATE_RET( X != NULL );
528 MPI_VALIDATE_RET( olen != NULL );
529 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000530
531 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000532 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000533
Hanno Becker23cfea02019-02-04 09:45:07 +0000534 n = mbedtls_mpi_bitlen( X ); /* Number of bits necessary to present `n`. */
535 if( radix >= 4 ) n >>= 1; /* Number of 4-adic digits necessary to present
536 * `n`. If radix > 4, this might be a strict
537 * overapproximation of the number of
538 * radix-adic digits needed to present `n`. */
539 if( radix >= 16 ) n >>= 1; /* Number of hexadecimal digits necessary to
540 * present `n`. */
541
Janos Follath80470622019-03-06 13:43:02 +0000542 n += 1; /* Terminating null byte */
Hanno Becker23cfea02019-02-04 09:45:07 +0000543 n += 1; /* Compensate for the divisions above, which round down `n`
544 * in case it's not even. */
545 n += 1; /* Potential '-'-sign. */
546 n += ( n & 1 ); /* Make n even to have enough space for hexadecimal writing,
547 * which always uses an even number of hex-digits. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000548
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100549 if( buflen < n )
Paul Bakker5121ce52009-01-03 21:22:43 +0000550 {
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100551 *olen = n;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200552 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000553 }
554
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100555 p = buf;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200556 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000557
558 if( X->s == -1 )
Hanno Beckerc983c812019-02-01 16:41:30 +0000559 {
Paul Bakker5121ce52009-01-03 21:22:43 +0000560 *p++ = '-';
Hanno Beckerc983c812019-02-01 16:41:30 +0000561 buflen--;
562 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000563
564 if( radix == 16 )
565 {
Paul Bakker23986e52011-04-24 08:57:21 +0000566 int c;
567 size_t i, j, k;
Paul Bakker5121ce52009-01-03 21:22:43 +0000568
Paul Bakker23986e52011-04-24 08:57:21 +0000569 for( i = X->n, k = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000570 {
Paul Bakker23986e52011-04-24 08:57:21 +0000571 for( j = ciL; j > 0; j-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000572 {
Paul Bakker23986e52011-04-24 08:57:21 +0000573 c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
Paul Bakker5121ce52009-01-03 21:22:43 +0000574
Paul Bakker6c343d72014-07-10 14:36:19 +0200575 if( c == 0 && k == 0 && ( i + j ) != 2 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000576 continue;
577
Paul Bakker98fe5ea2012-10-24 11:17:48 +0000578 *(p++) = "0123456789ABCDEF" [c / 16];
Paul Bakkerd2c167e2012-10-30 07:49:19 +0000579 *(p++) = "0123456789ABCDEF" [c % 16];
Paul Bakker5121ce52009-01-03 21:22:43 +0000580 k = 1;
581 }
582 }
583 }
584 else
585 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200586 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000587
588 if( T.s == -1 )
589 T.s = 1;
590
Ron Eldora16fa292018-11-20 14:07:01 +0200591 MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000592 }
593
594 *p++ = '\0';
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100595 *olen = p - buf;
Paul Bakker5121ce52009-01-03 21:22:43 +0000596
597cleanup:
598
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200599 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000600
601 return( ret );
602}
603
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200604#if defined(MBEDTLS_FS_IO)
Paul Bakker5121ce52009-01-03 21:22:43 +0000605/*
606 * Read X from an opened file
607 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200608int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin )
Paul Bakker5121ce52009-01-03 21:22:43 +0000609{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200610 mbedtls_mpi_uint d;
Paul Bakker23986e52011-04-24 08:57:21 +0000611 size_t slen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000612 char *p;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000613 /*
Paul Bakkercb37aa52011-11-30 16:00:20 +0000614 * Buffer should have space for (short) label and decimal formatted MPI,
615 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000616 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200617 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Paul Bakker5121ce52009-01-03 21:22:43 +0000618
Hanno Becker73d7d792018-12-11 10:35:51 +0000619 MPI_VALIDATE_RET( X != NULL );
620 MPI_VALIDATE_RET( fin != NULL );
621
622 if( radix < 2 || radix > 16 )
623 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
624
Paul Bakker5121ce52009-01-03 21:22:43 +0000625 memset( s, 0, sizeof( s ) );
626 if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200627 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000628
629 slen = strlen( s );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000630 if( slen == sizeof( s ) - 2 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200631 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000632
Hanno Beckerb2034b72017-04-26 11:46:46 +0100633 if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
634 if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
Paul Bakker5121ce52009-01-03 21:22:43 +0000635
636 p = s + slen;
Hanno Beckerb2034b72017-04-26 11:46:46 +0100637 while( p-- > s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000638 if( mpi_get_digit( &d, radix, *p ) != 0 )
639 break;
640
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200641 return( mbedtls_mpi_read_string( X, radix, p + 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000642}
643
644/*
645 * Write X into an opened file (or stdout if fout == NULL)
646 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200647int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout )
Paul Bakker5121ce52009-01-03 21:22:43 +0000648{
Janos Follath24eed8d2019-11-22 13:21:35 +0000649 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000650 size_t n, slen, plen;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000651 /*
Paul Bakker5531c6d2012-09-26 19:20:46 +0000652 * Buffer should have space for (short) label and decimal formatted MPI,
653 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000654 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200655 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Hanno Becker73d7d792018-12-11 10:35:51 +0000656 MPI_VALIDATE_RET( X != NULL );
657
658 if( radix < 2 || radix > 16 )
659 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000660
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100661 memset( s, 0, sizeof( s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000662
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100663 MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000664
665 if( p == NULL ) p = "";
666
667 plen = strlen( p );
668 slen = strlen( s );
669 s[slen++] = '\r';
670 s[slen++] = '\n';
671
672 if( fout != NULL )
673 {
674 if( fwrite( p, 1, plen, fout ) != plen ||
675 fwrite( s, 1, slen, fout ) != slen )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200676 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000677 }
678 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200679 mbedtls_printf( "%s%s", p, s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000680
681cleanup:
682
683 return( ret );
684}
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200685#endif /* MBEDTLS_FS_IO */
Paul Bakker5121ce52009-01-03 21:22:43 +0000686
Hanno Beckerda1655a2017-10-18 14:21:44 +0100687
688/* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
689 * into the storage form used by mbedtls_mpi. */
Hanno Beckerf8720072018-11-08 11:53:49 +0000690
691static mbedtls_mpi_uint mpi_uint_bigendian_to_host_c( mbedtls_mpi_uint x )
692{
693 uint8_t i;
Hanno Becker031d6332019-05-01 17:09:11 +0100694 unsigned char *x_ptr;
Hanno Beckerf8720072018-11-08 11:53:49 +0000695 mbedtls_mpi_uint tmp = 0;
Hanno Becker031d6332019-05-01 17:09:11 +0100696
697 for( i = 0, x_ptr = (unsigned char*) &x; i < ciL; i++, x_ptr++ )
698 {
699 tmp <<= CHAR_BIT;
700 tmp |= (mbedtls_mpi_uint) *x_ptr;
701 }
702
Hanno Beckerf8720072018-11-08 11:53:49 +0000703 return( tmp );
704}
705
706static mbedtls_mpi_uint mpi_uint_bigendian_to_host( mbedtls_mpi_uint x )
707{
708#if defined(__BYTE_ORDER__)
709
710/* Nothing to do on bigendian systems. */
711#if ( __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ )
712 return( x );
713#endif /* __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ */
714
715#if ( __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ )
716
717/* For GCC and Clang, have builtins for byte swapping. */
Hanno Becker9f6d16a2019-01-02 17:15:06 +0000718#if defined(__GNUC__) && defined(__GNUC_PREREQ)
719#if __GNUC_PREREQ(4,3)
Hanno Beckerf8720072018-11-08 11:53:49 +0000720#define have_bswap
721#endif
Hanno Becker9f6d16a2019-01-02 17:15:06 +0000722#endif
723
724#if defined(__clang__) && defined(__has_builtin)
725#if __has_builtin(__builtin_bswap32) && \
726 __has_builtin(__builtin_bswap64)
727#define have_bswap
728#endif
729#endif
730
Hanno Beckerf8720072018-11-08 11:53:49 +0000731#if defined(have_bswap)
732 /* The compiler is hopefully able to statically evaluate this! */
733 switch( sizeof(mbedtls_mpi_uint) )
734 {
735 case 4:
736 return( __builtin_bswap32(x) );
737 case 8:
738 return( __builtin_bswap64(x) );
739 }
740#endif
741#endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */
742#endif /* __BYTE_ORDER__ */
743
744 /* Fall back to C-based reordering if we don't know the byte order
745 * or we couldn't use a compiler-specific builtin. */
746 return( mpi_uint_bigendian_to_host_c( x ) );
747}
748
Hanno Becker2be8a552018-10-25 12:40:09 +0100749static void mpi_bigendian_to_host( mbedtls_mpi_uint * const p, size_t limbs )
Hanno Beckerda1655a2017-10-18 14:21:44 +0100750{
Hanno Beckerda1655a2017-10-18 14:21:44 +0100751 mbedtls_mpi_uint *cur_limb_left;
752 mbedtls_mpi_uint *cur_limb_right;
Hanno Becker2be8a552018-10-25 12:40:09 +0100753 if( limbs == 0 )
754 return;
Hanno Beckerda1655a2017-10-18 14:21:44 +0100755
756 /*
757 * Traverse limbs and
758 * - adapt byte-order in each limb
759 * - swap the limbs themselves.
760 * For that, simultaneously traverse the limbs from left to right
761 * and from right to left, as long as the left index is not bigger
762 * than the right index (it's not a problem if limbs is odd and the
763 * indices coincide in the last iteration).
764 */
Hanno Beckerda1655a2017-10-18 14:21:44 +0100765 for( cur_limb_left = p, cur_limb_right = p + ( limbs - 1 );
766 cur_limb_left <= cur_limb_right;
767 cur_limb_left++, cur_limb_right-- )
768 {
Hanno Beckerf8720072018-11-08 11:53:49 +0000769 mbedtls_mpi_uint tmp;
770 /* Note that if cur_limb_left == cur_limb_right,
771 * this code effectively swaps the bytes only once. */
772 tmp = mpi_uint_bigendian_to_host( *cur_limb_left );
773 *cur_limb_left = mpi_uint_bigendian_to_host( *cur_limb_right );
774 *cur_limb_right = tmp;
Hanno Beckerda1655a2017-10-18 14:21:44 +0100775 }
Hanno Beckerda1655a2017-10-18 14:21:44 +0100776}
777
Paul Bakker5121ce52009-01-03 21:22:43 +0000778/*
Janos Follatha778a942019-02-13 10:28:28 +0000779 * Import X from unsigned binary data, little endian
780 */
781int mbedtls_mpi_read_binary_le( mbedtls_mpi *X,
782 const unsigned char *buf, size_t buflen )
783{
Janos Follath24eed8d2019-11-22 13:21:35 +0000784 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follatha778a942019-02-13 10:28:28 +0000785 size_t i;
786 size_t const limbs = CHARS_TO_LIMBS( buflen );
787
788 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine3130ce22021-06-02 22:17:52 +0200789 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Janos Follatha778a942019-02-13 10:28:28 +0000790
791 for( i = 0; i < buflen; i++ )
792 X->p[i / ciL] |= ((mbedtls_mpi_uint) buf[i]) << ((i % ciL) << 3);
793
794cleanup:
795
Janos Follath171a7ef2019-02-15 16:17:45 +0000796 /*
797 * This function is also used to import keys. However, wiping the buffers
798 * upon failure is not necessary because failure only can happen before any
799 * input is copied.
800 */
Janos Follatha778a942019-02-13 10:28:28 +0000801 return( ret );
802}
803
804/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000805 * Import X from unsigned binary data, big endian
806 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200807int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000808{
Janos Follath24eed8d2019-11-22 13:21:35 +0000809 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Beckerda1655a2017-10-18 14:21:44 +0100810 size_t const limbs = CHARS_TO_LIMBS( buflen );
811 size_t const overhead = ( limbs * ciL ) - buflen;
812 unsigned char *Xp;
Paul Bakker5121ce52009-01-03 21:22:43 +0000813
Hanno Becker8ce11a32018-12-19 16:18:52 +0000814 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +0000815 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
816
Hanno Becker073c1992017-10-17 15:17:27 +0100817 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine3130ce22021-06-02 22:17:52 +0200818 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000819
Gilles Peskine3130ce22021-06-02 22:17:52 +0200820 /* Avoid calling `memcpy` with NULL source or destination argument,
Hanno Becker0e810b92019-01-03 17:13:11 +0000821 * even if buflen is 0. */
Gilles Peskine3130ce22021-06-02 22:17:52 +0200822 if( buflen != 0 )
Hanno Becker0e810b92019-01-03 17:13:11 +0000823 {
824 Xp = (unsigned char*) X->p;
825 memcpy( Xp + overhead, buf, buflen );
Hanno Beckerda1655a2017-10-18 14:21:44 +0100826
Hanno Becker0e810b92019-01-03 17:13:11 +0000827 mpi_bigendian_to_host( X->p, limbs );
828 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000829
830cleanup:
831
Janos Follath171a7ef2019-02-15 16:17:45 +0000832 /*
833 * This function is also used to import keys. However, wiping the buffers
834 * upon failure is not necessary because failure only can happen before any
835 * input is copied.
836 */
Paul Bakker5121ce52009-01-03 21:22:43 +0000837 return( ret );
838}
839
840/*
Janos Follathe344d0f2019-02-19 16:17:40 +0000841 * Export X into unsigned binary data, little endian
842 */
843int mbedtls_mpi_write_binary_le( const mbedtls_mpi *X,
844 unsigned char *buf, size_t buflen )
845{
846 size_t stored_bytes = X->n * ciL;
847 size_t bytes_to_copy;
848 size_t i;
849
850 if( stored_bytes < buflen )
851 {
852 bytes_to_copy = stored_bytes;
853 }
854 else
855 {
856 bytes_to_copy = buflen;
857
858 /* The output buffer is smaller than the allocated size of X.
859 * However X may fit if its leading bytes are zero. */
860 for( i = bytes_to_copy; i < stored_bytes; i++ )
861 {
862 if( GET_BYTE( X, i ) != 0 )
863 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
864 }
865 }
866
867 for( i = 0; i < bytes_to_copy; i++ )
868 buf[i] = GET_BYTE( X, i );
869
870 if( stored_bytes < buflen )
871 {
872 /* Write trailing 0 bytes */
873 memset( buf + stored_bytes, 0, buflen - stored_bytes );
874 }
875
876 return( 0 );
877}
878
879/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000880 * Export X into unsigned binary data, big endian
881 */
Gilles Peskine11cdb052018-11-20 16:47:47 +0100882int mbedtls_mpi_write_binary( const mbedtls_mpi *X,
883 unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000884{
Hanno Becker73d7d792018-12-11 10:35:51 +0000885 size_t stored_bytes;
Gilles Peskine11cdb052018-11-20 16:47:47 +0100886 size_t bytes_to_copy;
887 unsigned char *p;
888 size_t i;
Paul Bakker5121ce52009-01-03 21:22:43 +0000889
Hanno Becker73d7d792018-12-11 10:35:51 +0000890 MPI_VALIDATE_RET( X != NULL );
891 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
892
893 stored_bytes = X->n * ciL;
894
Gilles Peskine11cdb052018-11-20 16:47:47 +0100895 if( stored_bytes < buflen )
896 {
897 /* There is enough space in the output buffer. Write initial
898 * null bytes and record the position at which to start
899 * writing the significant bytes. In this case, the execution
900 * trace of this function does not depend on the value of the
901 * number. */
902 bytes_to_copy = stored_bytes;
903 p = buf + buflen - stored_bytes;
904 memset( buf, 0, buflen - stored_bytes );
905 }
906 else
907 {
908 /* The output buffer is smaller than the allocated size of X.
909 * However X may fit if its leading bytes are zero. */
910 bytes_to_copy = buflen;
911 p = buf;
912 for( i = bytes_to_copy; i < stored_bytes; i++ )
913 {
914 if( GET_BYTE( X, i ) != 0 )
915 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
916 }
917 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000918
Gilles Peskine11cdb052018-11-20 16:47:47 +0100919 for( i = 0; i < bytes_to_copy; i++ )
920 p[bytes_to_copy - i - 1] = GET_BYTE( X, i );
Paul Bakker5121ce52009-01-03 21:22:43 +0000921
922 return( 0 );
923}
924
925/*
926 * Left-shift: X <<= count
927 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200928int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000929{
Janos Follath24eed8d2019-11-22 13:21:35 +0000930 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000931 size_t i, v0, t1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200932 mbedtls_mpi_uint r0 = 0, r1;
Hanno Becker73d7d792018-12-11 10:35:51 +0000933 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000934
935 v0 = count / (biL );
936 t1 = count & (biL - 1);
937
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200938 i = mbedtls_mpi_bitlen( X ) + count;
Paul Bakker5121ce52009-01-03 21:22:43 +0000939
Paul Bakkerf9688572011-05-05 10:00:45 +0000940 if( X->n * biL < i )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200941 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000942
943 ret = 0;
944
945 /*
946 * shift by count / limb_size
947 */
948 if( v0 > 0 )
949 {
Paul Bakker23986e52011-04-24 08:57:21 +0000950 for( i = X->n; i > v0; i-- )
951 X->p[i - 1] = X->p[i - v0 - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +0000952
Paul Bakker23986e52011-04-24 08:57:21 +0000953 for( ; i > 0; i-- )
954 X->p[i - 1] = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000955 }
956
957 /*
958 * shift by count % limb_size
959 */
960 if( t1 > 0 )
961 {
962 for( i = v0; i < X->n; i++ )
963 {
964 r1 = X->p[i] >> (biL - t1);
965 X->p[i] <<= t1;
966 X->p[i] |= r0;
967 r0 = r1;
968 }
969 }
970
971cleanup:
972
973 return( ret );
974}
975
976/*
977 * Right-shift: X >>= count
978 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200979int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000980{
Paul Bakker23986e52011-04-24 08:57:21 +0000981 size_t i, v0, v1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200982 mbedtls_mpi_uint r0 = 0, r1;
Hanno Becker73d7d792018-12-11 10:35:51 +0000983 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000984
985 v0 = count / biL;
986 v1 = count & (biL - 1);
987
Manuel Pégourié-Gonnarde44ec102012-11-17 12:42:51 +0100988 if( v0 > X->n || ( v0 == X->n && v1 > 0 ) )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200989 return mbedtls_mpi_lset( X, 0 );
Manuel Pégourié-Gonnarde44ec102012-11-17 12:42:51 +0100990
Paul Bakker5121ce52009-01-03 21:22:43 +0000991 /*
992 * shift by count / limb_size
993 */
994 if( v0 > 0 )
995 {
996 for( i = 0; i < X->n - v0; i++ )
997 X->p[i] = X->p[i + v0];
998
999 for( ; i < X->n; i++ )
1000 X->p[i] = 0;
1001 }
1002
1003 /*
1004 * shift by count % limb_size
1005 */
1006 if( v1 > 0 )
1007 {
Paul Bakker23986e52011-04-24 08:57:21 +00001008 for( i = X->n; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001009 {
Paul Bakker23986e52011-04-24 08:57:21 +00001010 r1 = X->p[i - 1] << (biL - v1);
1011 X->p[i - 1] >>= v1;
1012 X->p[i - 1] |= r0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001013 r0 = r1;
1014 }
1015 }
1016
1017 return( 0 );
1018}
1019
1020/*
1021 * Compare unsigned values
1022 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001023int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +00001024{
Paul Bakker23986e52011-04-24 08:57:21 +00001025 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +00001026 MPI_VALIDATE_RET( X != NULL );
1027 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001028
Paul Bakker23986e52011-04-24 08:57:21 +00001029 for( i = X->n; i > 0; i-- )
1030 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001031 break;
1032
Paul Bakker23986e52011-04-24 08:57:21 +00001033 for( j = Y->n; j > 0; j-- )
1034 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001035 break;
1036
Paul Bakker23986e52011-04-24 08:57:21 +00001037 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001038 return( 0 );
1039
1040 if( i > j ) return( 1 );
1041 if( j > i ) return( -1 );
1042
Paul Bakker23986e52011-04-24 08:57:21 +00001043 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001044 {
Paul Bakker23986e52011-04-24 08:57:21 +00001045 if( X->p[i - 1] > Y->p[i - 1] ) return( 1 );
1046 if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001047 }
1048
1049 return( 0 );
1050}
1051
1052/*
1053 * Compare signed values
1054 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001055int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +00001056{
Paul Bakker23986e52011-04-24 08:57:21 +00001057 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +00001058 MPI_VALIDATE_RET( X != NULL );
1059 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001060
Paul Bakker23986e52011-04-24 08:57:21 +00001061 for( i = X->n; i > 0; i-- )
1062 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001063 break;
1064
Paul Bakker23986e52011-04-24 08:57:21 +00001065 for( j = Y->n; j > 0; j-- )
1066 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001067 break;
1068
Paul Bakker23986e52011-04-24 08:57:21 +00001069 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001070 return( 0 );
1071
1072 if( i > j ) return( X->s );
Paul Bakker0c8f73b2012-03-22 14:08:57 +00001073 if( j > i ) return( -Y->s );
Paul Bakker5121ce52009-01-03 21:22:43 +00001074
1075 if( X->s > 0 && Y->s < 0 ) return( 1 );
1076 if( Y->s > 0 && X->s < 0 ) return( -1 );
1077
Paul Bakker23986e52011-04-24 08:57:21 +00001078 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001079 {
Paul Bakker23986e52011-04-24 08:57:21 +00001080 if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );
1081 if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
Paul Bakker5121ce52009-01-03 21:22:43 +00001082 }
1083
1084 return( 0 );
1085}
1086
Janos Follathee6abce2019-09-05 14:47:19 +01001087/*
Paul Bakker5121ce52009-01-03 21:22:43 +00001088 * Compare signed values
1089 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001090int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +00001091{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001092 mbedtls_mpi Y;
1093 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001094 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001095
1096 *p = ( z < 0 ) ? -z : z;
1097 Y.s = ( z < 0 ) ? -1 : 1;
1098 Y.n = 1;
1099 Y.p = p;
1100
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001101 return( mbedtls_mpi_cmp_mpi( X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001102}
1103
1104/*
1105 * Unsigned addition: X = |A| + |B| (HAC 14.7)
1106 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001107int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001108{
Janos Follath24eed8d2019-11-22 13:21:35 +00001109 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001110 size_t i, j;
Janos Follath6c922682015-10-30 17:43:11 +01001111 mbedtls_mpi_uint *o, *p, c, tmp;
Hanno Becker73d7d792018-12-11 10:35:51 +00001112 MPI_VALIDATE_RET( X != NULL );
1113 MPI_VALIDATE_RET( A != NULL );
1114 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001115
1116 if( X == B )
1117 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001118 const mbedtls_mpi *T = A; A = X; B = T;
Paul Bakker5121ce52009-01-03 21:22:43 +00001119 }
1120
1121 if( X != A )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001122 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
Paul Bakker9af723c2014-05-01 13:03:14 +02001123
Paul Bakkerf7ca7b92009-06-20 10:31:06 +00001124 /*
1125 * X should always be positive as a result of unsigned additions.
1126 */
1127 X->s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001128
Paul Bakker23986e52011-04-24 08:57:21 +00001129 for( j = B->n; j > 0; j-- )
1130 if( B->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001131 break;
1132
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001133 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001134
1135 o = B->p; p = X->p; c = 0;
1136
Janos Follath6c922682015-10-30 17:43:11 +01001137 /*
1138 * tmp is used because it might happen that p == o
1139 */
Paul Bakker23986e52011-04-24 08:57:21 +00001140 for( i = 0; i < j; i++, o++, p++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00001141 {
Janos Follath6c922682015-10-30 17:43:11 +01001142 tmp= *o;
Paul Bakker5121ce52009-01-03 21:22:43 +00001143 *p += c; c = ( *p < c );
Janos Follath6c922682015-10-30 17:43:11 +01001144 *p += tmp; c += ( *p < tmp );
Paul Bakker5121ce52009-01-03 21:22:43 +00001145 }
1146
1147 while( c != 0 )
1148 {
1149 if( i >= X->n )
1150 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001151 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001152 p = X->p + i;
1153 }
1154
Paul Bakker2d319fd2012-09-16 21:34:26 +00001155 *p += c; c = ( *p < c ); i++; p++;
Paul Bakker5121ce52009-01-03 21:22:43 +00001156 }
1157
1158cleanup:
1159
1160 return( ret );
1161}
1162
Gilles Peskine09ec10a2020-06-09 10:39:38 +02001163/**
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001164 * Helper for mbedtls_mpi subtraction.
1165 *
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001166 * Calculate l - r where l and r have the same size.
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001167 * This function operates modulo (2^ciL)^n and returns the carry
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001168 * (1 if there was a wraparound, i.e. if `l < r`, and 0 otherwise).
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001169 *
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001170 * d may be aliased to l or r.
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001171 *
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001172 * \param n Number of limbs of \p d, \p l and \p r.
1173 * \param[out] d The result of the subtraction.
1174 * \param[in] l The left operand.
1175 * \param[in] r The right operand.
1176 *
1177 * \return 1 if `l < r`.
1178 * 0 if `l >= r`.
Paul Bakker5121ce52009-01-03 21:22:43 +00001179 */
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001180static mbedtls_mpi_uint mpi_sub_hlp( size_t n,
1181 mbedtls_mpi_uint *d,
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001182 const mbedtls_mpi_uint *l,
1183 const mbedtls_mpi_uint *r )
Paul Bakker5121ce52009-01-03 21:22:43 +00001184{
Paul Bakker23986e52011-04-24 08:57:21 +00001185 size_t i;
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001186 mbedtls_mpi_uint c = 0, t, z;
Paul Bakker5121ce52009-01-03 21:22:43 +00001187
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001188 for( i = 0; i < n; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00001189 {
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001190 z = ( l[i] < c ); t = l[i] - c;
1191 c = ( t < r[i] ) + z; d[i] = t - r[i];
Paul Bakker5121ce52009-01-03 21:22:43 +00001192 }
1193
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001194 return( c );
Paul Bakker5121ce52009-01-03 21:22:43 +00001195}
1196
1197/*
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001198 * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
Paul Bakker5121ce52009-01-03 21:22:43 +00001199 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001200int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001201{
Janos Follath24eed8d2019-11-22 13:21:35 +00001202 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001203 size_t n;
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001204 mbedtls_mpi_uint carry;
Hanno Becker73d7d792018-12-11 10:35:51 +00001205 MPI_VALIDATE_RET( X != NULL );
1206 MPI_VALIDATE_RET( A != NULL );
1207 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001208
Paul Bakker23986e52011-04-24 08:57:21 +00001209 for( n = B->n; n > 0; n-- )
1210 if( B->p[n - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001211 break;
Gilles Peskinec8a91772021-01-27 22:30:43 +01001212 if( n > A->n )
1213 {
1214 /* B >= (2^ciL)^n > A */
1215 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1216 goto cleanup;
1217 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001218
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001219 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, A->n ) );
1220
1221 /* Set the high limbs of X to match A. Don't touch the lower limbs
1222 * because X might be aliased to B, and we must not overwrite the
1223 * significant digits of B. */
1224 if( A->n > n )
1225 memcpy( X->p + n, A->p + n, ( A->n - n ) * ciL );
1226 if( X->n > A->n )
1227 memset( X->p + A->n, 0, ( X->n - A->n ) * ciL );
1228
1229 carry = mpi_sub_hlp( n, X->p, A->p, B->p );
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001230 if( carry != 0 )
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001231 {
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001232 /* Propagate the carry to the first nonzero limb of X. */
1233 for( ; n < X->n && X->p[n] == 0; n++ )
1234 --X->p[n];
1235 /* If we ran out of space for the carry, it means that the result
1236 * is negative. */
1237 if( n == X->n )
Gilles Peskine89b41302020-07-23 01:16:46 +02001238 {
1239 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1240 goto cleanup;
1241 }
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001242 --X->p[n];
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001243 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001244
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001245 /* X should always be positive as a result of unsigned subtractions. */
1246 X->s = 1;
1247
Paul Bakker5121ce52009-01-03 21:22:43 +00001248cleanup:
Paul Bakker5121ce52009-01-03 21:22:43 +00001249 return( ret );
1250}
1251
1252/*
1253 * Signed addition: X = A + B
1254 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001255int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001256{
Hanno Becker73d7d792018-12-11 10:35:51 +00001257 int ret, s;
1258 MPI_VALIDATE_RET( X != NULL );
1259 MPI_VALIDATE_RET( A != NULL );
1260 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001261
Hanno Becker73d7d792018-12-11 10:35:51 +00001262 s = A->s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001263 if( A->s * B->s < 0 )
1264 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001265 if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001266 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001267 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001268 X->s = s;
1269 }
1270 else
1271 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001272 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001273 X->s = -s;
1274 }
1275 }
1276 else
1277 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001278 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001279 X->s = s;
1280 }
1281
1282cleanup:
1283
1284 return( ret );
1285}
1286
1287/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001288 * Signed subtraction: X = A - B
Paul Bakker5121ce52009-01-03 21:22:43 +00001289 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001290int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001291{
Hanno Becker73d7d792018-12-11 10:35:51 +00001292 int ret, s;
1293 MPI_VALIDATE_RET( X != NULL );
1294 MPI_VALIDATE_RET( A != NULL );
1295 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001296
Hanno Becker73d7d792018-12-11 10:35:51 +00001297 s = A->s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001298 if( A->s * B->s > 0 )
1299 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001300 if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001301 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001302 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001303 X->s = s;
1304 }
1305 else
1306 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001307 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001308 X->s = -s;
1309 }
1310 }
1311 else
1312 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001313 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001314 X->s = s;
1315 }
1316
1317cleanup:
1318
1319 return( ret );
1320}
1321
1322/*
1323 * Signed addition: X = A + b
1324 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001325int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001326{
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001327 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001328 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001329 MPI_VALIDATE_RET( X != NULL );
1330 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001331
1332 p[0] = ( b < 0 ) ? -b : b;
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001333 B.s = ( b < 0 ) ? -1 : 1;
1334 B.n = 1;
1335 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001336
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001337 return( mbedtls_mpi_add_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001338}
1339
1340/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001341 * Signed subtraction: X = A - b
Paul Bakker5121ce52009-01-03 21:22:43 +00001342 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001343int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001344{
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001345 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001346 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001347 MPI_VALIDATE_RET( X != NULL );
1348 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001349
1350 p[0] = ( b < 0 ) ? -b : b;
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001351 B.s = ( b < 0 ) ? -1 : 1;
1352 B.n = 1;
1353 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001354
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001355 return( mbedtls_mpi_sub_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001356}
1357
Gilles Peskinea5d8d892020-07-23 21:27:15 +02001358/** Helper for mbedtls_mpi multiplication.
1359 *
1360 * Add \p b * \p s to \p d.
1361 *
1362 * \param i The number of limbs of \p s.
1363 * \param[in] s A bignum to multiply, of size \p i.
1364 * It may overlap with \p d, but only if
1365 * \p d <= \p s.
1366 * Its leading limb must not be \c 0.
1367 * \param[in,out] d The bignum to add to.
1368 * It must be sufficiently large to store the
1369 * result of the multiplication. This means
1370 * \p i + 1 limbs if \p d[\p i - 1] started as 0 and \p b
1371 * is not known a priori.
1372 * \param b A scalar to multiply.
Paul Bakkerfc4f46f2013-06-24 19:23:56 +02001373 */
1374static
1375#if defined(__APPLE__) && defined(__arm__)
1376/*
1377 * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn)
1378 * appears to need this to prevent bad ARM code generation at -O3.
1379 */
1380__attribute__ ((noinline))
1381#endif
Gilles Peskinea5d8d892020-07-23 21:27:15 +02001382void mpi_mul_hlp( size_t i,
1383 const mbedtls_mpi_uint *s,
1384 mbedtls_mpi_uint *d,
1385 mbedtls_mpi_uint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001386{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001387 mbedtls_mpi_uint c = 0, t = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001388
1389#if defined(MULADDC_HUIT)
1390 for( ; i >= 8; i -= 8 )
1391 {
1392 MULADDC_INIT
1393 MULADDC_HUIT
1394 MULADDC_STOP
1395 }
1396
1397 for( ; i > 0; i-- )
1398 {
1399 MULADDC_INIT
1400 MULADDC_CORE
1401 MULADDC_STOP
1402 }
Paul Bakker9af723c2014-05-01 13:03:14 +02001403#else /* MULADDC_HUIT */
Paul Bakker5121ce52009-01-03 21:22:43 +00001404 for( ; i >= 16; i -= 16 )
1405 {
1406 MULADDC_INIT
1407 MULADDC_CORE MULADDC_CORE
1408 MULADDC_CORE MULADDC_CORE
1409 MULADDC_CORE MULADDC_CORE
1410 MULADDC_CORE MULADDC_CORE
1411
1412 MULADDC_CORE MULADDC_CORE
1413 MULADDC_CORE MULADDC_CORE
1414 MULADDC_CORE MULADDC_CORE
1415 MULADDC_CORE MULADDC_CORE
1416 MULADDC_STOP
1417 }
1418
1419 for( ; i >= 8; i -= 8 )
1420 {
1421 MULADDC_INIT
1422 MULADDC_CORE MULADDC_CORE
1423 MULADDC_CORE MULADDC_CORE
1424
1425 MULADDC_CORE MULADDC_CORE
1426 MULADDC_CORE MULADDC_CORE
1427 MULADDC_STOP
1428 }
1429
1430 for( ; i > 0; i-- )
1431 {
1432 MULADDC_INIT
1433 MULADDC_CORE
1434 MULADDC_STOP
1435 }
Paul Bakker9af723c2014-05-01 13:03:14 +02001436#endif /* MULADDC_HUIT */
Paul Bakker5121ce52009-01-03 21:22:43 +00001437
1438 t++;
1439
Gilles Peskine8e464c42020-07-24 00:08:38 +02001440 while( c != 0 )
1441 {
Paul Bakker5121ce52009-01-03 21:22:43 +00001442 *d += c; c = ( *d < c ); d++;
1443 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001444}
1445
1446/*
1447 * Baseline multiplication: X = A * B (HAC 14.12)
1448 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001449int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001450{
Janos Follath24eed8d2019-11-22 13:21:35 +00001451 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001452 size_t i, j;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001453 mbedtls_mpi TA, TB;
Gilles Peskined65b5002021-06-15 21:44:32 +02001454 int result_is_zero = 0;
Hanno Becker73d7d792018-12-11 10:35:51 +00001455 MPI_VALIDATE_RET( X != NULL );
1456 MPI_VALIDATE_RET( A != NULL );
1457 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001458
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001459 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001460
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001461 if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
1462 if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
Paul Bakker5121ce52009-01-03 21:22:43 +00001463
Paul Bakker23986e52011-04-24 08:57:21 +00001464 for( i = A->n; i > 0; i-- )
1465 if( A->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001466 break;
Gilles Peskine38a384d2021-06-17 14:35:25 +02001467 if( i == 0 )
Gilles Peskined65b5002021-06-15 21:44:32 +02001468 result_is_zero = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001469
Paul Bakker23986e52011-04-24 08:57:21 +00001470 for( j = B->n; j > 0; j-- )
1471 if( B->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001472 break;
Gilles Peskine38a384d2021-06-17 14:35:25 +02001473 if( j == 0 )
Gilles Peskined65b5002021-06-15 21:44:32 +02001474 result_is_zero = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001475
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001476 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
1477 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001478
Alexey Skalozub8e75e682016-01-13 21:59:27 +02001479 for( ; j > 0; j-- )
1480 mpi_mul_hlp( i, A->p, X->p + j - 1, B->p[j - 1] );
Paul Bakker5121ce52009-01-03 21:22:43 +00001481
Gilles Peskine70a7dcd2021-06-10 15:51:54 +02001482 /* If the result is 0, we don't shortcut the operation, which reduces
1483 * but does not eliminate side channels leaking the zero-ness. We do
1484 * need to take care to set the sign bit properly since the library does
1485 * not fully support an MPI object with a value of 0 and s == -1. */
Gilles Peskined65b5002021-06-15 21:44:32 +02001486 if( result_is_zero )
Gilles Peskine70a7dcd2021-06-10 15:51:54 +02001487 X->s = 1;
Gilles Peskine70a7dcd2021-06-10 15:51:54 +02001488 else
1489 X->s = A->s * B->s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001490
1491cleanup:
1492
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001493 mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
Paul Bakker5121ce52009-01-03 21:22:43 +00001494
1495 return( ret );
1496}
1497
1498/*
1499 * Baseline multiplication: X = A * b
1500 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001501int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001502{
Hanno Becker73d7d792018-12-11 10:35:51 +00001503 MPI_VALIDATE_RET( X != NULL );
1504 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001505
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001506 /* mpi_mul_hlp can't deal with a leading 0. */
1507 size_t n = A->n;
1508 while( n > 0 && A->p[n - 1] == 0 )
1509 --n;
Paul Bakker5121ce52009-01-03 21:22:43 +00001510
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001511 /* The general method below doesn't work if n==0 or b==0. By chance
1512 * calculating the result is trivial in those cases. */
1513 if( b == 0 || n == 0 )
1514 {
Paul Elliott986b55a2021-04-20 21:46:29 +01001515 return( mbedtls_mpi_lset( X, 0 ) );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001516 }
1517
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001518 /* Calculate A*b as A + A*(b-1) to take advantage of mpi_mul_hlp */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001519 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001520 /* In general, A * b requires 1 limb more than b. If
1521 * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1522 * number of limbs as A and the call to grow() is not required since
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001523 * copy() will take care of the growth if needed. However, experimentally,
1524 * making the call to grow() unconditional causes slightly fewer
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001525 * calls to calloc() in ECP code, presumably because it reuses the
1526 * same mpi for a while and this way the mpi is more likely to directly
1527 * grow to its final size. */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001528 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n + 1 ) );
1529 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
1530 mpi_mul_hlp( n, A->p, X->p, b - 1 );
1531
1532cleanup:
1533 return( ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00001534}
1535
1536/*
Simon Butcherf5ba0452015-12-27 23:01:55 +00001537 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1538 * mbedtls_mpi_uint divisor, d
Simon Butcher15b15d12015-11-26 19:35:03 +00001539 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001540static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,
1541 mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r )
Simon Butcher15b15d12015-11-26 19:35:03 +00001542{
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001543#if defined(MBEDTLS_HAVE_UDBL)
1544 mbedtls_t_udbl dividend, quotient;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001545#else
Simon Butcher9803d072016-01-03 00:24:34 +00001546 const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
1547 const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001548 mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1549 mbedtls_mpi_uint u0_msw, u0_lsw;
Simon Butcher9803d072016-01-03 00:24:34 +00001550 size_t s;
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001551#endif
1552
Simon Butcher15b15d12015-11-26 19:35:03 +00001553 /*
1554 * Check for overflow
1555 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001556 if( 0 == d || u1 >= d )
Simon Butcher15b15d12015-11-26 19:35:03 +00001557 {
Simon Butcherf5ba0452015-12-27 23:01:55 +00001558 if (r != NULL) *r = ~0;
Simon Butcher15b15d12015-11-26 19:35:03 +00001559
Simon Butcherf5ba0452015-12-27 23:01:55 +00001560 return ( ~0 );
Simon Butcher15b15d12015-11-26 19:35:03 +00001561 }
1562
1563#if defined(MBEDTLS_HAVE_UDBL)
Simon Butcher15b15d12015-11-26 19:35:03 +00001564 dividend = (mbedtls_t_udbl) u1 << biL;
1565 dividend |= (mbedtls_t_udbl) u0;
1566 quotient = dividend / d;
1567 if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
1568 quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
1569
1570 if( r != NULL )
Simon Butcher9803d072016-01-03 00:24:34 +00001571 *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001572
1573 return (mbedtls_mpi_uint) quotient;
1574#else
Simon Butcher15b15d12015-11-26 19:35:03 +00001575
1576 /*
1577 * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1578 * Vol. 2 - Seminumerical Algorithms, Knuth
1579 */
1580
1581 /*
1582 * Normalize the divisor, d, and dividend, u0, u1
1583 */
1584 s = mbedtls_clz( d );
1585 d = d << s;
1586
1587 u1 = u1 << s;
Simon Butcher9803d072016-01-03 00:24:34 +00001588 u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001589 u0 = u0 << s;
1590
1591 d1 = d >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001592 d0 = d & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001593
1594 u0_msw = u0 >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001595 u0_lsw = u0 & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001596
1597 /*
1598 * Find the first quotient and remainder
1599 */
1600 q1 = u1 / d1;
1601 r0 = u1 - d1 * q1;
1602
1603 while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
1604 {
1605 q1 -= 1;
1606 r0 += d1;
1607
1608 if ( r0 >= radix ) break;
1609 }
1610
Simon Butcherf5ba0452015-12-27 23:01:55 +00001611 rAX = ( u1 * radix ) + ( u0_msw - q1 * d );
Simon Butcher15b15d12015-11-26 19:35:03 +00001612 q0 = rAX / d1;
1613 r0 = rAX - q0 * d1;
1614
1615 while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
1616 {
1617 q0 -= 1;
1618 r0 += d1;
1619
1620 if ( r0 >= radix ) break;
1621 }
1622
1623 if (r != NULL)
Simon Butcherf5ba0452015-12-27 23:01:55 +00001624 *r = ( rAX * radix + u0_lsw - q0 * d ) >> s;
Simon Butcher15b15d12015-11-26 19:35:03 +00001625
1626 quotient = q1 * radix + q0;
1627
1628 return quotient;
1629#endif
1630}
1631
1632/*
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001633 * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
Paul Bakker5121ce52009-01-03 21:22:43 +00001634 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001635int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1636 const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001637{
Janos Follath24eed8d2019-11-22 13:21:35 +00001638 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001639 size_t i, n, t, k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001640 mbedtls_mpi X, Y, Z, T1, T2;
Alexander Kd19a1932019-11-01 18:20:42 +03001641 mbedtls_mpi_uint TP2[3];
Hanno Becker73d7d792018-12-11 10:35:51 +00001642 MPI_VALIDATE_RET( A != NULL );
1643 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001644
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001645 if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )
1646 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001647
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001648 mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001649 mbedtls_mpi_init( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001650 /*
1651 * Avoid dynamic memory allocations for constant-size T2.
1652 *
1653 * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1654 * so nobody increase the size of the MPI and we're safe to use an on-stack
1655 * buffer.
1656 */
Alexander K35d6d462019-10-31 14:46:45 +03001657 T2.s = 1;
Alexander Kd19a1932019-11-01 18:20:42 +03001658 T2.n = sizeof( TP2 ) / sizeof( *TP2 );
1659 T2.p = TP2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001660
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001661 if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001662 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001663 if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );
1664 if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001665 return( 0 );
1666 }
1667
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001668 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );
1669 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001670 X.s = Y.s = 1;
1671
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001672 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
1673 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z, 0 ) );
Gilles Peskine2536aa72020-07-24 00:12:59 +02001674 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, A->n + 2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001675
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02001676 k = mbedtls_mpi_bitlen( &Y ) % biL;
Paul Bakkerf9688572011-05-05 10:00:45 +00001677 if( k < biL - 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001678 {
1679 k = biL - 1 - k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001680 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );
1681 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001682 }
1683 else k = 0;
1684
1685 n = X.n - 1;
1686 t = Y.n - 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001687 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001688
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001689 while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001690 {
1691 Z.p[n - t]++;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001692 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001693 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001694 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001695
1696 for( i = n; i > t ; i-- )
1697 {
1698 if( X.p[i] >= Y.p[t] )
1699 Z.p[i - t - 1] = ~0;
1700 else
1701 {
Simon Butcher15b15d12015-11-26 19:35:03 +00001702 Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
1703 Y.p[t], NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001704 }
1705
Alexander K35d6d462019-10-31 14:46:45 +03001706 T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
1707 T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
1708 T2.p[2] = X.p[i];
1709
Paul Bakker5121ce52009-01-03 21:22:43 +00001710 Z.p[i - t - 1]++;
1711 do
1712 {
1713 Z.p[i - t - 1]--;
1714
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001715 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );
Paul Bakker66d5d072014-06-17 16:39:18 +02001716 T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001717 T1.p[1] = Y.p[t];
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001718 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001719 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001720 while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001721
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001722 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
1723 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1724 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001725
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001726 if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001727 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001728 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );
1729 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1730 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001731 Z.p[i - t - 1]--;
1732 }
1733 }
1734
1735 if( Q != NULL )
1736 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001737 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001738 Q->s = A->s * B->s;
1739 }
1740
1741 if( R != NULL )
1742 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001743 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );
Paul Bakkerf02c5642012-11-13 10:25:21 +00001744 X.s = A->s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001745 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001746
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001747 if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001748 R->s = 1;
1749 }
1750
1751cleanup:
1752
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001753 mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001754 mbedtls_mpi_free( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001755 mbedtls_platform_zeroize( TP2, sizeof( TP2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001756
1757 return( ret );
1758}
1759
1760/*
1761 * Division by int: A = Q * b + R
Paul Bakker5121ce52009-01-03 21:22:43 +00001762 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001763int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R,
1764 const mbedtls_mpi *A,
1765 mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001766{
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001767 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001768 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001769 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001770
1771 p[0] = ( b < 0 ) ? -b : b;
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001772 B.s = ( b < 0 ) ? -1 : 1;
1773 B.n = 1;
1774 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001775
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001776 return( mbedtls_mpi_div_mpi( Q, R, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001777}
1778
1779/*
1780 * Modulo: R = A mod B
1781 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001782int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001783{
Janos Follath24eed8d2019-11-22 13:21:35 +00001784 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +00001785 MPI_VALIDATE_RET( R != NULL );
1786 MPI_VALIDATE_RET( A != NULL );
1787 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001788
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001789 if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )
1790 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001791
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001792 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001793
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001794 while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )
1795 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001796
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001797 while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )
1798 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001799
1800cleanup:
1801
1802 return( ret );
1803}
1804
1805/*
1806 * Modulo: r = A mod b
1807 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001808int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001809{
Paul Bakker23986e52011-04-24 08:57:21 +00001810 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001811 mbedtls_mpi_uint x, y, z;
Hanno Becker73d7d792018-12-11 10:35:51 +00001812 MPI_VALIDATE_RET( r != NULL );
1813 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001814
1815 if( b == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001816 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001817
1818 if( b < 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001819 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakker5121ce52009-01-03 21:22:43 +00001820
1821 /*
1822 * handle trivial cases
1823 */
Gilles Peskinec9529f92022-06-09 19:32:46 +02001824 if( b == 1 || A->n == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001825 {
1826 *r = 0;
1827 return( 0 );
1828 }
1829
1830 if( b == 2 )
1831 {
1832 *r = A->p[0] & 1;
1833 return( 0 );
1834 }
1835
1836 /*
1837 * general case
1838 */
Paul Bakker23986e52011-04-24 08:57:21 +00001839 for( i = A->n, y = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001840 {
Paul Bakker23986e52011-04-24 08:57:21 +00001841 x = A->p[i - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001842 y = ( y << biH ) | ( x >> biH );
1843 z = y / b;
1844 y -= z * b;
1845
1846 x <<= biH;
1847 y = ( y << biH ) | ( x >> biH );
1848 z = y / b;
1849 y -= z * b;
1850 }
1851
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001852 /*
1853 * If A is negative, then the current y represents a negative value.
1854 * Flipping it to the positive side.
1855 */
1856 if( A->s < 0 && y != 0 )
1857 y = b - y;
1858
Paul Bakker5121ce52009-01-03 21:22:43 +00001859 *r = y;
1860
1861 return( 0 );
1862}
1863
1864/*
1865 * Fast Montgomery initialization (thanks to Tom St Denis)
1866 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001867static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00001868{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001869 mbedtls_mpi_uint x, m0 = N->p[0];
Manuel Pégourié-Gonnardfdf3f0e2014-03-11 13:47:05 +01001870 unsigned int i;
Paul Bakker5121ce52009-01-03 21:22:43 +00001871
1872 x = m0;
1873 x += ( ( m0 + 2 ) & 4 ) << 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001874
Manuel Pégourié-Gonnardfdf3f0e2014-03-11 13:47:05 +01001875 for( i = biL; i >= 8; i /= 2 )
1876 x *= ( 2 - ( m0 * x ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001877
1878 *mm = ~x + 1;
1879}
1880
Gilles Peskine2a82f722020-06-04 15:00:49 +02001881/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
1882 *
1883 * \param[in,out] A One of the numbers to multiply.
Gilles Peskine221626f2020-06-08 22:37:50 +02001884 * It must have at least as many limbs as N
1885 * (A->n >= N->n), and any limbs beyond n are ignored.
Gilles Peskine2a82f722020-06-04 15:00:49 +02001886 * On successful completion, A contains the result of
1887 * the multiplication A * B * R^-1 mod N where
1888 * R = (2^ciL)^n.
1889 * \param[in] B One of the numbers to multiply.
1890 * It must be nonzero and must not have more limbs than N
1891 * (B->n <= N->n).
1892 * \param[in] N The modulo. N must be odd.
1893 * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
1894 * This is -N^-1 mod 2^ciL.
1895 * \param[in,out] T A bignum for temporary storage.
1896 * It must be at least twice the limb size of N plus 2
1897 * (T->n >= 2 * (N->n + 1)).
1898 * Its initial content is unused and
1899 * its final content is indeterminate.
1900 * Note that unlike the usual convention in the library
1901 * for `const mbedtls_mpi*`, the content of T can change.
Paul Bakker5121ce52009-01-03 21:22:43 +00001902 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001903static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm,
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001904 const mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001905{
Paul Bakker23986e52011-04-24 08:57:21 +00001906 size_t i, n, m;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001907 mbedtls_mpi_uint u0, u1, *d;
Paul Bakker5121ce52009-01-03 21:22:43 +00001908
1909 memset( T->p, 0, T->n * ciL );
1910
1911 d = T->p;
1912 n = N->n;
1913 m = ( B->n < n ) ? B->n : n;
1914
1915 for( i = 0; i < n; i++ )
1916 {
1917 /*
1918 * T = (T + u0*B + u1*N) / 2^biL
1919 */
1920 u0 = A->p[i];
1921 u1 = ( d[0] + u0 * B->p[0] ) * mm;
1922
1923 mpi_mul_hlp( m, B->p, d, u0 );
1924 mpi_mul_hlp( n, N->p, d, u1 );
1925
1926 *d++ = u0; d[n + 1] = 0;
1927 }
1928
Gilles Peskine221626f2020-06-08 22:37:50 +02001929 /* At this point, d is either the desired result or the desired result
1930 * plus N. We now potentially subtract N, avoiding leaking whether the
1931 * subtraction is performed through side channels. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001932
Gilles Peskine221626f2020-06-08 22:37:50 +02001933 /* Copy the n least significant limbs of d to A, so that
1934 * A = d if d < N (recall that N has n limbs). */
1935 memcpy( A->p, d, n * ciL );
Gilles Peskine09ec10a2020-06-09 10:39:38 +02001936 /* If d >= N then we want to set A to d - N. To prevent timing attacks,
Gilles Peskine221626f2020-06-08 22:37:50 +02001937 * do the calculation without using conditional tests. */
1938 /* Set d to d0 + (2^biL)^n - N where d0 is the current value of d. */
Gilles Peskine132c0972020-06-04 21:05:24 +02001939 d[n] += 1;
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001940 d[n] -= mpi_sub_hlp( n, d, d, N->p );
Gilles Peskine221626f2020-06-08 22:37:50 +02001941 /* If d0 < N then d < (2^biL)^n
1942 * so d[n] == 0 and we want to keep A as it is.
1943 * If d0 >= N then d >= (2^biL)^n, and d <= (2^biL)^n + N < 2 * (2^biL)^n
1944 * so d[n] == 1 and we want to set A to the result of the subtraction
1945 * which is d - (2^biL)^n, i.e. the n least significant limbs of d.
1946 * This exactly corresponds to a conditional assignment. */
Gabor Mezei18a44942021-10-20 11:59:27 +02001947 mbedtls_ct_mpi_uint_cond_assign( n, A->p, d, (unsigned char) d[n] );
Paul Bakker5121ce52009-01-03 21:22:43 +00001948}
1949
1950/*
1951 * Montgomery reduction: A = A * R^-1 mod N
Gilles Peskine2a82f722020-06-04 15:00:49 +02001952 *
1953 * See mpi_montmul() regarding constraints and guarantees on the parameters.
Paul Bakker5121ce52009-01-03 21:22:43 +00001954 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001955static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N,
1956 mbedtls_mpi_uint mm, const mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001957{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001958 mbedtls_mpi_uint z = 1;
1959 mbedtls_mpi U;
Paul Bakker5121ce52009-01-03 21:22:43 +00001960
Paul Bakker8ddb6452013-02-27 14:56:33 +01001961 U.n = U.s = (int) z;
Paul Bakker5121ce52009-01-03 21:22:43 +00001962 U.p = &z;
1963
Gilles Peskine4e91d472020-06-04 20:55:15 +02001964 mpi_montmul( A, &U, N, mm, T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001965}
1966
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01001967/**
1968 * Select an MPI from a table without leaking the index.
1969 *
1970 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
1971 * reads the entire table in order to avoid leaking the value of idx to an
1972 * attacker able to observe memory access patterns.
1973 *
1974 * \param[out] R Where to write the selected MPI.
1975 * \param[in] T The table to read from.
1976 * \param[in] T_size The number of elements in the table.
1977 * \param[in] idx The index of the element to select;
1978 * this must satisfy 0 <= idx < T_size.
1979 *
1980 * \return \c 0 on success, or a negative error code.
1981 */
1982static int mpi_select( mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx )
1983{
1984 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1985
1986 for( size_t i = 0; i < T_size; i++ )
Manuel Pégourié-Gonnardeaafa492021-06-03 10:42:46 +02001987 {
1988 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( R, &T[i],
Gabor Mezei18a44942021-10-20 11:59:27 +02001989 (unsigned char) mbedtls_ct_size_bool_eq( i, idx ) ) );
Manuel Pégourié-Gonnardeaafa492021-06-03 10:42:46 +02001990 }
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01001991
1992cleanup:
1993 return( ret );
1994}
1995
Paul Bakker5121ce52009-01-03 21:22:43 +00001996/*
1997 * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
1998 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001999int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
2000 const mbedtls_mpi *E, const mbedtls_mpi *N,
Yuto Takano284857e2021-07-14 10:20:09 +01002001 mbedtls_mpi *prec_RR )
Paul Bakker5121ce52009-01-03 21:22:43 +00002002{
Janos Follath24eed8d2019-11-22 13:21:35 +00002003 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follathd88e2192022-11-21 15:54:20 +00002004 size_t window_bitsize;
Paul Bakker23986e52011-04-24 08:57:21 +00002005 size_t i, j, nblimbs;
2006 size_t bufsize, nbits;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002007 mbedtls_mpi_uint ei, mm, state;
Janos Follath91c02862022-10-04 13:27:40 +01002008 mbedtls_mpi RR, T, W[ ( 1 << MBEDTLS_MPI_WINDOW_SIZE ) + 1 ], WW, Apos;
Paul Bakkerf6198c12012-05-16 08:02:29 +00002009 int neg;
Paul Bakker5121ce52009-01-03 21:22:43 +00002010
Hanno Becker73d7d792018-12-11 10:35:51 +00002011 MPI_VALIDATE_RET( X != NULL );
2012 MPI_VALIDATE_RET( A != NULL );
2013 MPI_VALIDATE_RET( E != NULL );
2014 MPI_VALIDATE_RET( N != NULL );
2015
Hanno Becker8d1dd1b2017-09-28 11:02:24 +01002016 if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || ( N->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002017 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002018
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002019 if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
2020 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakkerf6198c12012-05-16 08:02:29 +00002021
Chris Jones9246d042020-11-25 15:12:39 +00002022 if( mbedtls_mpi_bitlen( E ) > MBEDTLS_MPI_MAX_BITS ||
2023 mbedtls_mpi_bitlen( N ) > MBEDTLS_MPI_MAX_BITS )
2024 return ( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2025
Paul Bakkerf6198c12012-05-16 08:02:29 +00002026 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00002027 * Init temps and window size
2028 */
2029 mpi_montg_init( &mm, N );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002030 mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
2031 mbedtls_mpi_init( &Apos );
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01002032 mbedtls_mpi_init( &WW );
Paul Bakker5121ce52009-01-03 21:22:43 +00002033 memset( W, 0, sizeof( W ) );
2034
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02002035 i = mbedtls_mpi_bitlen( E );
Paul Bakker5121ce52009-01-03 21:22:43 +00002036
Janos Follath66323832022-11-21 14:48:02 +00002037 window_bitsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
Paul Bakker5121ce52009-01-03 21:22:43 +00002038 ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
2039
Peter Kolbuse6bcad32018-12-11 14:01:44 -06002040#if( MBEDTLS_MPI_WINDOW_SIZE < 6 )
Janos Follath66323832022-11-21 14:48:02 +00002041 if( window_bitsize > MBEDTLS_MPI_WINDOW_SIZE )
2042 window_bitsize = MBEDTLS_MPI_WINDOW_SIZE;
Peter Kolbuse6bcad32018-12-11 14:01:44 -06002043#endif
Paul Bakkerb6d5f082011-11-25 11:52:11 +00002044
Janos Follath6fa7a762022-11-22 10:18:06 +00002045 const size_t w_table_used_size = ( (size_t) 1 << window_bitsize ) + 1;
2046
Paul Bakker5121ce52009-01-03 21:22:43 +00002047 /*
Janos Follath6e2d8e32022-11-21 16:14:54 +00002048 * This function is not constant-trace: its memory accesses depend on the
2049 * exponent value. To defend against timing attacks, callers (such as RSA
2050 * and DHM) should use exponent blinding. However this is not enough if the
2051 * adversary can find the exponent in a single trace, so this function
2052 * takes extra precautions against adversaries who can observe memory
2053 * access patterns.
Janos Follath3a3c50c2022-11-11 15:56:38 +00002054 *
Janos Follath6e2d8e32022-11-21 16:14:54 +00002055 * This function performs a series of multiplications by table elements and
2056 * squarings, and we want the prevent the adversary from finding out which
2057 * table element was used, and from distinguishing between multiplications
2058 * and squarings. Firstly, when multiplying by an element of the window
2059 * W[i], we do a constant-trace table lookup to obfuscate i. This leaves
2060 * squarings as having a different memory access patterns from other
2061 * multiplications. So secondly, we put the accumulator X in the table as
2062 * well, and also do a constant-trace table lookup to multiply by X.
2063 *
2064 * This way, all multiplications take the form of a lookup-and-multiply.
2065 * The number of lookup-and-multiply operations inside each iteration of
2066 * the main loop still depends on the bits of the exponent, but since the
2067 * other operations in the loop don't have an easily recognizable memory
2068 * trace, an adversary is unlikely to be able to observe the exact
2069 * patterns.
2070 *
2071 * An adversary may still be able to recover the exponent if they can
2072 * observe both memory accesses and branches. However, branch prediction
2073 * exploitation typically requires many traces of execution over the same
2074 * data, which is defeated by randomized blinding.
Janos Follathf0ceb1c2022-11-21 14:31:22 +00002075 *
2076 * To achieve this, we make a copy of X and we use the table entry in each
2077 * calculation from this point on.
Janos Follath91c02862022-10-04 13:27:40 +01002078 */
Janos Follathaadbadb2022-11-21 14:55:05 +00002079 const size_t x_index = w_table_used_size - 1;
Janos Follathf0ceb1c2022-11-21 14:31:22 +00002080 mbedtls_mpi_init( &W[x_index] );
2081 mbedtls_mpi_copy( &W[x_index], X );
2082
2083 j = N->n + 1;
2084 /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
2085 * and mpi_montred() calls later. Here we ensure that W[1] and X are
2086 * large enough, and later we'll grow other W[i] to the same length.
2087 * They must not be shrunk midway through this function!
Janos Follath3a3c50c2022-11-11 15:56:38 +00002088 */
Janos Follathf0ceb1c2022-11-21 14:31:22 +00002089 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[x_index], j ) );
2090 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) );
2091 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
Janos Follath91c02862022-10-04 13:27:40 +01002092
2093 /*
Paul Bakker50546922012-05-19 08:40:49 +00002094 * Compensate for negative A (and correct at the end)
2095 */
2096 neg = ( A->s == -1 );
Paul Bakker50546922012-05-19 08:40:49 +00002097 if( neg )
2098 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002099 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
Paul Bakker50546922012-05-19 08:40:49 +00002100 Apos.s = 1;
2101 A = &Apos;
2102 }
2103
2104 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00002105 * If 1st call, pre-compute R^2 mod N
2106 */
Yuto Takano284857e2021-07-14 10:20:09 +01002107 if( prec_RR == NULL || prec_RR->p == NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +00002108 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002109 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
2110 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
2111 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002112
Yuto Takano284857e2021-07-14 10:20:09 +01002113 if( prec_RR != NULL )
2114 memcpy( prec_RR, &RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002115 }
2116 else
Yuto Takano284857e2021-07-14 10:20:09 +01002117 memcpy( &RR, prec_RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002118
2119 /*
2120 * W[1] = A * R^2 * R^-1 mod N = A * R mod N
2121 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002122 if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002123 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002124 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002125 /* This should be a no-op because W[1] is already that large before
2126 * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
2127 * in mpi_montmul() below, so let's make sure. */
Gilles Peskine0759cad2021-06-15 21:22:48 +02002128 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], N->n + 1 ) );
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002129 }
Paul Bakkerc2024f42014-01-23 20:38:35 +01002130 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002131 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002132
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002133 /* Note that this is safe because W[1] always has at least N->n limbs
2134 * (it grew above and was preserved by mbedtls_mpi_copy()). */
Gilles Peskine4e91d472020-06-04 20:55:15 +02002135 mpi_montmul( &W[1], &RR, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002136
2137 /*
Janos Follath91c02862022-10-04 13:27:40 +01002138 * W[x_index] = R^2 * R^-1 mod N = R mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00002139 */
Janos Follath91c02862022-10-04 13:27:40 +01002140 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[x_index], &RR ) );
2141 mpi_montred( &W[x_index], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002142
Janos Follath66323832022-11-21 14:48:02 +00002143 if( window_bitsize > 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002144 {
2145 /*
Janos Follathd88e2192022-11-21 15:54:20 +00002146 * W[i] = W[1] ^ i
2147 *
2148 * The first bit of the sliding window is always 1 and therefore we
2149 * only need to store the second half of the table.
Paul Bakker5121ce52009-01-03 21:22:43 +00002150 */
Janos Follathd88e2192022-11-21 15:54:20 +00002151 j = w_table_used_size / 2;
Paul Bakker5121ce52009-01-03 21:22:43 +00002152
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002153 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
2154 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002155
Janos Follath66323832022-11-21 14:48:02 +00002156 for( i = 0; i < window_bitsize - 1; i++ )
Gilles Peskine4e91d472020-06-04 20:55:15 +02002157 mpi_montmul( &W[j], &W[j], N, mm, &T );
Paul Bakker0d7702c2013-10-29 16:18:35 +01002158
Paul Bakker5121ce52009-01-03 21:22:43 +00002159 /*
2160 * W[i] = W[i - 1] * W[1]
Janos Follathd88e2192022-11-21 15:54:20 +00002161 * (The last element in the table is for the result X, so we don't need
2162 * to calculate that.)
Paul Bakker5121ce52009-01-03 21:22:43 +00002163 */
Janos Follathd88e2192022-11-21 15:54:20 +00002164 for( i = j + 1; i < w_table_used_size - 1; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00002165 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002166 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
2167 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002168
Gilles Peskine4e91d472020-06-04 20:55:15 +02002169 mpi_montmul( &W[i], &W[1], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002170 }
2171 }
2172
2173 nblimbs = E->n;
2174 bufsize = 0;
2175 nbits = 0;
Janos Follath66323832022-11-21 14:48:02 +00002176 size_t exponent_bits_in_window = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00002177 state = 0;
2178
2179 while( 1 )
2180 {
2181 if( bufsize == 0 )
2182 {
Paul Bakker0d7702c2013-10-29 16:18:35 +01002183 if( nblimbs == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002184 break;
2185
Paul Bakker0d7702c2013-10-29 16:18:35 +01002186 nblimbs--;
2187
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002188 bufsize = sizeof( mbedtls_mpi_uint ) << 3;
Paul Bakker5121ce52009-01-03 21:22:43 +00002189 }
2190
2191 bufsize--;
2192
2193 ei = (E->p[nblimbs] >> bufsize) & 1;
2194
2195 /*
2196 * skip leading 0s
2197 */
2198 if( ei == 0 && state == 0 )
2199 continue;
2200
2201 if( ei == 0 && state == 1 )
2202 {
2203 /*
Janos Follath91c02862022-10-04 13:27:40 +01002204 * out of window, square W[x_index]
Paul Bakker5121ce52009-01-03 21:22:43 +00002205 */
Janos Follathaadbadb2022-11-21 14:55:05 +00002206 MBEDTLS_MPI_CHK( mpi_select( &WW, W, w_table_used_size, x_index ) );
Janos Follath95655a22022-10-04 14:00:09 +01002207 mpi_montmul( &W[x_index], &WW, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002208 continue;
2209 }
2210
2211 /*
2212 * add ei to current window
2213 */
2214 state = 2;
2215
2216 nbits++;
Janos Follath66323832022-11-21 14:48:02 +00002217 exponent_bits_in_window |= ( ei << ( window_bitsize - nbits ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002218
Janos Follath66323832022-11-21 14:48:02 +00002219 if( nbits == window_bitsize )
Paul Bakker5121ce52009-01-03 21:22:43 +00002220 {
2221 /*
Janos Follath66323832022-11-21 14:48:02 +00002222 * W[x_index] = W[x_index]^window_bitsize R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00002223 */
Janos Follath66323832022-11-21 14:48:02 +00002224 for( i = 0; i < window_bitsize; i++ )
Janos Follath95655a22022-10-04 14:00:09 +01002225 {
Janos Follathaadbadb2022-11-21 14:55:05 +00002226 MBEDTLS_MPI_CHK( mpi_select( &WW, W, w_table_used_size,
2227 x_index ) );
Janos Follath95655a22022-10-04 14:00:09 +01002228 mpi_montmul( &W[x_index], &WW, N, mm, &T );
2229 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002230
2231 /*
Janos Follath66323832022-11-21 14:48:02 +00002232 * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00002233 */
Janos Follathaadbadb2022-11-21 14:55:05 +00002234 MBEDTLS_MPI_CHK( mpi_select( &WW, W, w_table_used_size,
Janos Follath66323832022-11-21 14:48:02 +00002235 exponent_bits_in_window ) );
Janos Follath91c02862022-10-04 13:27:40 +01002236 mpi_montmul( &W[x_index], &WW, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002237
2238 state--;
2239 nbits = 0;
Janos Follath66323832022-11-21 14:48:02 +00002240 exponent_bits_in_window = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00002241 }
2242 }
2243
2244 /*
2245 * process the remaining bits
2246 */
2247 for( i = 0; i < nbits; i++ )
2248 {
Janos Follathaadbadb2022-11-21 14:55:05 +00002249 MBEDTLS_MPI_CHK( mpi_select( &WW, W, w_table_used_size, x_index ) );
Janos Follath95655a22022-10-04 14:00:09 +01002250 mpi_montmul( &W[x_index], &WW, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002251
Janos Follath66323832022-11-21 14:48:02 +00002252 exponent_bits_in_window <<= 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00002253
Janos Follathd88e2192022-11-21 15:54:20 +00002254 if( ( exponent_bits_in_window & ( (size_t) 1 << window_bitsize ) ) != 0 )
Janos Follath95655a22022-10-04 14:00:09 +01002255 {
Janos Follathaadbadb2022-11-21 14:55:05 +00002256 MBEDTLS_MPI_CHK( mpi_select( &WW, W, w_table_used_size, 1 ) );
Janos Follath95655a22022-10-04 14:00:09 +01002257 mpi_montmul( &W[x_index], &WW, N, mm, &T );
2258 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002259 }
2260
2261 /*
Janos Follath91c02862022-10-04 13:27:40 +01002262 * W[x_index] = A^E * R * R^-1 mod N = A^E mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00002263 */
Janos Follath91c02862022-10-04 13:27:40 +01002264 mpi_montred( &W[x_index], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002265
Hanno Beckera4af1c42017-04-18 09:07:45 +01002266 if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 )
Paul Bakkerf6198c12012-05-16 08:02:29 +00002267 {
Janos Follath91c02862022-10-04 13:27:40 +01002268 W[x_index].s = -1;
2269 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &W[x_index], N, &W[x_index] ) );
Paul Bakkerf6198c12012-05-16 08:02:29 +00002270 }
2271
Janos Follath91c02862022-10-04 13:27:40 +01002272 /*
2273 * Load the result in the output variable.
2274 */
Janos Follathf0ceb1c2022-11-21 14:31:22 +00002275 mbedtls_mpi_copy( X, &W[x_index] );
Janos Follath91c02862022-10-04 13:27:40 +01002276
Paul Bakker5121ce52009-01-03 21:22:43 +00002277cleanup:
2278
Janos Follatha92f9152022-11-21 15:05:31 +00002279 /* The first bit of the sliding window is always 1 and therefore the first
2280 * half of the table was unused. */
2281 for( i = w_table_used_size/2; i < w_table_used_size; i++ )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002282 mbedtls_mpi_free( &W[i] );
Paul Bakker5121ce52009-01-03 21:22:43 +00002283
Janos Follathf0ceb1c2022-11-21 14:31:22 +00002284 mbedtls_mpi_free( &W[1] );
Janos Follathf0ceb1c2022-11-21 14:31:22 +00002285 mbedtls_mpi_free( &T );
2286 mbedtls_mpi_free( &Apos );
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01002287 mbedtls_mpi_free( &WW );
Paul Bakker6c591fa2011-05-05 11:49:20 +00002288
Yuto Takano284857e2021-07-14 10:20:09 +01002289 if( prec_RR == NULL || prec_RR->p == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002290 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00002291
2292 return( ret );
2293}
2294
Paul Bakker5121ce52009-01-03 21:22:43 +00002295/*
2296 * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
2297 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002298int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00002299{
Janos Follath24eed8d2019-11-22 13:21:35 +00002300 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00002301 size_t lz, lzt;
Alexander Ke8ad49f2019-08-16 16:16:07 +03002302 mbedtls_mpi TA, TB;
Paul Bakker5121ce52009-01-03 21:22:43 +00002303
Hanno Becker73d7d792018-12-11 10:35:51 +00002304 MPI_VALIDATE_RET( G != NULL );
2305 MPI_VALIDATE_RET( A != NULL );
2306 MPI_VALIDATE_RET( B != NULL );
2307
Alexander Ke8ad49f2019-08-16 16:16:07 +03002308 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00002309
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002310 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
2311 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002312
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002313 lz = mbedtls_mpi_lsb( &TA );
2314 lzt = mbedtls_mpi_lsb( &TB );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002315
Gilles Peskineb5e56ec2021-06-09 13:26:43 +02002316 /* The loop below gives the correct result when A==0 but not when B==0.
2317 * So have a special case for B==0. Leverage the fact that we just
2318 * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
2319 * slightly more efficient than cmp_int(). */
2320 if( lzt == 0 && mbedtls_mpi_get_bit( &TB, 0 ) == 0 )
2321 {
2322 ret = mbedtls_mpi_copy( G, A );
2323 goto cleanup;
2324 }
2325
Paul Bakker66d5d072014-06-17 16:39:18 +02002326 if( lzt < lz )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002327 lz = lzt;
2328
Paul Bakker5121ce52009-01-03 21:22:43 +00002329 TA.s = TB.s = 1;
2330
Gilles Peskineea9aa142021-06-16 13:42:04 +02002331 /* We mostly follow the procedure described in HAC 14.54, but with some
2332 * minor differences:
2333 * - Sequences of multiplications or divisions by 2 are grouped into a
2334 * single shift operation.
Gilles Peskine37d690c2021-06-21 18:58:39 +02002335 * - The procedure in HAC assumes that 0 < TB <= TA.
2336 * - The condition TB <= TA is not actually necessary for correctness.
2337 * TA and TB have symmetric roles except for the loop termination
2338 * condition, and the shifts at the beginning of the loop body
2339 * remove any significance from the ordering of TA vs TB before
2340 * the shifts.
2341 * - If TA = 0, the loop goes through 0 iterations and the result is
2342 * correctly TB.
2343 * - The case TB = 0 was short-circuited above.
Gilles Peskineea9aa142021-06-16 13:42:04 +02002344 *
2345 * For the correctness proof below, decompose the original values of
2346 * A and B as
2347 * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
2348 * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
2349 * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
2350 * and gcd(A',B') is odd or 0.
2351 *
2352 * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
2353 * The code maintains the following invariant:
2354 * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
Gilles Peskine6537bdb2021-06-15 22:09:39 +02002355 */
2356
Gilles Peskineea9aa142021-06-16 13:42:04 +02002357 /* Proof that the loop terminates:
2358 * At each iteration, either the right-shift by 1 is made on a nonzero
2359 * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
2360 * by at least 1, or the right-shift by 1 is made on zero and then
2361 * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
2362 * since in that case TB is calculated from TB-TA with the condition TB>TA).
2363 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002364 while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002365 {
Gilles Peskineea9aa142021-06-16 13:42:04 +02002366 /* Divisions by 2 preserve the invariant (I). */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002367 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );
2368 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002369
Gilles Peskineea9aa142021-06-16 13:42:04 +02002370 /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
2371 * TA-TB is even so the division by 2 has an integer result.
2372 * Invariant (I) is preserved since any odd divisor of both TA and TB
2373 * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
Shaun Case0e7791f2021-12-20 21:14:10 -08002374 * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
Gilles Peskineea9aa142021-06-16 13:42:04 +02002375 * divides TA.
2376 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002377 if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002378 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002379 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );
2380 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002381 }
2382 else
2383 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002384 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );
2385 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002386 }
Gilles Peskineea9aa142021-06-16 13:42:04 +02002387 /* Note that one of TA or TB is still odd. */
Paul Bakker5121ce52009-01-03 21:22:43 +00002388 }
2389
Gilles Peskineea9aa142021-06-16 13:42:04 +02002390 /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
2391 * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
2392 * - If there was at least one loop iteration, then one of TA or TB is odd,
2393 * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
2394 * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
2395 * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
Gilles Peskineb798b352021-06-21 11:40:38 +02002396 * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
Gilles Peskineea9aa142021-06-16 13:42:04 +02002397 */
2398
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002399 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );
2400 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002401
2402cleanup:
2403
Alexander Ke8ad49f2019-08-16 16:16:07 +03002404 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00002405
2406 return( ret );
2407}
2408
Gilles Peskine8f454702021-04-01 15:57:18 +02002409/* Fill X with n_bytes random bytes.
2410 * X must already have room for those bytes.
Gilles Peskine23422e42021-06-03 11:51:09 +02002411 * The ordering of the bytes returned from the RNG is suitable for
2412 * deterministic ECDSA (see RFC 6979 §3.3 and mbedtls_mpi_random()).
Gilles Peskinea16001e2021-04-13 21:55:35 +02002413 * The size and sign of X are unchanged.
Gilles Peskine8f454702021-04-01 15:57:18 +02002414 * n_bytes must not be 0.
2415 */
2416static int mpi_fill_random_internal(
2417 mbedtls_mpi *X, size_t n_bytes,
2418 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2419{
2420 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2421 const size_t limbs = CHARS_TO_LIMBS( n_bytes );
2422 const size_t overhead = ( limbs * ciL ) - n_bytes;
2423
2424 if( X->n < limbs )
2425 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Gilles Peskine8f454702021-04-01 15:57:18 +02002426
Gilles Peskinea16001e2021-04-13 21:55:35 +02002427 memset( X->p, 0, overhead );
2428 memset( (unsigned char *) X->p + limbs * ciL, 0, ( X->n - limbs ) * ciL );
Gilles Peskine8f454702021-04-01 15:57:18 +02002429 MBEDTLS_MPI_CHK( f_rng( p_rng, (unsigned char *) X->p + overhead, n_bytes ) );
2430 mpi_bigendian_to_host( X->p, limbs );
2431
2432cleanup:
2433 return( ret );
2434}
2435
Paul Bakker33dc46b2014-04-30 16:11:39 +02002436/*
2437 * Fill X with size bytes of random.
2438 *
2439 * Use a temporary bytes representation to make sure the result is the same
Paul Bakkerc37b0ac2014-05-01 14:19:23 +02002440 * regardless of the platform endianness (useful when f_rng is actually
Paul Bakker33dc46b2014-04-30 16:11:39 +02002441 * deterministic, eg for tests).
2442 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002443int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,
Paul Bakkera3d195c2011-11-27 21:07:34 +00002444 int (*f_rng)(void *, unsigned char *, size_t),
2445 void *p_rng )
Paul Bakker287781a2011-03-26 13:18:49 +00002446{
Janos Follath24eed8d2019-11-22 13:21:35 +00002447 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker6dab6202019-01-02 16:42:29 +00002448 size_t const limbs = CHARS_TO_LIMBS( size );
Hanno Beckerda1655a2017-10-18 14:21:44 +01002449
Hanno Becker8ce11a32018-12-19 16:18:52 +00002450 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002451 MPI_VALIDATE_RET( f_rng != NULL );
Paul Bakker33dc46b2014-04-30 16:11:39 +02002452
Hanno Beckerda1655a2017-10-18 14:21:44 +01002453 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine3130ce22021-06-02 22:17:52 +02002454 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Gilles Peskine8f454702021-04-01 15:57:18 +02002455 if( size == 0 )
2456 return( 0 );
Paul Bakker287781a2011-03-26 13:18:49 +00002457
Gilles Peskine8f454702021-04-01 15:57:18 +02002458 ret = mpi_fill_random_internal( X, size, f_rng, p_rng );
Paul Bakker287781a2011-03-26 13:18:49 +00002459
2460cleanup:
2461 return( ret );
2462}
2463
Gilles Peskine4699fa42021-03-29 22:02:55 +02002464int mbedtls_mpi_random( mbedtls_mpi *X,
2465 mbedtls_mpi_sint min,
2466 const mbedtls_mpi *N,
2467 int (*f_rng)(void *, unsigned char *, size_t),
2468 void *p_rng )
2469{
Gilles Peskine4699fa42021-03-29 22:02:55 +02002470 int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002471 int count;
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002472 unsigned lt_lower = 1, lt_upper = 0;
Gilles Peskine4699fa42021-03-29 22:02:55 +02002473 size_t n_bits = mbedtls_mpi_bitlen( N );
2474 size_t n_bytes = ( n_bits + 7 ) / 8;
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002475 mbedtls_mpi lower_bound;
Gilles Peskine4699fa42021-03-29 22:02:55 +02002476
Gilles Peskine9312ba52021-03-29 22:14:51 +02002477 if( min < 0 )
2478 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2479 if( mbedtls_mpi_cmp_int( N, min ) <= 0 )
2480 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2481
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002482 /*
2483 * When min == 0, each try has at worst a probability 1/2 of failing
2484 * (the msb has a probability 1/2 of being 0, and then the result will
2485 * be < N), so after 30 tries failure probability is a most 2**(-30).
2486 *
2487 * When N is just below a power of 2, as is the case when generating
Gilles Peskine3f613632021-04-15 11:45:19 +02002488 * a random scalar on most elliptic curves, 1 try is enough with
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002489 * overwhelming probability. When N is just above a power of 2,
Gilles Peskine3f613632021-04-15 11:45:19 +02002490 * as when generating a random scalar on secp224k1, each try has
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002491 * a probability of failing that is almost 1/2.
2492 *
2493 * The probabilities are almost the same if min is nonzero but negligible
2494 * compared to N. This is always the case when N is crypto-sized, but
2495 * it's convenient to support small N for testing purposes. When N
2496 * is small, use a higher repeat count, otherwise the probability of
2497 * failure is macroscopic.
2498 */
Gilles Peskine11779072021-06-02 21:18:59 +02002499 count = ( n_bytes > 4 ? 30 : 250 );
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002500
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002501 mbedtls_mpi_init( &lower_bound );
2502
Gilles Peskine8f454702021-04-01 15:57:18 +02002503 /* Ensure that target MPI has exactly the same number of limbs
2504 * as the upper bound, even if the upper bound has leading zeros.
2505 * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */
Gilles Peskine3130ce22021-06-02 22:17:52 +02002506 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, N->n ) );
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002507 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &lower_bound, N->n ) );
2508 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &lower_bound, min ) );
Gilles Peskine8f454702021-04-01 15:57:18 +02002509
Gilles Peskine4699fa42021-03-29 22:02:55 +02002510 /*
2511 * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
2512 * when f_rng is a suitably parametrized instance of HMAC_DRBG:
2513 * - use the same byte ordering;
2514 * - keep the leftmost n_bits bits of the generated octet string;
2515 * - try until result is in the desired range.
2516 * This also avoids any bias, which is especially important for ECDSA.
2517 */
2518 do
2519 {
Gilles Peskine8f454702021-04-01 15:57:18 +02002520 MBEDTLS_MPI_CHK( mpi_fill_random_internal( X, n_bytes, f_rng, p_rng ) );
Gilles Peskine4699fa42021-03-29 22:02:55 +02002521 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, 8 * n_bytes - n_bits ) );
2522
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002523 if( --count == 0 )
Gilles Peskine4699fa42021-03-29 22:02:55 +02002524 {
2525 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2526 goto cleanup;
2527 }
2528
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002529 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, &lower_bound, &lt_lower ) );
2530 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, N, &lt_upper ) );
Gilles Peskine4699fa42021-03-29 22:02:55 +02002531 }
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002532 while( lt_lower != 0 || lt_upper == 0 );
Gilles Peskine4699fa42021-03-29 22:02:55 +02002533
2534cleanup:
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002535 mbedtls_mpi_free( &lower_bound );
Gilles Peskine4699fa42021-03-29 22:02:55 +02002536 return( ret );
2537}
2538
Paul Bakker5121ce52009-01-03 21:22:43 +00002539/*
2540 * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
2541 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002542int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00002543{
Janos Follath24eed8d2019-11-22 13:21:35 +00002544 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002545 mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
Hanno Becker73d7d792018-12-11 10:35:51 +00002546 MPI_VALIDATE_RET( X != NULL );
2547 MPI_VALIDATE_RET( A != NULL );
2548 MPI_VALIDATE_RET( N != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00002549
Hanno Becker4bcb4912017-04-18 15:49:39 +01002550 if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002551 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002552
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002553 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );
2554 mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );
2555 mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002556
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002557 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002558
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002559 if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002560 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002561 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002562 goto cleanup;
2563 }
2564
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002565 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );
2566 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );
2567 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );
2568 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002569
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002570 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );
2571 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );
2572 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );
2573 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002574
2575 do
2576 {
2577 while( ( TU.p[0] & 1 ) == 0 )
2578 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002579 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002580
2581 if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
2582 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002583 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );
2584 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002585 }
2586
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002587 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );
2588 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002589 }
2590
2591 while( ( TV.p[0] & 1 ) == 0 )
2592 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002593 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002594
2595 if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
2596 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002597 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );
2598 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002599 }
2600
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002601 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );
2602 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002603 }
2604
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002605 if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002606 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002607 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );
2608 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );
2609 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002610 }
2611 else
2612 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002613 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );
2614 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );
2615 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002616 }
2617 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002618 while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002619
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002620 while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )
2621 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002622
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002623 while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )
2624 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002625
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002626 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002627
2628cleanup:
2629
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002630 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );
2631 mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );
2632 mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002633
2634 return( ret );
2635}
2636
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002637#if defined(MBEDTLS_GENPRIME)
Paul Bakkerd9374b02012-11-02 11:02:58 +00002638
Paul Bakker5121ce52009-01-03 21:22:43 +00002639static const int small_prime[] =
2640{
2641 3, 5, 7, 11, 13, 17, 19, 23,
2642 29, 31, 37, 41, 43, 47, 53, 59,
2643 61, 67, 71, 73, 79, 83, 89, 97,
2644 101, 103, 107, 109, 113, 127, 131, 137,
2645 139, 149, 151, 157, 163, 167, 173, 179,
2646 181, 191, 193, 197, 199, 211, 223, 227,
2647 229, 233, 239, 241, 251, 257, 263, 269,
2648 271, 277, 281, 283, 293, 307, 311, 313,
2649 317, 331, 337, 347, 349, 353, 359, 367,
2650 373, 379, 383, 389, 397, 401, 409, 419,
2651 421, 431, 433, 439, 443, 449, 457, 461,
2652 463, 467, 479, 487, 491, 499, 503, 509,
2653 521, 523, 541, 547, 557, 563, 569, 571,
2654 577, 587, 593, 599, 601, 607, 613, 617,
2655 619, 631, 641, 643, 647, 653, 659, 661,
2656 673, 677, 683, 691, 701, 709, 719, 727,
2657 733, 739, 743, 751, 757, 761, 769, 773,
2658 787, 797, 809, 811, 821, 823, 827, 829,
2659 839, 853, 857, 859, 863, 877, 881, 883,
2660 887, 907, 911, 919, 929, 937, 941, 947,
2661 953, 967, 971, 977, 983, 991, 997, -103
2662};
2663
2664/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002665 * Small divisors test (X must be positive)
2666 *
2667 * Return values:
2668 * 0: no small factor (possible prime, more tests needed)
2669 * 1: certain prime
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002670 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002671 * other negative: error
Paul Bakker5121ce52009-01-03 21:22:43 +00002672 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002673static int mpi_check_small_factors( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +00002674{
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002675 int ret = 0;
2676 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002677 mbedtls_mpi_uint r;
Paul Bakker5121ce52009-01-03 21:22:43 +00002678
Paul Bakker5121ce52009-01-03 21:22:43 +00002679 if( ( X->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002680 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002681
2682 for( i = 0; small_prime[i] > 0; i++ )
2683 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002684 if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002685 return( 1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002686
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002687 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002688
2689 if( r == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002690 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002691 }
2692
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002693cleanup:
2694 return( ret );
2695}
2696
2697/*
2698 * Miller-Rabin pseudo-primality test (HAC 4.24)
2699 */
Janos Follathda31fa12018-09-03 14:45:23 +01002700static int mpi_miller_rabin( const mbedtls_mpi *X, size_t rounds,
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002701 int (*f_rng)(void *, unsigned char *, size_t),
2702 void *p_rng )
2703{
Pascal Junodb99183d2015-03-11 16:49:45 +01002704 int ret, count;
Janos Follathda31fa12018-09-03 14:45:23 +01002705 size_t i, j, k, s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002706 mbedtls_mpi W, R, T, A, RR;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002707
Hanno Becker8ce11a32018-12-19 16:18:52 +00002708 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002709 MPI_VALIDATE_RET( f_rng != NULL );
2710
2711 mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R );
2712 mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002713 mbedtls_mpi_init( &RR );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002714
Paul Bakker5121ce52009-01-03 21:22:43 +00002715 /*
2716 * W = |X| - 1
2717 * R = W >> lsb( W )
2718 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002719 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );
2720 s = mbedtls_mpi_lsb( &W );
2721 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );
2722 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002723
Janos Follathda31fa12018-09-03 14:45:23 +01002724 for( i = 0; i < rounds; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00002725 {
2726 /*
2727 * pick a random A, 1 < A < |X| - 1
2728 */
Pascal Junodb99183d2015-03-11 16:49:45 +01002729 count = 0;
2730 do {
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002731 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
Pascal Junodb99183d2015-03-11 16:49:45 +01002732
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02002733 j = mbedtls_mpi_bitlen( &A );
2734 k = mbedtls_mpi_bitlen( &W );
Pascal Junodb99183d2015-03-11 16:49:45 +01002735 if (j > k) {
Darryl Greene3f95ed2018-10-02 13:21:35 +01002736 A.p[A.n - 1] &= ( (mbedtls_mpi_uint) 1 << ( k - ( A.n - 1 ) * biL - 1 ) ) - 1;
Pascal Junodb99183d2015-03-11 16:49:45 +01002737 }
2738
2739 if (count++ > 30) {
Jens Wiklanderf08aa3e2019-01-17 13:30:57 +01002740 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2741 goto cleanup;
Pascal Junodb99183d2015-03-11 16:49:45 +01002742 }
2743
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002744 } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||
2745 mbedtls_mpi_cmp_int( &A, 1 ) <= 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002746
2747 /*
2748 * A = A^R mod |X|
2749 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002750 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002751
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002752 if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||
2753 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002754 continue;
2755
2756 j = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002757 while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002758 {
2759 /*
2760 * A = A * A mod |X|
2761 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002762 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );
2763 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002764
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002765 if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002766 break;
2767
2768 j++;
2769 }
2770
2771 /*
2772 * not prime if A != |X| - 1 or A == 1
2773 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002774 if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||
2775 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002776 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002777 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002778 break;
2779 }
2780 }
2781
2782cleanup:
Hanno Becker73d7d792018-12-11 10:35:51 +00002783 mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R );
2784 mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002785 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00002786
2787 return( ret );
2788}
2789
2790/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002791 * Pseudo-primality test: small factors, then Miller-Rabin
2792 */
Janos Follatha0b67c22018-09-18 14:48:23 +01002793int mbedtls_mpi_is_prime_ext( const mbedtls_mpi *X, int rounds,
2794 int (*f_rng)(void *, unsigned char *, size_t),
2795 void *p_rng )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002796{
Janos Follath24eed8d2019-11-22 13:21:35 +00002797 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002798 mbedtls_mpi XX;
Hanno Becker8ce11a32018-12-19 16:18:52 +00002799 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002800 MPI_VALIDATE_RET( f_rng != NULL );
Manuel Pégourié-Gonnard7f4ed672014-10-14 20:56:02 +02002801
2802 XX.s = 1;
2803 XX.n = X->n;
2804 XX.p = X->p;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002805
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002806 if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||
2807 mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )
2808 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002809
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002810 if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002811 return( 0 );
2812
2813 if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
2814 {
2815 if( ret == 1 )
2816 return( 0 );
2817
2818 return( ret );
2819 }
2820
Janos Follathda31fa12018-09-03 14:45:23 +01002821 return( mpi_miller_rabin( &XX, rounds, f_rng, p_rng ) );
Janos Follathf301d232018-08-14 13:34:01 +01002822}
2823
Janos Follatha0b67c22018-09-18 14:48:23 +01002824#if !defined(MBEDTLS_DEPRECATED_REMOVED)
Janos Follathf301d232018-08-14 13:34:01 +01002825/*
2826 * Pseudo-primality test, error probability 2^-80
2827 */
2828int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
2829 int (*f_rng)(void *, unsigned char *, size_t),
2830 void *p_rng )
2831{
Hanno Becker8ce11a32018-12-19 16:18:52 +00002832 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002833 MPI_VALIDATE_RET( f_rng != NULL );
2834
Janos Follatha0b67c22018-09-18 14:48:23 +01002835 /*
2836 * In the past our key generation aimed for an error rate of at most
2837 * 2^-80. Since this function is deprecated, aim for the same certainty
2838 * here as well.
2839 */
Hanno Becker73d7d792018-12-11 10:35:51 +00002840 return( mbedtls_mpi_is_prime_ext( X, 40, f_rng, p_rng ) );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002841}
Janos Follatha0b67c22018-09-18 14:48:23 +01002842#endif
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002843
2844/*
Paul Bakker5121ce52009-01-03 21:22:43 +00002845 * Prime number generation
Jethro Beekman66689272018-02-14 19:24:10 -08002846 *
Janos Follathf301d232018-08-14 13:34:01 +01002847 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2848 * be either 1024 bits or 1536 bits long, and flags must contain
2849 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
Paul Bakker5121ce52009-01-03 21:22:43 +00002850 */
Janos Follath7c025a92018-08-14 11:08:41 +01002851int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
Paul Bakkera3d195c2011-11-27 21:07:34 +00002852 int (*f_rng)(void *, unsigned char *, size_t),
2853 void *p_rng )
Paul Bakker5121ce52009-01-03 21:22:43 +00002854{
Jethro Beekman66689272018-02-14 19:24:10 -08002855#ifdef MBEDTLS_HAVE_INT64
2856// ceil(2^63.5)
2857#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2858#else
2859// ceil(2^31.5)
2860#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2861#endif
2862 int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker23986e52011-04-24 08:57:21 +00002863 size_t k, n;
Janos Follathda31fa12018-09-03 14:45:23 +01002864 int rounds;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002865 mbedtls_mpi_uint r;
2866 mbedtls_mpi Y;
Paul Bakker5121ce52009-01-03 21:22:43 +00002867
Hanno Becker8ce11a32018-12-19 16:18:52 +00002868 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002869 MPI_VALIDATE_RET( f_rng != NULL );
2870
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002871 if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )
2872 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002873
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002874 mbedtls_mpi_init( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002875
2876 n = BITS_TO_LIMBS( nbits );
2877
Janos Follathda31fa12018-09-03 14:45:23 +01002878 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR ) == 0 )
2879 {
2880 /*
2881 * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2882 */
2883 rounds = ( ( nbits >= 1300 ) ? 2 : ( nbits >= 850 ) ? 3 :
2884 ( nbits >= 650 ) ? 4 : ( nbits >= 350 ) ? 8 :
2885 ( nbits >= 250 ) ? 12 : ( nbits >= 150 ) ? 18 : 27 );
2886 }
2887 else
2888 {
2889 /*
2890 * 2^-100 error probability, number of rounds computed based on HAC,
2891 * fact 4.48
2892 */
2893 rounds = ( ( nbits >= 1450 ) ? 4 : ( nbits >= 1150 ) ? 5 :
2894 ( nbits >= 1000 ) ? 6 : ( nbits >= 850 ) ? 7 :
2895 ( nbits >= 750 ) ? 8 : ( nbits >= 500 ) ? 13 :
2896 ( nbits >= 250 ) ? 28 : ( nbits >= 150 ) ? 40 : 51 );
2897 }
2898
Jethro Beekman66689272018-02-14 19:24:10 -08002899 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002900 {
Jethro Beekman66689272018-02-14 19:24:10 -08002901 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
2902 /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
2903 if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue;
2904
2905 k = n * biL;
2906 if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) );
2907 X->p[0] |= 1;
2908
Janos Follath7c025a92018-08-14 11:08:41 +01002909 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002910 {
Janos Follatha0b67c22018-09-18 14:48:23 +01002911 ret = mbedtls_mpi_is_prime_ext( X, rounds, f_rng, p_rng );
Jethro Beekman66689272018-02-14 19:24:10 -08002912
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002913 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
Paul Bakker5121ce52009-01-03 21:22:43 +00002914 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002915 }
Jethro Beekman66689272018-02-14 19:24:10 -08002916 else
Paul Bakker5121ce52009-01-03 21:22:43 +00002917 {
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002918 /*
Tom Cosgrove5205c972022-07-28 06:12:08 +01002919 * A necessary condition for Y and X = 2Y + 1 to be prime
Jethro Beekman66689272018-02-14 19:24:10 -08002920 * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2921 * Make sure it is satisfied, while keeping X = 3 mod 4
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002922 */
Jethro Beekman66689272018-02-14 19:24:10 -08002923
2924 X->p[0] |= 2;
2925
2926 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
2927 if( r == 0 )
2928 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
2929 else if( r == 1 )
2930 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
2931
2932 /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
2933 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
2934 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
2935
2936 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002937 {
Jethro Beekman66689272018-02-14 19:24:10 -08002938 /*
2939 * First, check small factors for X and Y
2940 * before doing Miller-Rabin on any of them
2941 */
2942 if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
2943 ( ret = mpi_check_small_factors( &Y ) ) == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002944 ( ret = mpi_miller_rabin( X, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002945 == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002946 ( ret = mpi_miller_rabin( &Y, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002947 == 0 )
Jethro Beekman66689272018-02-14 19:24:10 -08002948 goto cleanup;
2949
2950 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
2951 goto cleanup;
2952
2953 /*
2954 * Next candidates. We want to preserve Y = (X-1) / 2 and
2955 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2956 * so up Y by 6 and X by 12.
2957 */
2958 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
2959 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002960 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002961 }
2962 }
2963
2964cleanup:
2965
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002966 mbedtls_mpi_free( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002967
2968 return( ret );
2969}
2970
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002971#endif /* MBEDTLS_GENPRIME */
Paul Bakker5121ce52009-01-03 21:22:43 +00002972
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002973#if defined(MBEDTLS_SELF_TEST)
Paul Bakker5121ce52009-01-03 21:22:43 +00002974
Paul Bakker23986e52011-04-24 08:57:21 +00002975#define GCD_PAIR_COUNT 3
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002976
2977static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2978{
2979 { 693, 609, 21 },
2980 { 1764, 868, 28 },
2981 { 768454923, 542167814, 1 }
2982};
2983
Paul Bakker5121ce52009-01-03 21:22:43 +00002984/*
2985 * Checkup routine
2986 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002987int mbedtls_mpi_self_test( int verbose )
Paul Bakker5121ce52009-01-03 21:22:43 +00002988{
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002989 int ret, i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002990 mbedtls_mpi A, E, N, X, Y, U, V;
Paul Bakker5121ce52009-01-03 21:22:43 +00002991
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002992 mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );
2993 mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00002994
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002995 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002996 "EFE021C2645FD1DC586E69184AF4A31E" \
2997 "D5F53E93B5F123FA41680867BA110131" \
2998 "944FE7952E2517337780CB0DB80E61AA" \
2999 "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
3000
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003001 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00003002 "B2E7EFD37075B9F03FF989C7C5051C20" \
3003 "34D2A323810251127E7BF8625A4F49A5" \
3004 "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
3005 "5B5C25763222FEFCCFC38B832366C29E" ) );
3006
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003007 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00003008 "0066A198186C18C10B2F5ED9B522752A" \
3009 "9830B69916E535C8F047518A889A43A5" \
3010 "94B6BED27A168D31D4A52F88925AA8F5" ) );
3011
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003012 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00003013
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003014 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00003015 "602AB7ECA597A3D6B56FF9829A5E8B85" \
3016 "9E857EA95A03512E2BAE7391688D264A" \
3017 "A5663B0341DB9CCFD2C4C5F421FEC814" \
3018 "8001B72E848A38CAE1C65F78E56ABDEF" \
3019 "E12D3C039B8A02D6BE593F0BBBDA56F1" \
3020 "ECF677152EF804370C1A305CAF3B5BF1" \
3021 "30879B56C61DE584A0F53A2447A51E" ) );
3022
3023 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003024 mbedtls_printf( " MPI test #1 (mul_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00003025
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003026 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00003027 {
3028 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003029 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003030
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003031 ret = 1;
3032 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00003033 }
3034
3035 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003036 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003037
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003038 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00003039
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003040 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00003041 "256567336059E52CAE22925474705F39A94" ) );
3042
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003043 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00003044 "6613F26162223DF488E9CD48CC132C7A" \
3045 "0AC93C701B001B092E4E5B9F73BCD27B" \
3046 "9EE50D0657C77F374E903CDFA4C642" ) );
3047
3048 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003049 mbedtls_printf( " MPI test #2 (div_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00003050
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003051 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||
3052 mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00003053 {
3054 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003055 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003056
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003057 ret = 1;
3058 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00003059 }
3060
3061 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003062 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003063
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003064 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00003065
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003066 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00003067 "36E139AEA55215609D2816998ED020BB" \
3068 "BD96C37890F65171D948E9BC7CBAA4D9" \
3069 "325D24D6A3C12710F10A09FA08AB87" ) );
3070
3071 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003072 mbedtls_printf( " MPI test #3 (exp_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00003073
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003074 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00003075 {
3076 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003077 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003078
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003079 ret = 1;
3080 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00003081 }
3082
3083 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003084 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003085
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003086 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00003087
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003088 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00003089 "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
3090 "C3DBA76456363A10869622EAC2DD84EC" \
3091 "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
3092
3093 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003094 mbedtls_printf( " MPI test #4 (inv_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00003095
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003096 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00003097 {
3098 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003099 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003100
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003101 ret = 1;
3102 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00003103 }
3104
3105 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003106 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003107
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003108 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003109 mbedtls_printf( " MPI test #5 (simple gcd): " );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003110
Paul Bakker66d5d072014-06-17 16:39:18 +02003111 for( i = 0; i < GCD_PAIR_COUNT; i++ )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003112 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003113 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );
3114 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003115
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003116 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003117
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003118 if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003119 {
3120 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003121 mbedtls_printf( "failed at %d\n", i );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003122
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003123 ret = 1;
3124 goto cleanup;
3125 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003126 }
3127
3128 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003129 mbedtls_printf( "passed\n" );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003130
Paul Bakker5121ce52009-01-03 21:22:43 +00003131cleanup:
3132
3133 if( ret != 0 && verbose != 0 )
Kenneth Soerensen518d4352020-04-01 17:22:45 +02003134 mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00003135
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003136 mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );
3137 mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00003138
3139 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003140 mbedtls_printf( "\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003141
3142 return( ret );
3143}
3144
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003145#endif /* MBEDTLS_SELF_TEST */
Paul Bakker5121ce52009-01-03 21:22:43 +00003146
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003147#endif /* MBEDTLS_BIGNUM_C */