blob: 59b10654e3082913a73d066088ec9de2164e704a [file] [log] [blame]
Paul Bakker5121ce52009-01-03 21:22:43 +00001/*
2 * Multi-precision integer library
3 *
Bence Szépkúti1e148272020-08-07 13:07:28 +02004 * Copyright The Mbed TLS Contributors
Manuel Pégourié-Gonnard37ff1402015-09-04 14:21:07 +02005 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
Paul Bakker5121ce52009-01-03 21:22:43 +000018 */
Simon Butcher15b15d12015-11-26 19:35:03 +000019
Paul Bakker5121ce52009-01-03 21:22:43 +000020/*
Simon Butcher15b15d12015-11-26 19:35:03 +000021 * The following sources were referenced in the design of this Multi-precision
22 * Integer library:
Paul Bakker5121ce52009-01-03 21:22:43 +000023 *
Simon Butcher15b15d12015-11-26 19:35:03 +000024 * [1] Handbook of Applied Cryptography - 1997
25 * Menezes, van Oorschot and Vanstone
26 *
27 * [2] Multi-Precision Math
28 * Tom St Denis
29 * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
30 *
31 * [3] GNU Multi-Precision Arithmetic Library
32 * https://gmplib.org/manual/index.html
33 *
Simon Butcherf5ba0452015-12-27 23:01:55 +000034 */
Paul Bakker5121ce52009-01-03 21:22:43 +000035
Gilles Peskinedb09ef62020-06-03 01:43:33 +020036#include "common.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000037
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020038#if defined(MBEDTLS_BIGNUM_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000039
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000040#include "mbedtls/bignum.h"
Janos Follath4614b9a2022-07-21 15:34:47 +010041#include "bignum_core.h"
Chris Jones4c5819c2021-03-03 17:45:34 +000042#include "bn_mul.h"
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050043#include "mbedtls/platform_util.h"
Janos Follath24eed8d2019-11-22 13:21:35 +000044#include "mbedtls/error.h"
Gabor Mezei22c9a6f2021-10-20 12:09:35 +020045#include "constant_time_internal.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000046
Dave Rodgman351c71b2021-12-06 17:50:53 +000047#include <limits.h>
Rich Evans00ab4702015-02-06 13:43:58 +000048#include <string.h>
49
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020050#if defined(MBEDTLS_PLATFORM_C)
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000051#include "mbedtls/platform.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020052#else
Rich Evans00ab4702015-02-06 13:43:58 +000053#include <stdio.h>
54#include <stdlib.h>
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020055#define mbedtls_printf printf
Manuel Pégourié-Gonnard7551cb92015-05-26 16:04:06 +020056#define mbedtls_calloc calloc
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020057#define mbedtls_free free
Paul Bakker6e339b52013-07-03 13:37:05 +020058#endif
59
Gabor Mezei66669142022-08-03 12:52:26 +020060#define MPI_VALIDATE_RET( cond ) \
61 MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
62#define MPI_VALIDATE( cond ) \
63 MBEDTLS_INTERNAL_VALIDATE( cond )
64
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +010065#define MPI_SIZE_T_MAX ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
66
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050067/* Implementation that should never be optimized out by the compiler */
Andres Amaya Garcia6698d2f2018-04-24 08:39:07 -050068static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n )
69{
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050070 mbedtls_platform_zeroize( v, ciL * n );
71}
72
Paul Bakker5121ce52009-01-03 21:22:43 +000073/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000074 * Initialize one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000075 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020076void mbedtls_mpi_init( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000077{
Hanno Becker73d7d792018-12-11 10:35:51 +000078 MPI_VALIDATE( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +000079
Paul Bakker6c591fa2011-05-05 11:49:20 +000080 X->s = 1;
81 X->n = 0;
82 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000083}
84
85/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000086 * Unallocate one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000087 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020088void mbedtls_mpi_free( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000089{
Paul Bakker6c591fa2011-05-05 11:49:20 +000090 if( X == NULL )
91 return;
Paul Bakker5121ce52009-01-03 21:22:43 +000092
Paul Bakker6c591fa2011-05-05 11:49:20 +000093 if( X->p != NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +000094 {
Alexey Skalozube17a8da2016-01-13 17:19:33 +020095 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020096 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +000097 }
98
Paul Bakker6c591fa2011-05-05 11:49:20 +000099 X->s = 1;
100 X->n = 0;
101 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +0000102}
103
104/*
105 * Enlarge to the specified number of limbs
106 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200107int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs )
Paul Bakker5121ce52009-01-03 21:22:43 +0000108{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200109 mbedtls_mpi_uint *p;
Hanno Becker73d7d792018-12-11 10:35:51 +0000110 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000111
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200112 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200113 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakkerf9688572011-05-05 10:00:45 +0000114
Paul Bakker5121ce52009-01-03 21:22:43 +0000115 if( X->n < nblimbs )
116 {
Simon Butcher29176892016-05-20 00:19:09 +0100117 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200118 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakker5121ce52009-01-03 21:22:43 +0000119
Paul Bakker5121ce52009-01-03 21:22:43 +0000120 if( X->p != NULL )
121 {
122 memcpy( p, X->p, X->n * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200123 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200124 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +0000125 }
126
127 X->n = nblimbs;
128 X->p = p;
129 }
130
131 return( 0 );
132}
133
134/*
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100135 * Resize down as much as possible,
136 * while keeping at least the specified number of limbs
137 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200138int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100139{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200140 mbedtls_mpi_uint *p;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100141 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000142 MPI_VALIDATE_RET( X != NULL );
143
144 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
145 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100146
Gilles Peskinee2f563e2020-01-20 21:17:43 +0100147 /* Actually resize up if there are currently fewer than nblimbs limbs. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100148 if( X->n <= nblimbs )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200149 return( mbedtls_mpi_grow( X, nblimbs ) );
Gilles Peskine322752b2020-01-21 13:59:51 +0100150 /* After this point, then X->n > nblimbs and in particular X->n > 0. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100151
152 for( i = X->n - 1; i > 0; i-- )
153 if( X->p[i] != 0 )
154 break;
155 i++;
156
157 if( i < nblimbs )
158 i = nblimbs;
159
Simon Butcher29176892016-05-20 00:19:09 +0100160 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200161 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100162
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100163 if( X->p != NULL )
164 {
165 memcpy( p, X->p, i * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200166 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200167 mbedtls_free( X->p );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100168 }
169
170 X->n = i;
171 X->p = p;
172
173 return( 0 );
174}
175
Gilles Peskineed32b572021-06-02 22:17:52 +0200176/* Resize X to have exactly n limbs and set it to 0. */
177static int mbedtls_mpi_resize_clear( mbedtls_mpi *X, size_t limbs )
178{
179 if( limbs == 0 )
180 {
181 mbedtls_mpi_free( X );
182 return( 0 );
183 }
184 else if( X->n == limbs )
185 {
186 memset( X->p, 0, limbs * ciL );
187 X->s = 1;
188 return( 0 );
189 }
190 else
191 {
192 mbedtls_mpi_free( X );
193 return( mbedtls_mpi_grow( X, limbs ) );
194 }
195}
196
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100197/*
Gilles Peskine3da1a8f2021-06-08 23:17:42 +0200198 * Copy the contents of Y into X.
199 *
200 * This function is not constant-time. Leading zeros in Y may be removed.
201 *
202 * Ensure that X does not shrink. This is not guaranteed by the public API,
203 * but some code in the bignum module relies on this property, for example
204 * in mbedtls_mpi_exp_mod().
Paul Bakker5121ce52009-01-03 21:22:43 +0000205 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200206int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000207{
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100208 int ret = 0;
Paul Bakker23986e52011-04-24 08:57:21 +0000209 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000210 MPI_VALIDATE_RET( X != NULL );
211 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000212
213 if( X == Y )
214 return( 0 );
215
Gilles Peskinedb420622020-01-20 21:12:50 +0100216 if( Y->n == 0 )
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200217 {
Gilles Peskine3da1a8f2021-06-08 23:17:42 +0200218 if( X->n != 0 )
219 {
220 X->s = 1;
221 memset( X->p, 0, X->n * ciL );
222 }
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200223 return( 0 );
224 }
225
Paul Bakker5121ce52009-01-03 21:22:43 +0000226 for( i = Y->n - 1; i > 0; i-- )
227 if( Y->p[i] != 0 )
228 break;
229 i++;
230
231 X->s = Y->s;
232
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100233 if( X->n < i )
234 {
235 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
236 }
237 else
238 {
239 memset( X->p + i, 0, ( X->n - i ) * ciL );
240 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000241
Paul Bakker5121ce52009-01-03 21:22:43 +0000242 memcpy( X->p, Y->p, i * ciL );
243
244cleanup:
245
246 return( ret );
247}
248
249/*
250 * Swap the contents of X and Y
251 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200252void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000253{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200254 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000255 MPI_VALIDATE( X != NULL );
256 MPI_VALIDATE( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000257
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200258 memcpy( &T, X, sizeof( mbedtls_mpi ) );
259 memcpy( X, Y, sizeof( mbedtls_mpi ) );
260 memcpy( Y, &T, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000261}
262
263/*
264 * Set value from integer
265 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200266int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +0000267{
Janos Follath24eed8d2019-11-22 13:21:35 +0000268 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +0000269 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000270
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200271 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000272 memset( X->p, 0, X->n * ciL );
273
274 X->p[0] = ( z < 0 ) ? -z : z;
275 X->s = ( z < 0 ) ? -1 : 1;
276
277cleanup:
278
279 return( ret );
280}
281
282/*
Paul Bakker2f5947e2011-05-18 15:47:11 +0000283 * Get a specific bit
284 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200285int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000286{
Hanno Becker73d7d792018-12-11 10:35:51 +0000287 MPI_VALIDATE_RET( X != NULL );
288
Paul Bakker2f5947e2011-05-18 15:47:11 +0000289 if( X->n * biL <= pos )
290 return( 0 );
291
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200292 return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000293}
294
295/*
296 * Set a bit to a specific value of 0 or 1
297 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200298int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000299{
300 int ret = 0;
301 size_t off = pos / biL;
302 size_t idx = pos % biL;
Hanno Becker73d7d792018-12-11 10:35:51 +0000303 MPI_VALIDATE_RET( X != NULL );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000304
305 if( val != 0 && val != 1 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200306 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker9af723c2014-05-01 13:03:14 +0200307
Paul Bakker2f5947e2011-05-18 15:47:11 +0000308 if( X->n * biL <= pos )
309 {
310 if( val == 0 )
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200311 return( 0 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000312
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200313 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000314 }
315
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200316 X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );
317 X->p[off] |= (mbedtls_mpi_uint) val << idx;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000318
319cleanup:
Paul Bakker9af723c2014-05-01 13:03:14 +0200320
Paul Bakker2f5947e2011-05-18 15:47:11 +0000321 return( ret );
322}
323
324/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200325 * Return the number of less significant zero-bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000326 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200327size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000328{
Paul Bakker23986e52011-04-24 08:57:21 +0000329 size_t i, j, count = 0;
Hanno Beckerf25ee7f2018-12-19 16:51:02 +0000330 MBEDTLS_INTERNAL_VALIDATE_RET( X != NULL, 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000331
332 for( i = 0; i < X->n; i++ )
Paul Bakkerf9688572011-05-05 10:00:45 +0000333 for( j = 0; j < biL; j++, count++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000334 if( ( ( X->p[i] >> j ) & 1 ) != 0 )
335 return( count );
336
337 return( 0 );
338}
339
340/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200341 * Return the number of bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000342 */
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200343size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000344{
Gabor Mezei89e31462022-08-12 15:36:56 +0200345 return( mbedtls_mpi_core_bitlen( X->p, X->n ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000346}
347
348/*
349 * Return the total size in bytes
350 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200351size_t mbedtls_mpi_size( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000352{
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200353 return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000354}
355
356/*
357 * Convert an ASCII character to digit value
358 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200359static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c )
Paul Bakker5121ce52009-01-03 21:22:43 +0000360{
361 *d = 255;
362
363 if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
364 if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
365 if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
366
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200367 if( *d >= (mbedtls_mpi_uint) radix )
368 return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );
Paul Bakker5121ce52009-01-03 21:22:43 +0000369
370 return( 0 );
371}
372
373/*
374 * Import from an ASCII string
375 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200376int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000377{
Janos Follath24eed8d2019-11-22 13:21:35 +0000378 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000379 size_t i, j, slen, n;
Gilles Peskine80f56732021-04-03 18:26:13 +0200380 int sign = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200381 mbedtls_mpi_uint d;
382 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000383 MPI_VALIDATE_RET( X != NULL );
384 MPI_VALIDATE_RET( s != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000385
386 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000387 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000388
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200389 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000390
Gilles Peskine7cba8592021-06-08 18:32:34 +0200391 if( s[0] == 0 )
392 {
393 mbedtls_mpi_free( X );
394 return( 0 );
395 }
396
Gilles Peskine80f56732021-04-03 18:26:13 +0200397 if( s[0] == '-' )
398 {
399 ++s;
400 sign = -1;
401 }
402
Paul Bakkerff60ee62010-03-16 21:09:09 +0000403 slen = strlen( s );
404
Paul Bakker5121ce52009-01-03 21:22:43 +0000405 if( radix == 16 )
406 {
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +0100407 if( slen > MPI_SIZE_T_MAX >> 2 )
Manuel Pégourié-Gonnard58fb4952015-09-28 13:48:04 +0200408 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
409
Paul Bakkerff60ee62010-03-16 21:09:09 +0000410 n = BITS_TO_LIMBS( slen << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000411
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200412 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );
413 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000414
Paul Bakker23986e52011-04-24 08:57:21 +0000415 for( i = slen, j = 0; i > 0; i--, j++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000416 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200417 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
Paul Bakker66d5d072014-06-17 16:39:18 +0200418 X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000419 }
420 }
421 else
422 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200423 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000424
Paul Bakkerff60ee62010-03-16 21:09:09 +0000425 for( i = 0; i < slen; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000426 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200427 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
428 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );
Gilles Peskine80f56732021-04-03 18:26:13 +0200429 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000430 }
431 }
432
Gilles Peskine80f56732021-04-03 18:26:13 +0200433 if( sign < 0 && mbedtls_mpi_bitlen( X ) != 0 )
434 X->s = -1;
435
Paul Bakker5121ce52009-01-03 21:22:43 +0000436cleanup:
437
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200438 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000439
440 return( ret );
441}
442
443/*
Ron Eldora16fa292018-11-20 14:07:01 +0200444 * Helper to write the digits high-order first.
Paul Bakker5121ce52009-01-03 21:22:43 +0000445 */
Ron Eldora16fa292018-11-20 14:07:01 +0200446static int mpi_write_hlp( mbedtls_mpi *X, int radix,
447 char **p, const size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000448{
Janos Follath24eed8d2019-11-22 13:21:35 +0000449 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200450 mbedtls_mpi_uint r;
Ron Eldora16fa292018-11-20 14:07:01 +0200451 size_t length = 0;
452 char *p_end = *p + buflen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000453
Ron Eldora16fa292018-11-20 14:07:01 +0200454 do
455 {
456 if( length >= buflen )
457 {
458 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
459 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000460
Ron Eldora16fa292018-11-20 14:07:01 +0200461 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );
462 MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );
463 /*
464 * Write the residue in the current position, as an ASCII character.
465 */
466 if( r < 0xA )
467 *(--p_end) = (char)( '0' + r );
468 else
469 *(--p_end) = (char)( 'A' + ( r - 0xA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000470
Ron Eldora16fa292018-11-20 14:07:01 +0200471 length++;
472 } while( mbedtls_mpi_cmp_int( X, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000473
Ron Eldora16fa292018-11-20 14:07:01 +0200474 memmove( *p, p_end, length );
475 *p += length;
Paul Bakker5121ce52009-01-03 21:22:43 +0000476
477cleanup:
478
479 return( ret );
480}
481
482/*
483 * Export into an ASCII string
484 */
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100485int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,
486 char *buf, size_t buflen, size_t *olen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000487{
Paul Bakker23986e52011-04-24 08:57:21 +0000488 int ret = 0;
489 size_t n;
Paul Bakker5121ce52009-01-03 21:22:43 +0000490 char *p;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200491 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000492 MPI_VALIDATE_RET( X != NULL );
493 MPI_VALIDATE_RET( olen != NULL );
494 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000495
496 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000497 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000498
Hanno Becker23cfea02019-02-04 09:45:07 +0000499 n = mbedtls_mpi_bitlen( X ); /* Number of bits necessary to present `n`. */
500 if( radix >= 4 ) n >>= 1; /* Number of 4-adic digits necessary to present
501 * `n`. If radix > 4, this might be a strict
502 * overapproximation of the number of
503 * radix-adic digits needed to present `n`. */
504 if( radix >= 16 ) n >>= 1; /* Number of hexadecimal digits necessary to
505 * present `n`. */
506
Janos Follath80470622019-03-06 13:43:02 +0000507 n += 1; /* Terminating null byte */
Hanno Becker23cfea02019-02-04 09:45:07 +0000508 n += 1; /* Compensate for the divisions above, which round down `n`
509 * in case it's not even. */
510 n += 1; /* Potential '-'-sign. */
511 n += ( n & 1 ); /* Make n even to have enough space for hexadecimal writing,
512 * which always uses an even number of hex-digits. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000513
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100514 if( buflen < n )
Paul Bakker5121ce52009-01-03 21:22:43 +0000515 {
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100516 *olen = n;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200517 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000518 }
519
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100520 p = buf;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200521 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000522
523 if( X->s == -1 )
Hanno Beckerc983c812019-02-01 16:41:30 +0000524 {
Paul Bakker5121ce52009-01-03 21:22:43 +0000525 *p++ = '-';
Hanno Beckerc983c812019-02-01 16:41:30 +0000526 buflen--;
527 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000528
529 if( radix == 16 )
530 {
Paul Bakker23986e52011-04-24 08:57:21 +0000531 int c;
532 size_t i, j, k;
Paul Bakker5121ce52009-01-03 21:22:43 +0000533
Paul Bakker23986e52011-04-24 08:57:21 +0000534 for( i = X->n, k = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000535 {
Paul Bakker23986e52011-04-24 08:57:21 +0000536 for( j = ciL; j > 0; j-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000537 {
Paul Bakker23986e52011-04-24 08:57:21 +0000538 c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
Paul Bakker5121ce52009-01-03 21:22:43 +0000539
Paul Bakker6c343d72014-07-10 14:36:19 +0200540 if( c == 0 && k == 0 && ( i + j ) != 2 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000541 continue;
542
Paul Bakker98fe5ea2012-10-24 11:17:48 +0000543 *(p++) = "0123456789ABCDEF" [c / 16];
Paul Bakkerd2c167e2012-10-30 07:49:19 +0000544 *(p++) = "0123456789ABCDEF" [c % 16];
Paul Bakker5121ce52009-01-03 21:22:43 +0000545 k = 1;
546 }
547 }
548 }
549 else
550 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200551 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000552
553 if( T.s == -1 )
554 T.s = 1;
555
Ron Eldora16fa292018-11-20 14:07:01 +0200556 MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000557 }
558
559 *p++ = '\0';
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100560 *olen = p - buf;
Paul Bakker5121ce52009-01-03 21:22:43 +0000561
562cleanup:
563
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200564 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000565
566 return( ret );
567}
568
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200569#if defined(MBEDTLS_FS_IO)
Paul Bakker5121ce52009-01-03 21:22:43 +0000570/*
571 * Read X from an opened file
572 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200573int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin )
Paul Bakker5121ce52009-01-03 21:22:43 +0000574{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200575 mbedtls_mpi_uint d;
Paul Bakker23986e52011-04-24 08:57:21 +0000576 size_t slen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000577 char *p;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000578 /*
Paul Bakkercb37aa52011-11-30 16:00:20 +0000579 * Buffer should have space for (short) label and decimal formatted MPI,
580 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000581 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200582 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Paul Bakker5121ce52009-01-03 21:22:43 +0000583
Hanno Becker73d7d792018-12-11 10:35:51 +0000584 MPI_VALIDATE_RET( X != NULL );
585 MPI_VALIDATE_RET( fin != NULL );
586
587 if( radix < 2 || radix > 16 )
588 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
589
Paul Bakker5121ce52009-01-03 21:22:43 +0000590 memset( s, 0, sizeof( s ) );
591 if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200592 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000593
594 slen = strlen( s );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000595 if( slen == sizeof( s ) - 2 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200596 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000597
Hanno Beckerb2034b72017-04-26 11:46:46 +0100598 if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
599 if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
Paul Bakker5121ce52009-01-03 21:22:43 +0000600
601 p = s + slen;
Hanno Beckerb2034b72017-04-26 11:46:46 +0100602 while( p-- > s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000603 if( mpi_get_digit( &d, radix, *p ) != 0 )
604 break;
605
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200606 return( mbedtls_mpi_read_string( X, radix, p + 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000607}
608
609/*
610 * Write X into an opened file (or stdout if fout == NULL)
611 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200612int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout )
Paul Bakker5121ce52009-01-03 21:22:43 +0000613{
Janos Follath24eed8d2019-11-22 13:21:35 +0000614 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000615 size_t n, slen, plen;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000616 /*
Paul Bakker5531c6d2012-09-26 19:20:46 +0000617 * Buffer should have space for (short) label and decimal formatted MPI,
618 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000619 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200620 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Hanno Becker73d7d792018-12-11 10:35:51 +0000621 MPI_VALIDATE_RET( X != NULL );
622
623 if( radix < 2 || radix > 16 )
624 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000625
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100626 memset( s, 0, sizeof( s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000627
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100628 MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000629
630 if( p == NULL ) p = "";
631
632 plen = strlen( p );
633 slen = strlen( s );
634 s[slen++] = '\r';
635 s[slen++] = '\n';
636
637 if( fout != NULL )
638 {
639 if( fwrite( p, 1, plen, fout ) != plen ||
640 fwrite( s, 1, slen, fout ) != slen )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200641 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000642 }
643 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200644 mbedtls_printf( "%s%s", p, s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000645
646cleanup:
647
648 return( ret );
649}
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200650#endif /* MBEDTLS_FS_IO */
Paul Bakker5121ce52009-01-03 21:22:43 +0000651
652/*
Janos Follatha778a942019-02-13 10:28:28 +0000653 * Import X from unsigned binary data, little endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100654 *
655 * This function is guaranteed to return an MPI with exactly the necessary
656 * number of limbs (in particular, it does not skip 0s in the input).
Janos Follatha778a942019-02-13 10:28:28 +0000657 */
658int mbedtls_mpi_read_binary_le( mbedtls_mpi *X,
659 const unsigned char *buf, size_t buflen )
660{
Janos Follath24eed8d2019-11-22 13:21:35 +0000661 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath620c58c2022-08-15 11:58:42 +0100662 const size_t limbs = CHARS_TO_LIMBS( buflen );
Janos Follatha778a942019-02-13 10:28:28 +0000663
664 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskineed32b572021-06-02 22:17:52 +0200665 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Janos Follatha778a942019-02-13 10:28:28 +0000666
Janos Follath5f016652022-07-22 16:18:41 +0100667 MBEDTLS_MPI_CHK( mbedtls_mpi_core_read_le( X->p, X->n, buf, buflen ) );
Janos Follatha778a942019-02-13 10:28:28 +0000668
669cleanup:
670
Janos Follath171a7ef2019-02-15 16:17:45 +0000671 /*
672 * This function is also used to import keys. However, wiping the buffers
673 * upon failure is not necessary because failure only can happen before any
674 * input is copied.
675 */
Janos Follatha778a942019-02-13 10:28:28 +0000676 return( ret );
677}
678
679/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000680 * Import X from unsigned binary data, big endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100681 *
682 * This function is guaranteed to return an MPI with exactly the necessary
683 * number of limbs (in particular, it does not skip 0s in the input).
Paul Bakker5121ce52009-01-03 21:22:43 +0000684 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200685int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000686{
Janos Follath24eed8d2019-11-22 13:21:35 +0000687 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath620c58c2022-08-15 11:58:42 +0100688 const size_t limbs = CHARS_TO_LIMBS( buflen );
Paul Bakker5121ce52009-01-03 21:22:43 +0000689
Hanno Becker8ce11a32018-12-19 16:18:52 +0000690 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +0000691 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
692
Hanno Becker073c1992017-10-17 15:17:27 +0100693 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskineed32b572021-06-02 22:17:52 +0200694 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000695
Janos Follath5f016652022-07-22 16:18:41 +0100696 MBEDTLS_MPI_CHK( mbedtls_mpi_core_read_be( X->p, X->n, buf, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000697
698cleanup:
699
Janos Follath171a7ef2019-02-15 16:17:45 +0000700 /*
701 * This function is also used to import keys. However, wiping the buffers
702 * upon failure is not necessary because failure only can happen before any
703 * input is copied.
704 */
Paul Bakker5121ce52009-01-03 21:22:43 +0000705 return( ret );
706}
707
708/*
Janos Follathe344d0f2019-02-19 16:17:40 +0000709 * Export X into unsigned binary data, little endian
710 */
711int mbedtls_mpi_write_binary_le( const mbedtls_mpi *X,
712 unsigned char *buf, size_t buflen )
713{
Janos Follathca5688e2022-08-19 12:05:28 +0100714 return( mbedtls_mpi_core_write_le( X->p, X->n, buf, buflen ) );
Janos Follathe344d0f2019-02-19 16:17:40 +0000715}
716
717/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000718 * Export X into unsigned binary data, big endian
719 */
Gilles Peskine11cdb052018-11-20 16:47:47 +0100720int mbedtls_mpi_write_binary( const mbedtls_mpi *X,
721 unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000722{
Janos Follath5f016652022-07-22 16:18:41 +0100723 return( mbedtls_mpi_core_write_be( X->p, X->n, buf, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000724}
725
726/*
727 * Left-shift: X <<= count
728 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200729int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000730{
Janos Follath24eed8d2019-11-22 13:21:35 +0000731 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000732 size_t i, v0, t1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200733 mbedtls_mpi_uint r0 = 0, r1;
Hanno Becker73d7d792018-12-11 10:35:51 +0000734 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000735
736 v0 = count / (biL );
737 t1 = count & (biL - 1);
738
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200739 i = mbedtls_mpi_bitlen( X ) + count;
Paul Bakker5121ce52009-01-03 21:22:43 +0000740
Paul Bakkerf9688572011-05-05 10:00:45 +0000741 if( X->n * biL < i )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200742 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000743
744 ret = 0;
745
746 /*
747 * shift by count / limb_size
748 */
749 if( v0 > 0 )
750 {
Paul Bakker23986e52011-04-24 08:57:21 +0000751 for( i = X->n; i > v0; i-- )
752 X->p[i - 1] = X->p[i - v0 - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +0000753
Paul Bakker23986e52011-04-24 08:57:21 +0000754 for( ; i > 0; i-- )
755 X->p[i - 1] = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000756 }
757
758 /*
759 * shift by count % limb_size
760 */
761 if( t1 > 0 )
762 {
763 for( i = v0; i < X->n; i++ )
764 {
765 r1 = X->p[i] >> (biL - t1);
766 X->p[i] <<= t1;
767 X->p[i] |= r0;
768 r0 = r1;
769 }
770 }
771
772cleanup:
773
774 return( ret );
775}
776
777/*
778 * Right-shift: X >>= count
779 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200780int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000781{
Paul Bakker23986e52011-04-24 08:57:21 +0000782 size_t i, v0, v1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200783 mbedtls_mpi_uint r0 = 0, r1;
Hanno Becker73d7d792018-12-11 10:35:51 +0000784 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000785
786 v0 = count / biL;
787 v1 = count & (biL - 1);
788
Manuel Pégourié-Gonnarde44ec102012-11-17 12:42:51 +0100789 if( v0 > X->n || ( v0 == X->n && v1 > 0 ) )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200790 return mbedtls_mpi_lset( X, 0 );
Manuel Pégourié-Gonnarde44ec102012-11-17 12:42:51 +0100791
Paul Bakker5121ce52009-01-03 21:22:43 +0000792 /*
793 * shift by count / limb_size
794 */
795 if( v0 > 0 )
796 {
797 for( i = 0; i < X->n - v0; i++ )
798 X->p[i] = X->p[i + v0];
799
800 for( ; i < X->n; i++ )
801 X->p[i] = 0;
802 }
803
804 /*
805 * shift by count % limb_size
806 */
807 if( v1 > 0 )
808 {
Paul Bakker23986e52011-04-24 08:57:21 +0000809 for( i = X->n; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000810 {
Paul Bakker23986e52011-04-24 08:57:21 +0000811 r1 = X->p[i - 1] << (biL - v1);
812 X->p[i - 1] >>= v1;
813 X->p[i - 1] |= r0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000814 r0 = r1;
815 }
816 }
817
818 return( 0 );
819}
820
821/*
822 * Compare unsigned values
823 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200824int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000825{
Paul Bakker23986e52011-04-24 08:57:21 +0000826 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +0000827 MPI_VALIDATE_RET( X != NULL );
828 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000829
Paul Bakker23986e52011-04-24 08:57:21 +0000830 for( i = X->n; i > 0; i-- )
831 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000832 break;
833
Paul Bakker23986e52011-04-24 08:57:21 +0000834 for( j = Y->n; j > 0; j-- )
835 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000836 break;
837
Paul Bakker23986e52011-04-24 08:57:21 +0000838 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000839 return( 0 );
840
841 if( i > j ) return( 1 );
842 if( j > i ) return( -1 );
843
Paul Bakker23986e52011-04-24 08:57:21 +0000844 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000845 {
Paul Bakker23986e52011-04-24 08:57:21 +0000846 if( X->p[i - 1] > Y->p[i - 1] ) return( 1 );
847 if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000848 }
849
850 return( 0 );
851}
852
853/*
854 * Compare signed values
855 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200856int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000857{
Paul Bakker23986e52011-04-24 08:57:21 +0000858 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +0000859 MPI_VALIDATE_RET( X != NULL );
860 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000861
Paul Bakker23986e52011-04-24 08:57:21 +0000862 for( i = X->n; i > 0; i-- )
863 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000864 break;
865
Paul Bakker23986e52011-04-24 08:57:21 +0000866 for( j = Y->n; j > 0; j-- )
867 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000868 break;
869
Paul Bakker23986e52011-04-24 08:57:21 +0000870 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000871 return( 0 );
872
873 if( i > j ) return( X->s );
Paul Bakker0c8f73b2012-03-22 14:08:57 +0000874 if( j > i ) return( -Y->s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000875
876 if( X->s > 0 && Y->s < 0 ) return( 1 );
877 if( Y->s > 0 && X->s < 0 ) return( -1 );
878
Paul Bakker23986e52011-04-24 08:57:21 +0000879 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000880 {
Paul Bakker23986e52011-04-24 08:57:21 +0000881 if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );
882 if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000883 }
884
885 return( 0 );
886}
887
Janos Follathee6abce2019-09-05 14:47:19 +0100888/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000889 * Compare signed values
890 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200891int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +0000892{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200893 mbedtls_mpi Y;
894 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +0000895 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000896
897 *p = ( z < 0 ) ? -z : z;
898 Y.s = ( z < 0 ) ? -1 : 1;
899 Y.n = 1;
900 Y.p = p;
901
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200902 return( mbedtls_mpi_cmp_mpi( X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000903}
904
905/*
906 * Unsigned addition: X = |A| + |B| (HAC 14.7)
907 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200908int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +0000909{
Janos Follath24eed8d2019-11-22 13:21:35 +0000910 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000911 size_t i, j;
Janos Follath6c922682015-10-30 17:43:11 +0100912 mbedtls_mpi_uint *o, *p, c, tmp;
Hanno Becker73d7d792018-12-11 10:35:51 +0000913 MPI_VALIDATE_RET( X != NULL );
914 MPI_VALIDATE_RET( A != NULL );
915 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000916
917 if( X == B )
918 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200919 const mbedtls_mpi *T = A; A = X; B = T;
Paul Bakker5121ce52009-01-03 21:22:43 +0000920 }
921
922 if( X != A )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200923 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
Paul Bakker9af723c2014-05-01 13:03:14 +0200924
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000925 /*
926 * X should always be positive as a result of unsigned additions.
927 */
928 X->s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000929
Paul Bakker23986e52011-04-24 08:57:21 +0000930 for( j = B->n; j > 0; j-- )
931 if( B->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000932 break;
933
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200934 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000935
936 o = B->p; p = X->p; c = 0;
937
Janos Follath6c922682015-10-30 17:43:11 +0100938 /*
939 * tmp is used because it might happen that p == o
940 */
Paul Bakker23986e52011-04-24 08:57:21 +0000941 for( i = 0; i < j; i++, o++, p++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000942 {
Janos Follath6c922682015-10-30 17:43:11 +0100943 tmp= *o;
Paul Bakker5121ce52009-01-03 21:22:43 +0000944 *p += c; c = ( *p < c );
Janos Follath6c922682015-10-30 17:43:11 +0100945 *p += tmp; c += ( *p < tmp );
Paul Bakker5121ce52009-01-03 21:22:43 +0000946 }
947
948 while( c != 0 )
949 {
950 if( i >= X->n )
951 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200952 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000953 p = X->p + i;
954 }
955
Paul Bakker2d319fd2012-09-16 21:34:26 +0000956 *p += c; c = ( *p < c ); i++; p++;
Paul Bakker5121ce52009-01-03 21:22:43 +0000957 }
958
959cleanup:
960
961 return( ret );
962}
963
Gilles Peskine09ec10a2020-06-09 10:39:38 +0200964/**
Gilles Peskinec097e9e2020-06-08 21:58:22 +0200965 * Helper for mbedtls_mpi subtraction.
966 *
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200967 * Calculate l - r where l and r have the same size.
Gilles Peskinec097e9e2020-06-08 21:58:22 +0200968 * This function operates modulo (2^ciL)^n and returns the carry
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200969 * (1 if there was a wraparound, i.e. if `l < r`, and 0 otherwise).
Gilles Peskinec097e9e2020-06-08 21:58:22 +0200970 *
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200971 * d may be aliased to l or r.
Gilles Peskinec097e9e2020-06-08 21:58:22 +0200972 *
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200973 * \param n Number of limbs of \p d, \p l and \p r.
974 * \param[out] d The result of the subtraction.
975 * \param[in] l The left operand.
976 * \param[in] r The right operand.
977 *
978 * \return 1 if `l < r`.
979 * 0 if `l >= r`.
Paul Bakker5121ce52009-01-03 21:22:43 +0000980 */
Gilles Peskinec097e9e2020-06-08 21:58:22 +0200981static mbedtls_mpi_uint mpi_sub_hlp( size_t n,
982 mbedtls_mpi_uint *d,
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200983 const mbedtls_mpi_uint *l,
984 const mbedtls_mpi_uint *r )
Paul Bakker5121ce52009-01-03 21:22:43 +0000985{
Paul Bakker23986e52011-04-24 08:57:21 +0000986 size_t i;
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200987 mbedtls_mpi_uint c = 0, t, z;
Paul Bakker5121ce52009-01-03 21:22:43 +0000988
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200989 for( i = 0; i < n; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000990 {
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200991 z = ( l[i] < c ); t = l[i] - c;
992 c = ( t < r[i] ) + z; d[i] = t - r[i];
Paul Bakker5121ce52009-01-03 21:22:43 +0000993 }
994
Gilles Peskinec097e9e2020-06-08 21:58:22 +0200995 return( c );
Paul Bakker5121ce52009-01-03 21:22:43 +0000996}
997
998/*
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200999 * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
Paul Bakker5121ce52009-01-03 21:22:43 +00001000 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001001int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001002{
Janos Follath24eed8d2019-11-22 13:21:35 +00001003 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001004 size_t n;
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001005 mbedtls_mpi_uint carry;
Hanno Becker73d7d792018-12-11 10:35:51 +00001006 MPI_VALIDATE_RET( X != NULL );
1007 MPI_VALIDATE_RET( A != NULL );
1008 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001009
Paul Bakker23986e52011-04-24 08:57:21 +00001010 for( n = B->n; n > 0; n-- )
1011 if( B->p[n - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001012 break;
Gilles Peskinec8a91772021-01-27 22:30:43 +01001013 if( n > A->n )
1014 {
1015 /* B >= (2^ciL)^n > A */
1016 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1017 goto cleanup;
1018 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001019
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001020 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, A->n ) );
1021
1022 /* Set the high limbs of X to match A. Don't touch the lower limbs
1023 * because X might be aliased to B, and we must not overwrite the
1024 * significant digits of B. */
1025 if( A->n > n )
1026 memcpy( X->p + n, A->p + n, ( A->n - n ) * ciL );
1027 if( X->n > A->n )
1028 memset( X->p + A->n, 0, ( X->n - A->n ) * ciL );
1029
1030 carry = mpi_sub_hlp( n, X->p, A->p, B->p );
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001031 if( carry != 0 )
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001032 {
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001033 /* Propagate the carry to the first nonzero limb of X. */
1034 for( ; n < X->n && X->p[n] == 0; n++ )
1035 --X->p[n];
1036 /* If we ran out of space for the carry, it means that the result
1037 * is negative. */
1038 if( n == X->n )
Gilles Peskine89b41302020-07-23 01:16:46 +02001039 {
1040 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1041 goto cleanup;
1042 }
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001043 --X->p[n];
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001044 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001045
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001046 /* X should always be positive as a result of unsigned subtractions. */
1047 X->s = 1;
1048
Paul Bakker5121ce52009-01-03 21:22:43 +00001049cleanup:
Paul Bakker5121ce52009-01-03 21:22:43 +00001050 return( ret );
1051}
1052
1053/*
1054 * Signed addition: X = A + B
1055 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001056int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001057{
Hanno Becker73d7d792018-12-11 10:35:51 +00001058 int ret, s;
1059 MPI_VALIDATE_RET( X != NULL );
1060 MPI_VALIDATE_RET( A != NULL );
1061 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001062
Hanno Becker73d7d792018-12-11 10:35:51 +00001063 s = A->s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001064 if( A->s * B->s < 0 )
1065 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001066 if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001067 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001068 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001069 X->s = s;
1070 }
1071 else
1072 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001073 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001074 X->s = -s;
1075 }
1076 }
1077 else
1078 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001079 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001080 X->s = s;
1081 }
1082
1083cleanup:
1084
1085 return( ret );
1086}
1087
1088/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001089 * Signed subtraction: X = A - B
Paul Bakker5121ce52009-01-03 21:22:43 +00001090 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001091int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001092{
Hanno Becker73d7d792018-12-11 10:35:51 +00001093 int ret, s;
1094 MPI_VALIDATE_RET( X != NULL );
1095 MPI_VALIDATE_RET( A != NULL );
1096 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001097
Hanno Becker73d7d792018-12-11 10:35:51 +00001098 s = A->s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001099 if( A->s * B->s > 0 )
1100 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001101 if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001102 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001103 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001104 X->s = s;
1105 }
1106 else
1107 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001108 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001109 X->s = -s;
1110 }
1111 }
1112 else
1113 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001114 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001115 X->s = s;
1116 }
1117
1118cleanup:
1119
1120 return( ret );
1121}
1122
1123/*
1124 * Signed addition: X = A + b
1125 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001126int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001127{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001128 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001129 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001130 MPI_VALIDATE_RET( X != NULL );
1131 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001132
1133 p[0] = ( b < 0 ) ? -b : b;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001134 B.s = ( b < 0 ) ? -1 : 1;
1135 B.n = 1;
1136 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001137
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001138 return( mbedtls_mpi_add_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001139}
1140
1141/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001142 * Signed subtraction: X = A - b
Paul Bakker5121ce52009-01-03 21:22:43 +00001143 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001144int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001145{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001146 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001147 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001148 MPI_VALIDATE_RET( X != NULL );
1149 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001150
1151 p[0] = ( b < 0 ) ? -b : b;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001152 B.s = ( b < 0 ) ? -1 : 1;
1153 B.n = 1;
1154 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001155
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001156 return( mbedtls_mpi_sub_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001157}
1158
Paul Bakker5121ce52009-01-03 21:22:43 +00001159/*
1160 * Baseline multiplication: X = A * B (HAC 14.12)
1161 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001162int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001163{
Janos Follath24eed8d2019-11-22 13:21:35 +00001164 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker1772e052022-04-13 06:51:40 +01001165 size_t i, j;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001166 mbedtls_mpi TA, TB;
Hanno Beckerda763de2022-04-13 06:50:02 +01001167 int result_is_zero = 0;
Hanno Becker73d7d792018-12-11 10:35:51 +00001168 MPI_VALIDATE_RET( X != NULL );
1169 MPI_VALIDATE_RET( A != NULL );
1170 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001171
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001172 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001173
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001174 if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
1175 if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
Paul Bakker5121ce52009-01-03 21:22:43 +00001176
Hanno Beckerda763de2022-04-13 06:50:02 +01001177 for( i = A->n; i > 0; i-- )
1178 if( A->p[i - 1] != 0 )
1179 break;
1180 if( i == 0 )
1181 result_is_zero = 1;
1182
1183 for( j = B->n; j > 0; j-- )
1184 if( B->p[j - 1] != 0 )
1185 break;
1186 if( j == 0 )
1187 result_is_zero = 1;
1188
1189 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001190 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001191
Hanno Becker1772e052022-04-13 06:51:40 +01001192 for( size_t k = 0; k < j; k++ )
Hanno Beckerfee261a2022-04-06 06:20:22 +01001193 {
1194 /* We know that there cannot be any carry-out since we're
1195 * iterating from bottom to top. */
Hanno Beckerda763de2022-04-13 06:50:02 +01001196 (void) mbedtls_mpi_core_mla( X->p + k, i + 1,
1197 A->p, i,
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001198 B->p[k] );
Hanno Beckerfee261a2022-04-06 06:20:22 +01001199 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001200
Hanno Beckerda763de2022-04-13 06:50:02 +01001201 /* If the result is 0, we don't shortcut the operation, which reduces
1202 * but does not eliminate side channels leaking the zero-ness. We do
1203 * need to take care to set the sign bit properly since the library does
1204 * not fully support an MPI object with a value of 0 and s == -1. */
1205 if( result_is_zero )
1206 X->s = 1;
1207 else
1208 X->s = A->s * B->s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001209
1210cleanup:
1211
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001212 mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
Paul Bakker5121ce52009-01-03 21:22:43 +00001213
1214 return( ret );
1215}
1216
1217/*
1218 * Baseline multiplication: X = A * b
1219 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001220int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001221{
Hanno Becker73d7d792018-12-11 10:35:51 +00001222 MPI_VALIDATE_RET( X != NULL );
1223 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001224
Hanno Becker35771312022-04-14 11:52:11 +01001225 size_t n = A->n;
1226 while( n > 0 && A->p[n - 1] == 0 )
1227 --n;
1228
Hanno Becker74a11a32022-04-06 06:27:00 +01001229 /* The general method below doesn't work if b==0. */
Hanno Becker35771312022-04-14 11:52:11 +01001230 if( b == 0 || n == 0 )
Paul Elliott986b55a2021-04-20 21:46:29 +01001231 return( mbedtls_mpi_lset( X, 0 ) );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001232
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001233 /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001234 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001235 /* In general, A * b requires 1 limb more than b. If
1236 * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1237 * number of limbs as A and the call to grow() is not required since
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001238 * copy() will take care of the growth if needed. However, experimentally,
1239 * making the call to grow() unconditional causes slightly fewer
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001240 * calls to calloc() in ECP code, presumably because it reuses the
1241 * same mpi for a while and this way the mpi is more likely to directly
Hanno Becker9137b9c2022-04-12 10:51:54 +01001242 * grow to its final size.
1243 *
1244 * Note that calculating A*b as 0 + A*b doesn't work as-is because
1245 * A,X can be the same. */
Hanno Becker35771312022-04-14 11:52:11 +01001246 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n + 1 ) );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001247 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
Hanno Becker35771312022-04-14 11:52:11 +01001248 mbedtls_mpi_core_mla( X->p, X->n, A->p, n, b - 1 );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001249
1250cleanup:
1251 return( ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00001252}
1253
1254/*
Simon Butcherf5ba0452015-12-27 23:01:55 +00001255 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1256 * mbedtls_mpi_uint divisor, d
Simon Butcher15b15d12015-11-26 19:35:03 +00001257 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001258static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,
1259 mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r )
Simon Butcher15b15d12015-11-26 19:35:03 +00001260{
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001261#if defined(MBEDTLS_HAVE_UDBL)
1262 mbedtls_t_udbl dividend, quotient;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001263#else
Simon Butcher9803d072016-01-03 00:24:34 +00001264 const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
1265 const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001266 mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1267 mbedtls_mpi_uint u0_msw, u0_lsw;
Simon Butcher9803d072016-01-03 00:24:34 +00001268 size_t s;
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001269#endif
1270
Simon Butcher15b15d12015-11-26 19:35:03 +00001271 /*
1272 * Check for overflow
1273 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001274 if( 0 == d || u1 >= d )
Simon Butcher15b15d12015-11-26 19:35:03 +00001275 {
Simon Butcherf5ba0452015-12-27 23:01:55 +00001276 if (r != NULL) *r = ~0;
Simon Butcher15b15d12015-11-26 19:35:03 +00001277
Simon Butcherf5ba0452015-12-27 23:01:55 +00001278 return ( ~0 );
Simon Butcher15b15d12015-11-26 19:35:03 +00001279 }
1280
1281#if defined(MBEDTLS_HAVE_UDBL)
Simon Butcher15b15d12015-11-26 19:35:03 +00001282 dividend = (mbedtls_t_udbl) u1 << biL;
1283 dividend |= (mbedtls_t_udbl) u0;
1284 quotient = dividend / d;
1285 if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
1286 quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
1287
1288 if( r != NULL )
Simon Butcher9803d072016-01-03 00:24:34 +00001289 *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001290
1291 return (mbedtls_mpi_uint) quotient;
1292#else
Simon Butcher15b15d12015-11-26 19:35:03 +00001293
1294 /*
1295 * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1296 * Vol. 2 - Seminumerical Algorithms, Knuth
1297 */
1298
1299 /*
1300 * Normalize the divisor, d, and dividend, u0, u1
1301 */
Janos Follath4670f882022-07-21 18:25:42 +01001302 s = mbedtls_mpi_core_clz( d );
Simon Butcher15b15d12015-11-26 19:35:03 +00001303 d = d << s;
1304
1305 u1 = u1 << s;
Simon Butcher9803d072016-01-03 00:24:34 +00001306 u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001307 u0 = u0 << s;
1308
1309 d1 = d >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001310 d0 = d & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001311
1312 u0_msw = u0 >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001313 u0_lsw = u0 & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001314
1315 /*
1316 * Find the first quotient and remainder
1317 */
1318 q1 = u1 / d1;
1319 r0 = u1 - d1 * q1;
1320
1321 while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
1322 {
1323 q1 -= 1;
1324 r0 += d1;
1325
1326 if ( r0 >= radix ) break;
1327 }
1328
Simon Butcherf5ba0452015-12-27 23:01:55 +00001329 rAX = ( u1 * radix ) + ( u0_msw - q1 * d );
Simon Butcher15b15d12015-11-26 19:35:03 +00001330 q0 = rAX / d1;
1331 r0 = rAX - q0 * d1;
1332
1333 while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
1334 {
1335 q0 -= 1;
1336 r0 += d1;
1337
1338 if ( r0 >= radix ) break;
1339 }
1340
1341 if (r != NULL)
Simon Butcherf5ba0452015-12-27 23:01:55 +00001342 *r = ( rAX * radix + u0_lsw - q0 * d ) >> s;
Simon Butcher15b15d12015-11-26 19:35:03 +00001343
1344 quotient = q1 * radix + q0;
1345
1346 return quotient;
1347#endif
1348}
1349
1350/*
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001351 * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
Paul Bakker5121ce52009-01-03 21:22:43 +00001352 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001353int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1354 const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001355{
Janos Follath24eed8d2019-11-22 13:21:35 +00001356 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001357 size_t i, n, t, k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001358 mbedtls_mpi X, Y, Z, T1, T2;
Alexander Kd19a1932019-11-01 18:20:42 +03001359 mbedtls_mpi_uint TP2[3];
Hanno Becker73d7d792018-12-11 10:35:51 +00001360 MPI_VALIDATE_RET( A != NULL );
1361 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001362
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001363 if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )
1364 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001365
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001366 mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001367 mbedtls_mpi_init( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001368 /*
1369 * Avoid dynamic memory allocations for constant-size T2.
1370 *
1371 * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1372 * so nobody increase the size of the MPI and we're safe to use an on-stack
1373 * buffer.
1374 */
Alexander K35d6d462019-10-31 14:46:45 +03001375 T2.s = 1;
Alexander Kd19a1932019-11-01 18:20:42 +03001376 T2.n = sizeof( TP2 ) / sizeof( *TP2 );
1377 T2.p = TP2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001378
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001379 if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001380 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001381 if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );
1382 if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001383 return( 0 );
1384 }
1385
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001386 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );
1387 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001388 X.s = Y.s = 1;
1389
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001390 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
1391 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z, 0 ) );
Gilles Peskine2536aa72020-07-24 00:12:59 +02001392 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, A->n + 2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001393
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02001394 k = mbedtls_mpi_bitlen( &Y ) % biL;
Paul Bakkerf9688572011-05-05 10:00:45 +00001395 if( k < biL - 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001396 {
1397 k = biL - 1 - k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001398 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );
1399 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001400 }
1401 else k = 0;
1402
1403 n = X.n - 1;
1404 t = Y.n - 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001405 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001406
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001407 while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001408 {
1409 Z.p[n - t]++;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001410 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001411 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001412 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001413
1414 for( i = n; i > t ; i-- )
1415 {
1416 if( X.p[i] >= Y.p[t] )
1417 Z.p[i - t - 1] = ~0;
1418 else
1419 {
Simon Butcher15b15d12015-11-26 19:35:03 +00001420 Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
1421 Y.p[t], NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001422 }
1423
Alexander K35d6d462019-10-31 14:46:45 +03001424 T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
1425 T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
1426 T2.p[2] = X.p[i];
1427
Paul Bakker5121ce52009-01-03 21:22:43 +00001428 Z.p[i - t - 1]++;
1429 do
1430 {
1431 Z.p[i - t - 1]--;
1432
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001433 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );
Paul Bakker66d5d072014-06-17 16:39:18 +02001434 T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001435 T1.p[1] = Y.p[t];
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001436 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001437 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001438 while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001439
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001440 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
1441 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1442 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001443
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001444 if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001445 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001446 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );
1447 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1448 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001449 Z.p[i - t - 1]--;
1450 }
1451 }
1452
1453 if( Q != NULL )
1454 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001455 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001456 Q->s = A->s * B->s;
1457 }
1458
1459 if( R != NULL )
1460 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001461 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );
Paul Bakkerf02c5642012-11-13 10:25:21 +00001462 X.s = A->s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001463 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001464
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001465 if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001466 R->s = 1;
1467 }
1468
1469cleanup:
1470
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001471 mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001472 mbedtls_mpi_free( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001473 mbedtls_platform_zeroize( TP2, sizeof( TP2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001474
1475 return( ret );
1476}
1477
1478/*
1479 * Division by int: A = Q * b + R
Paul Bakker5121ce52009-01-03 21:22:43 +00001480 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001481int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R,
1482 const mbedtls_mpi *A,
1483 mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001484{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001485 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001486 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001487 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001488
1489 p[0] = ( b < 0 ) ? -b : b;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001490 B.s = ( b < 0 ) ? -1 : 1;
1491 B.n = 1;
1492 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001493
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001494 return( mbedtls_mpi_div_mpi( Q, R, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001495}
1496
1497/*
1498 * Modulo: R = A mod B
1499 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001500int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001501{
Janos Follath24eed8d2019-11-22 13:21:35 +00001502 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +00001503 MPI_VALIDATE_RET( R != NULL );
1504 MPI_VALIDATE_RET( A != NULL );
1505 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001506
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001507 if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )
1508 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001509
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001510 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001511
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001512 while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )
1513 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001514
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001515 while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )
1516 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001517
1518cleanup:
1519
1520 return( ret );
1521}
1522
1523/*
1524 * Modulo: r = A mod b
1525 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001526int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001527{
Paul Bakker23986e52011-04-24 08:57:21 +00001528 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001529 mbedtls_mpi_uint x, y, z;
Hanno Becker73d7d792018-12-11 10:35:51 +00001530 MPI_VALIDATE_RET( r != NULL );
1531 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001532
1533 if( b == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001534 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001535
1536 if( b < 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001537 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakker5121ce52009-01-03 21:22:43 +00001538
1539 /*
1540 * handle trivial cases
1541 */
Gilles Peskineae25bb02022-06-09 19:32:46 +02001542 if( b == 1 || A->n == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001543 {
1544 *r = 0;
1545 return( 0 );
1546 }
1547
1548 if( b == 2 )
1549 {
1550 *r = A->p[0] & 1;
1551 return( 0 );
1552 }
1553
1554 /*
1555 * general case
1556 */
Paul Bakker23986e52011-04-24 08:57:21 +00001557 for( i = A->n, y = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001558 {
Paul Bakker23986e52011-04-24 08:57:21 +00001559 x = A->p[i - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001560 y = ( y << biH ) | ( x >> biH );
1561 z = y / b;
1562 y -= z * b;
1563
1564 x <<= biH;
1565 y = ( y << biH ) | ( x >> biH );
1566 z = y / b;
1567 y -= z * b;
1568 }
1569
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001570 /*
1571 * If A is negative, then the current y represents a negative value.
1572 * Flipping it to the positive side.
1573 */
1574 if( A->s < 0 && y != 0 )
1575 y = b - y;
1576
Paul Bakker5121ce52009-01-03 21:22:43 +00001577 *r = y;
1578
1579 return( 0 );
1580}
1581
1582/*
1583 * Fast Montgomery initialization (thanks to Tom St Denis)
1584 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001585static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00001586{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001587 mbedtls_mpi_uint x, m0 = N->p[0];
Manuel Pégourié-Gonnardfdf3f0e2014-03-11 13:47:05 +01001588 unsigned int i;
Paul Bakker5121ce52009-01-03 21:22:43 +00001589
1590 x = m0;
1591 x += ( ( m0 + 2 ) & 4 ) << 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001592
Manuel Pégourié-Gonnardfdf3f0e2014-03-11 13:47:05 +01001593 for( i = biL; i >= 8; i /= 2 )
1594 x *= ( 2 - ( m0 * x ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001595
1596 *mm = ~x + 1;
1597}
1598
Gilles Peskine2a82f722020-06-04 15:00:49 +02001599/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
1600 *
1601 * \param[in,out] A One of the numbers to multiply.
Gilles Peskine221626f2020-06-08 22:37:50 +02001602 * It must have at least as many limbs as N
1603 * (A->n >= N->n), and any limbs beyond n are ignored.
Gilles Peskine2a82f722020-06-04 15:00:49 +02001604 * On successful completion, A contains the result of
1605 * the multiplication A * B * R^-1 mod N where
1606 * R = (2^ciL)^n.
1607 * \param[in] B One of the numbers to multiply.
1608 * It must be nonzero and must not have more limbs than N
1609 * (B->n <= N->n).
1610 * \param[in] N The modulo. N must be odd.
1611 * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
1612 * This is -N^-1 mod 2^ciL.
1613 * \param[in,out] T A bignum for temporary storage.
Hanno Beckere1417022022-04-06 06:45:45 +01001614 * It must be at least twice the limb size of N plus 1
1615 * (T->n >= 2 * N->n + 1).
Gilles Peskine2a82f722020-06-04 15:00:49 +02001616 * Its initial content is unused and
1617 * its final content is indeterminate.
1618 * Note that unlike the usual convention in the library
1619 * for `const mbedtls_mpi*`, the content of T can change.
Paul Bakker5121ce52009-01-03 21:22:43 +00001620 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001621static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm,
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001622 const mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001623{
Hanno Becker0235f752022-04-12 10:54:46 +01001624 size_t n, m;
1625 mbedtls_mpi_uint *d;
Paul Bakker5121ce52009-01-03 21:22:43 +00001626
1627 memset( T->p, 0, T->n * ciL );
1628
1629 d = T->p;
1630 n = N->n;
1631 m = ( B->n < n ) ? B->n : n;
1632
Hanno Becker0235f752022-04-12 10:54:46 +01001633 for( size_t i = 0; i < n; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00001634 {
Hanno Becker0235f752022-04-12 10:54:46 +01001635 mbedtls_mpi_uint u0, u1;
1636
Paul Bakker5121ce52009-01-03 21:22:43 +00001637 /*
1638 * T = (T + u0*B + u1*N) / 2^biL
1639 */
1640 u0 = A->p[i];
1641 u1 = ( d[0] + u0 * B->p[0] ) * mm;
1642
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001643 (void) mbedtls_mpi_core_mla( d, n + 2,
1644 B->p, m,
1645 u0 );
1646 (void) mbedtls_mpi_core_mla( d, n + 2,
1647 N->p, n,
1648 u1 );
Hanno Beckere1417022022-04-06 06:45:45 +01001649 d++;
Paul Bakker5121ce52009-01-03 21:22:43 +00001650 }
1651
Gilles Peskine221626f2020-06-08 22:37:50 +02001652 /* At this point, d is either the desired result or the desired result
1653 * plus N. We now potentially subtract N, avoiding leaking whether the
1654 * subtraction is performed through side channels. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001655
Gilles Peskine221626f2020-06-08 22:37:50 +02001656 /* Copy the n least significant limbs of d to A, so that
1657 * A = d if d < N (recall that N has n limbs). */
1658 memcpy( A->p, d, n * ciL );
Gilles Peskine09ec10a2020-06-09 10:39:38 +02001659 /* If d >= N then we want to set A to d - N. To prevent timing attacks,
Gilles Peskine221626f2020-06-08 22:37:50 +02001660 * do the calculation without using conditional tests. */
1661 /* Set d to d0 + (2^biL)^n - N where d0 is the current value of d. */
Gilles Peskine132c0972020-06-04 21:05:24 +02001662 d[n] += 1;
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001663 d[n] -= mpi_sub_hlp( n, d, d, N->p );
Gilles Peskine221626f2020-06-08 22:37:50 +02001664 /* If d0 < N then d < (2^biL)^n
1665 * so d[n] == 0 and we want to keep A as it is.
1666 * If d0 >= N then d >= (2^biL)^n, and d <= (2^biL)^n + N < 2 * (2^biL)^n
1667 * so d[n] == 1 and we want to set A to the result of the subtraction
1668 * which is d - (2^biL)^n, i.e. the n least significant limbs of d.
1669 * This exactly corresponds to a conditional assignment. */
Gabor Mezei90437e32021-10-20 11:59:27 +02001670 mbedtls_ct_mpi_uint_cond_assign( n, A->p, d, (unsigned char) d[n] );
Paul Bakker5121ce52009-01-03 21:22:43 +00001671}
1672
1673/*
1674 * Montgomery reduction: A = A * R^-1 mod N
Gilles Peskine2a82f722020-06-04 15:00:49 +02001675 *
1676 * See mpi_montmul() regarding constraints and guarantees on the parameters.
Paul Bakker5121ce52009-01-03 21:22:43 +00001677 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001678static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N,
1679 mbedtls_mpi_uint mm, const mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001680{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001681 mbedtls_mpi_uint z = 1;
1682 mbedtls_mpi U;
Paul Bakker5121ce52009-01-03 21:22:43 +00001683
Paul Bakker8ddb6452013-02-27 14:56:33 +01001684 U.n = U.s = (int) z;
Paul Bakker5121ce52009-01-03 21:22:43 +00001685 U.p = &z;
1686
Gilles Peskine4e91d472020-06-04 20:55:15 +02001687 mpi_montmul( A, &U, N, mm, T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001688}
1689
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001690/**
1691 * Select an MPI from a table without leaking the index.
1692 *
1693 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
1694 * reads the entire table in order to avoid leaking the value of idx to an
1695 * attacker able to observe memory access patterns.
1696 *
1697 * \param[out] R Where to write the selected MPI.
1698 * \param[in] T The table to read from.
1699 * \param[in] T_size The number of elements in the table.
1700 * \param[in] idx The index of the element to select;
1701 * this must satisfy 0 <= idx < T_size.
1702 *
1703 * \return \c 0 on success, or a negative error code.
1704 */
1705static int mpi_select( mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx )
1706{
1707 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1708
1709 for( size_t i = 0; i < T_size; i++ )
Manuel Pégourié-Gonnard92413ef2021-06-03 10:42:46 +02001710 {
1711 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( R, &T[i],
Gabor Mezei90437e32021-10-20 11:59:27 +02001712 (unsigned char) mbedtls_ct_size_bool_eq( i, idx ) ) );
Manuel Pégourié-Gonnard92413ef2021-06-03 10:42:46 +02001713 }
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001714
1715cleanup:
1716 return( ret );
1717}
1718
Paul Bakker5121ce52009-01-03 21:22:43 +00001719/*
1720 * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
1721 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001722int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
1723 const mbedtls_mpi *E, const mbedtls_mpi *N,
Yuto Takano538a0cb2021-07-14 10:20:09 +01001724 mbedtls_mpi *prec_RR )
Paul Bakker5121ce52009-01-03 21:22:43 +00001725{
Janos Follath24eed8d2019-11-22 13:21:35 +00001726 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001727 size_t wbits, wsize, one = 1;
1728 size_t i, j, nblimbs;
1729 size_t bufsize, nbits;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001730 mbedtls_mpi_uint ei, mm, state;
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001731 mbedtls_mpi RR, T, W[ 1 << MBEDTLS_MPI_WINDOW_SIZE ], WW, Apos;
Paul Bakkerf6198c12012-05-16 08:02:29 +00001732 int neg;
Paul Bakker5121ce52009-01-03 21:22:43 +00001733
Hanno Becker73d7d792018-12-11 10:35:51 +00001734 MPI_VALIDATE_RET( X != NULL );
1735 MPI_VALIDATE_RET( A != NULL );
1736 MPI_VALIDATE_RET( E != NULL );
1737 MPI_VALIDATE_RET( N != NULL );
1738
Hanno Becker8d1dd1b2017-09-28 11:02:24 +01001739 if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || ( N->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001740 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00001741
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001742 if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
1743 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakkerf6198c12012-05-16 08:02:29 +00001744
Chris Jones9246d042020-11-25 15:12:39 +00001745 if( mbedtls_mpi_bitlen( E ) > MBEDTLS_MPI_MAX_BITS ||
1746 mbedtls_mpi_bitlen( N ) > MBEDTLS_MPI_MAX_BITS )
1747 return ( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
1748
Paul Bakkerf6198c12012-05-16 08:02:29 +00001749 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001750 * Init temps and window size
1751 */
1752 mpi_montg_init( &mm, N );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001753 mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
1754 mbedtls_mpi_init( &Apos );
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001755 mbedtls_mpi_init( &WW );
Paul Bakker5121ce52009-01-03 21:22:43 +00001756 memset( W, 0, sizeof( W ) );
1757
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02001758 i = mbedtls_mpi_bitlen( E );
Paul Bakker5121ce52009-01-03 21:22:43 +00001759
1760 wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
1761 ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
1762
Peter Kolbuse6bcad32018-12-11 14:01:44 -06001763#if( MBEDTLS_MPI_WINDOW_SIZE < 6 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001764 if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
1765 wsize = MBEDTLS_MPI_WINDOW_SIZE;
Peter Kolbuse6bcad32018-12-11 14:01:44 -06001766#endif
Paul Bakkerb6d5f082011-11-25 11:52:11 +00001767
Paul Bakker5121ce52009-01-03 21:22:43 +00001768 j = N->n + 1;
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001769 /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
1770 * and mpi_montred() calls later. Here we ensure that W[1] and X are
1771 * large enough, and later we'll grow other W[i] to the same length.
1772 * They must not be shrunk midway through this function!
1773 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001774 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
1775 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) );
1776 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001777
1778 /*
Paul Bakker50546922012-05-19 08:40:49 +00001779 * Compensate for negative A (and correct at the end)
1780 */
1781 neg = ( A->s == -1 );
Paul Bakker50546922012-05-19 08:40:49 +00001782 if( neg )
1783 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001784 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
Paul Bakker50546922012-05-19 08:40:49 +00001785 Apos.s = 1;
1786 A = &Apos;
1787 }
1788
1789 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001790 * If 1st call, pre-compute R^2 mod N
1791 */
Yuto Takano538a0cb2021-07-14 10:20:09 +01001792 if( prec_RR == NULL || prec_RR->p == NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +00001793 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001794 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
1795 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
1796 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001797
Yuto Takano538a0cb2021-07-14 10:20:09 +01001798 if( prec_RR != NULL )
1799 memcpy( prec_RR, &RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001800 }
1801 else
Yuto Takano538a0cb2021-07-14 10:20:09 +01001802 memcpy( &RR, prec_RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001803
1804 /*
1805 * W[1] = A * R^2 * R^-1 mod N = A * R mod N
1806 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001807 if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001808 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001809 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001810 /* This should be a no-op because W[1] is already that large before
1811 * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
1812 * in mpi_montmul() below, so let's make sure. */
Gilles Peskine2aa3f162021-06-15 21:22:48 +02001813 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], N->n + 1 ) );
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001814 }
Paul Bakkerc2024f42014-01-23 20:38:35 +01001815 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001816 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001817
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001818 /* Note that this is safe because W[1] always has at least N->n limbs
1819 * (it grew above and was preserved by mbedtls_mpi_copy()). */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001820 mpi_montmul( &W[1], &RR, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001821
1822 /*
1823 * X = R^2 * R^-1 mod N = R mod N
1824 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001825 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );
Gilles Peskine4e91d472020-06-04 20:55:15 +02001826 mpi_montred( X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001827
1828 if( wsize > 1 )
1829 {
1830 /*
1831 * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
1832 */
Paul Bakker66d5d072014-06-17 16:39:18 +02001833 j = one << ( wsize - 1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001834
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001835 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
1836 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001837
1838 for( i = 0; i < wsize - 1; i++ )
Gilles Peskine4e91d472020-06-04 20:55:15 +02001839 mpi_montmul( &W[j], &W[j], N, mm, &T );
Paul Bakker0d7702c2013-10-29 16:18:35 +01001840
Paul Bakker5121ce52009-01-03 21:22:43 +00001841 /*
1842 * W[i] = W[i - 1] * W[1]
1843 */
Paul Bakker66d5d072014-06-17 16:39:18 +02001844 for( i = j + 1; i < ( one << wsize ); i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00001845 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001846 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
1847 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001848
Gilles Peskine4e91d472020-06-04 20:55:15 +02001849 mpi_montmul( &W[i], &W[1], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001850 }
1851 }
1852
1853 nblimbs = E->n;
1854 bufsize = 0;
1855 nbits = 0;
1856 wbits = 0;
1857 state = 0;
1858
1859 while( 1 )
1860 {
1861 if( bufsize == 0 )
1862 {
Paul Bakker0d7702c2013-10-29 16:18:35 +01001863 if( nblimbs == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001864 break;
1865
Paul Bakker0d7702c2013-10-29 16:18:35 +01001866 nblimbs--;
1867
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001868 bufsize = sizeof( mbedtls_mpi_uint ) << 3;
Paul Bakker5121ce52009-01-03 21:22:43 +00001869 }
1870
1871 bufsize--;
1872
1873 ei = (E->p[nblimbs] >> bufsize) & 1;
1874
1875 /*
1876 * skip leading 0s
1877 */
1878 if( ei == 0 && state == 0 )
1879 continue;
1880
1881 if( ei == 0 && state == 1 )
1882 {
1883 /*
1884 * out of window, square X
1885 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001886 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001887 continue;
1888 }
1889
1890 /*
1891 * add ei to current window
1892 */
1893 state = 2;
1894
1895 nbits++;
Paul Bakker66d5d072014-06-17 16:39:18 +02001896 wbits |= ( ei << ( wsize - nbits ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001897
1898 if( nbits == wsize )
1899 {
1900 /*
1901 * X = X^wsize R^-1 mod N
1902 */
1903 for( i = 0; i < wsize; i++ )
Gilles Peskine4e91d472020-06-04 20:55:15 +02001904 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001905
1906 /*
1907 * X = X * W[wbits] R^-1 mod N
1908 */
Manuel Pégourié-Gonnarde22176e2021-06-10 09:34:00 +02001909 MBEDTLS_MPI_CHK( mpi_select( &WW, W, (size_t) 1 << wsize, wbits ) );
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001910 mpi_montmul( X, &WW, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001911
1912 state--;
1913 nbits = 0;
1914 wbits = 0;
1915 }
1916 }
1917
1918 /*
1919 * process the remaining bits
1920 */
1921 for( i = 0; i < nbits; i++ )
1922 {
Gilles Peskine4e91d472020-06-04 20:55:15 +02001923 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001924
1925 wbits <<= 1;
1926
Paul Bakker66d5d072014-06-17 16:39:18 +02001927 if( ( wbits & ( one << wsize ) ) != 0 )
Gilles Peskine4e91d472020-06-04 20:55:15 +02001928 mpi_montmul( X, &W[1], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001929 }
1930
1931 /*
1932 * X = A^E * R * R^-1 mod N = A^E mod N
1933 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001934 mpi_montred( X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001935
Hanno Beckera4af1c42017-04-18 09:07:45 +01001936 if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 )
Paul Bakkerf6198c12012-05-16 08:02:29 +00001937 {
1938 X->s = -1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001939 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );
Paul Bakkerf6198c12012-05-16 08:02:29 +00001940 }
1941
Paul Bakker5121ce52009-01-03 21:22:43 +00001942cleanup:
1943
Paul Bakker66d5d072014-06-17 16:39:18 +02001944 for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001945 mbedtls_mpi_free( &W[i] );
Paul Bakker5121ce52009-01-03 21:22:43 +00001946
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001947 mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001948 mbedtls_mpi_free( &WW );
Paul Bakker6c591fa2011-05-05 11:49:20 +00001949
Yuto Takano538a0cb2021-07-14 10:20:09 +01001950 if( prec_RR == NULL || prec_RR->p == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001951 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00001952
1953 return( ret );
1954}
1955
Paul Bakker5121ce52009-01-03 21:22:43 +00001956/*
1957 * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
1958 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001959int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001960{
Janos Follath24eed8d2019-11-22 13:21:35 +00001961 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001962 size_t lz, lzt;
Alexander Ke8ad49f2019-08-16 16:16:07 +03001963 mbedtls_mpi TA, TB;
Paul Bakker5121ce52009-01-03 21:22:43 +00001964
Hanno Becker73d7d792018-12-11 10:35:51 +00001965 MPI_VALIDATE_RET( G != NULL );
1966 MPI_VALIDATE_RET( A != NULL );
1967 MPI_VALIDATE_RET( B != NULL );
1968
Alexander Ke8ad49f2019-08-16 16:16:07 +03001969 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001970
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001971 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
1972 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001973
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001974 lz = mbedtls_mpi_lsb( &TA );
1975 lzt = mbedtls_mpi_lsb( &TB );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001976
Gilles Peskine27253bc2021-06-09 13:26:43 +02001977 /* The loop below gives the correct result when A==0 but not when B==0.
1978 * So have a special case for B==0. Leverage the fact that we just
1979 * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
1980 * slightly more efficient than cmp_int(). */
1981 if( lzt == 0 && mbedtls_mpi_get_bit( &TB, 0 ) == 0 )
1982 {
1983 ret = mbedtls_mpi_copy( G, A );
1984 goto cleanup;
1985 }
1986
Paul Bakker66d5d072014-06-17 16:39:18 +02001987 if( lzt < lz )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001988 lz = lzt;
1989
Paul Bakker5121ce52009-01-03 21:22:43 +00001990 TA.s = TB.s = 1;
1991
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001992 /* We mostly follow the procedure described in HAC 14.54, but with some
1993 * minor differences:
1994 * - Sequences of multiplications or divisions by 2 are grouped into a
1995 * single shift operation.
Gilles Peskineb09c7ee2021-06-21 18:58:39 +02001996 * - The procedure in HAC assumes that 0 < TB <= TA.
1997 * - The condition TB <= TA is not actually necessary for correctness.
1998 * TA and TB have symmetric roles except for the loop termination
1999 * condition, and the shifts at the beginning of the loop body
2000 * remove any significance from the ordering of TA vs TB before
2001 * the shifts.
2002 * - If TA = 0, the loop goes through 0 iterations and the result is
2003 * correctly TB.
2004 * - The case TB = 0 was short-circuited above.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002005 *
2006 * For the correctness proof below, decompose the original values of
2007 * A and B as
2008 * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
2009 * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
2010 * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
2011 * and gcd(A',B') is odd or 0.
2012 *
2013 * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
2014 * The code maintains the following invariant:
2015 * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
Gilles Peskine4df3f1f2021-06-15 22:09:39 +02002016 */
2017
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002018 /* Proof that the loop terminates:
2019 * At each iteration, either the right-shift by 1 is made on a nonzero
2020 * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
2021 * by at least 1, or the right-shift by 1 is made on zero and then
2022 * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
2023 * since in that case TB is calculated from TB-TA with the condition TB>TA).
2024 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002025 while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002026 {
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002027 /* Divisions by 2 preserve the invariant (I). */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002028 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );
2029 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002030
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002031 /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
2032 * TA-TB is even so the division by 2 has an integer result.
2033 * Invariant (I) is preserved since any odd divisor of both TA and TB
2034 * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
Shaun Case8b0ecbc2021-12-20 21:14:10 -08002035 * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002036 * divides TA.
2037 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002038 if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002039 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002040 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );
2041 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002042 }
2043 else
2044 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002045 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );
2046 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002047 }
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002048 /* Note that one of TA or TB is still odd. */
Paul Bakker5121ce52009-01-03 21:22:43 +00002049 }
2050
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002051 /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
2052 * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
2053 * - If there was at least one loop iteration, then one of TA or TB is odd,
2054 * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
2055 * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
2056 * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
Gilles Peskine4d3fd362021-06-21 11:40:38 +02002057 * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002058 */
2059
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002060 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );
2061 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002062
2063cleanup:
2064
Alexander Ke8ad49f2019-08-16 16:16:07 +03002065 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00002066
2067 return( ret );
2068}
2069
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002070/* Fill X with n_bytes random bytes.
2071 * X must already have room for those bytes.
Gilles Peskineafb2bd22021-06-03 11:51:09 +02002072 * The ordering of the bytes returned from the RNG is suitable for
2073 * deterministic ECDSA (see RFC 6979 §3.3 and mbedtls_mpi_random()).
Gilles Peskineebe9b6a2021-04-13 21:55:35 +02002074 * The size and sign of X are unchanged.
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002075 * n_bytes must not be 0.
2076 */
2077static int mpi_fill_random_internal(
2078 mbedtls_mpi *X, size_t n_bytes,
2079 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2080{
2081 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2082 const size_t limbs = CHARS_TO_LIMBS( n_bytes );
2083 const size_t overhead = ( limbs * ciL ) - n_bytes;
2084
2085 if( X->n < limbs )
2086 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002087
Gilles Peskineebe9b6a2021-04-13 21:55:35 +02002088 memset( X->p, 0, overhead );
2089 memset( (unsigned char *) X->p + limbs * ciL, 0, ( X->n - limbs ) * ciL );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002090 MBEDTLS_MPI_CHK( f_rng( p_rng, (unsigned char *) X->p + overhead, n_bytes ) );
Janos Follath4670f882022-07-21 18:25:42 +01002091 mbedtls_mpi_core_bigendian_to_host( X->p, limbs );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002092
2093cleanup:
2094 return( ret );
2095}
2096
Paul Bakker33dc46b2014-04-30 16:11:39 +02002097/*
2098 * Fill X with size bytes of random.
2099 *
2100 * Use a temporary bytes representation to make sure the result is the same
Paul Bakkerc37b0ac2014-05-01 14:19:23 +02002101 * regardless of the platform endianness (useful when f_rng is actually
Paul Bakker33dc46b2014-04-30 16:11:39 +02002102 * deterministic, eg for tests).
2103 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002104int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,
Paul Bakkera3d195c2011-11-27 21:07:34 +00002105 int (*f_rng)(void *, unsigned char *, size_t),
2106 void *p_rng )
Paul Bakker287781a2011-03-26 13:18:49 +00002107{
Janos Follath24eed8d2019-11-22 13:21:35 +00002108 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath620c58c2022-08-15 11:58:42 +01002109 const size_t limbs = CHARS_TO_LIMBS( size );
Hanno Beckerda1655a2017-10-18 14:21:44 +01002110
Hanno Becker8ce11a32018-12-19 16:18:52 +00002111 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002112 MPI_VALIDATE_RET( f_rng != NULL );
Paul Bakker33dc46b2014-04-30 16:11:39 +02002113
Hanno Beckerda1655a2017-10-18 14:21:44 +01002114 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskineed32b572021-06-02 22:17:52 +02002115 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002116 if( size == 0 )
2117 return( 0 );
Paul Bakker287781a2011-03-26 13:18:49 +00002118
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002119 ret = mpi_fill_random_internal( X, size, f_rng, p_rng );
Paul Bakker287781a2011-03-26 13:18:49 +00002120
2121cleanup:
2122 return( ret );
2123}
2124
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002125int mbedtls_mpi_random( mbedtls_mpi *X,
2126 mbedtls_mpi_sint min,
2127 const mbedtls_mpi *N,
2128 int (*f_rng)(void *, unsigned char *, size_t),
2129 void *p_rng )
2130{
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002131 int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskinee5381682021-04-13 21:23:25 +02002132 int count;
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002133 unsigned lt_lower = 1, lt_upper = 0;
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002134 size_t n_bits = mbedtls_mpi_bitlen( N );
2135 size_t n_bytes = ( n_bits + 7 ) / 8;
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002136 mbedtls_mpi lower_bound;
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002137
Gilles Peskine1e918f42021-03-29 22:14:51 +02002138 if( min < 0 )
2139 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2140 if( mbedtls_mpi_cmp_int( N, min ) <= 0 )
2141 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2142
Gilles Peskinee5381682021-04-13 21:23:25 +02002143 /*
2144 * When min == 0, each try has at worst a probability 1/2 of failing
2145 * (the msb has a probability 1/2 of being 0, and then the result will
2146 * be < N), so after 30 tries failure probability is a most 2**(-30).
2147 *
2148 * When N is just below a power of 2, as is the case when generating
Gilles Peskinee842e582021-04-15 11:45:19 +02002149 * a random scalar on most elliptic curves, 1 try is enough with
Gilles Peskinee5381682021-04-13 21:23:25 +02002150 * overwhelming probability. When N is just above a power of 2,
Gilles Peskinee842e582021-04-15 11:45:19 +02002151 * as when generating a random scalar on secp224k1, each try has
Gilles Peskinee5381682021-04-13 21:23:25 +02002152 * a probability of failing that is almost 1/2.
2153 *
2154 * The probabilities are almost the same if min is nonzero but negligible
2155 * compared to N. This is always the case when N is crypto-sized, but
2156 * it's convenient to support small N for testing purposes. When N
2157 * is small, use a higher repeat count, otherwise the probability of
2158 * failure is macroscopic.
2159 */
Gilles Peskine87823d72021-06-02 21:18:59 +02002160 count = ( n_bytes > 4 ? 30 : 250 );
Gilles Peskinee5381682021-04-13 21:23:25 +02002161
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002162 mbedtls_mpi_init( &lower_bound );
2163
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002164 /* Ensure that target MPI has exactly the same number of limbs
2165 * as the upper bound, even if the upper bound has leading zeros.
2166 * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */
Gilles Peskineed32b572021-06-02 22:17:52 +02002167 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, N->n ) );
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002168 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &lower_bound, N->n ) );
2169 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &lower_bound, min ) );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002170
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002171 /*
2172 * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
2173 * when f_rng is a suitably parametrized instance of HMAC_DRBG:
2174 * - use the same byte ordering;
2175 * - keep the leftmost n_bits bits of the generated octet string;
2176 * - try until result is in the desired range.
2177 * This also avoids any bias, which is especially important for ECDSA.
2178 */
2179 do
2180 {
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002181 MBEDTLS_MPI_CHK( mpi_fill_random_internal( X, n_bytes, f_rng, p_rng ) );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002182 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, 8 * n_bytes - n_bits ) );
2183
Gilles Peskinee5381682021-04-13 21:23:25 +02002184 if( --count == 0 )
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002185 {
2186 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2187 goto cleanup;
2188 }
2189
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002190 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, &lower_bound, &lt_lower ) );
2191 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, N, &lt_upper ) );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002192 }
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002193 while( lt_lower != 0 || lt_upper == 0 );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002194
2195cleanup:
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002196 mbedtls_mpi_free( &lower_bound );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002197 return( ret );
2198}
2199
Paul Bakker5121ce52009-01-03 21:22:43 +00002200/*
2201 * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
2202 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002203int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00002204{
Janos Follath24eed8d2019-11-22 13:21:35 +00002205 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002206 mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
Hanno Becker73d7d792018-12-11 10:35:51 +00002207 MPI_VALIDATE_RET( X != NULL );
2208 MPI_VALIDATE_RET( A != NULL );
2209 MPI_VALIDATE_RET( N != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00002210
Hanno Becker4bcb4912017-04-18 15:49:39 +01002211 if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002212 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002213
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002214 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );
2215 mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );
2216 mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002217
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002218 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002219
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002220 if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002221 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002222 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002223 goto cleanup;
2224 }
2225
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002226 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );
2227 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );
2228 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );
2229 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002230
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002231 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );
2232 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );
2233 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );
2234 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002235
2236 do
2237 {
2238 while( ( TU.p[0] & 1 ) == 0 )
2239 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002240 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002241
2242 if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
2243 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002244 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );
2245 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002246 }
2247
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002248 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );
2249 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002250 }
2251
2252 while( ( TV.p[0] & 1 ) == 0 )
2253 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002254 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002255
2256 if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
2257 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002258 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );
2259 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002260 }
2261
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002262 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );
2263 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002264 }
2265
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002266 if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002267 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002268 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );
2269 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );
2270 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002271 }
2272 else
2273 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002274 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );
2275 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );
2276 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002277 }
2278 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002279 while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002280
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002281 while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )
2282 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002283
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002284 while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )
2285 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002286
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002287 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002288
2289cleanup:
2290
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002291 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );
2292 mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );
2293 mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002294
2295 return( ret );
2296}
2297
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002298#if defined(MBEDTLS_GENPRIME)
Paul Bakkerd9374b02012-11-02 11:02:58 +00002299
Paul Bakker5121ce52009-01-03 21:22:43 +00002300static const int small_prime[] =
2301{
2302 3, 5, 7, 11, 13, 17, 19, 23,
2303 29, 31, 37, 41, 43, 47, 53, 59,
2304 61, 67, 71, 73, 79, 83, 89, 97,
2305 101, 103, 107, 109, 113, 127, 131, 137,
2306 139, 149, 151, 157, 163, 167, 173, 179,
2307 181, 191, 193, 197, 199, 211, 223, 227,
2308 229, 233, 239, 241, 251, 257, 263, 269,
2309 271, 277, 281, 283, 293, 307, 311, 313,
2310 317, 331, 337, 347, 349, 353, 359, 367,
2311 373, 379, 383, 389, 397, 401, 409, 419,
2312 421, 431, 433, 439, 443, 449, 457, 461,
2313 463, 467, 479, 487, 491, 499, 503, 509,
2314 521, 523, 541, 547, 557, 563, 569, 571,
2315 577, 587, 593, 599, 601, 607, 613, 617,
2316 619, 631, 641, 643, 647, 653, 659, 661,
2317 673, 677, 683, 691, 701, 709, 719, 727,
2318 733, 739, 743, 751, 757, 761, 769, 773,
2319 787, 797, 809, 811, 821, 823, 827, 829,
2320 839, 853, 857, 859, 863, 877, 881, 883,
2321 887, 907, 911, 919, 929, 937, 941, 947,
2322 953, 967, 971, 977, 983, 991, 997, -103
2323};
2324
2325/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002326 * Small divisors test (X must be positive)
2327 *
2328 * Return values:
2329 * 0: no small factor (possible prime, more tests needed)
2330 * 1: certain prime
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002331 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002332 * other negative: error
Paul Bakker5121ce52009-01-03 21:22:43 +00002333 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002334static int mpi_check_small_factors( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +00002335{
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002336 int ret = 0;
2337 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002338 mbedtls_mpi_uint r;
Paul Bakker5121ce52009-01-03 21:22:43 +00002339
Paul Bakker5121ce52009-01-03 21:22:43 +00002340 if( ( X->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002341 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002342
2343 for( i = 0; small_prime[i] > 0; i++ )
2344 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002345 if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002346 return( 1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002347
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002348 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002349
2350 if( r == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002351 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002352 }
2353
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002354cleanup:
2355 return( ret );
2356}
2357
2358/*
2359 * Miller-Rabin pseudo-primality test (HAC 4.24)
2360 */
Janos Follathda31fa12018-09-03 14:45:23 +01002361static int mpi_miller_rabin( const mbedtls_mpi *X, size_t rounds,
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002362 int (*f_rng)(void *, unsigned char *, size_t),
2363 void *p_rng )
2364{
Pascal Junodb99183d2015-03-11 16:49:45 +01002365 int ret, count;
Janos Follathda31fa12018-09-03 14:45:23 +01002366 size_t i, j, k, s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002367 mbedtls_mpi W, R, T, A, RR;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002368
Hanno Becker8ce11a32018-12-19 16:18:52 +00002369 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002370 MPI_VALIDATE_RET( f_rng != NULL );
2371
2372 mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R );
2373 mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002374 mbedtls_mpi_init( &RR );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002375
Paul Bakker5121ce52009-01-03 21:22:43 +00002376 /*
2377 * W = |X| - 1
2378 * R = W >> lsb( W )
2379 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002380 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );
2381 s = mbedtls_mpi_lsb( &W );
2382 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );
2383 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002384
Janos Follathda31fa12018-09-03 14:45:23 +01002385 for( i = 0; i < rounds; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00002386 {
2387 /*
2388 * pick a random A, 1 < A < |X| - 1
2389 */
Pascal Junodb99183d2015-03-11 16:49:45 +01002390 count = 0;
2391 do {
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002392 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
Pascal Junodb99183d2015-03-11 16:49:45 +01002393
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02002394 j = mbedtls_mpi_bitlen( &A );
2395 k = mbedtls_mpi_bitlen( &W );
Pascal Junodb99183d2015-03-11 16:49:45 +01002396 if (j > k) {
Darryl Greene3f95ed2018-10-02 13:21:35 +01002397 A.p[A.n - 1] &= ( (mbedtls_mpi_uint) 1 << ( k - ( A.n - 1 ) * biL - 1 ) ) - 1;
Pascal Junodb99183d2015-03-11 16:49:45 +01002398 }
2399
2400 if (count++ > 30) {
Jens Wiklanderf08aa3e2019-01-17 13:30:57 +01002401 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2402 goto cleanup;
Pascal Junodb99183d2015-03-11 16:49:45 +01002403 }
2404
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002405 } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||
2406 mbedtls_mpi_cmp_int( &A, 1 ) <= 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002407
2408 /*
2409 * A = A^R mod |X|
2410 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002411 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002412
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002413 if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||
2414 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002415 continue;
2416
2417 j = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002418 while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002419 {
2420 /*
2421 * A = A * A mod |X|
2422 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002423 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );
2424 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002425
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002426 if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002427 break;
2428
2429 j++;
2430 }
2431
2432 /*
2433 * not prime if A != |X| - 1 or A == 1
2434 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002435 if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||
2436 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002437 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002438 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002439 break;
2440 }
2441 }
2442
2443cleanup:
Hanno Becker73d7d792018-12-11 10:35:51 +00002444 mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R );
2445 mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002446 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00002447
2448 return( ret );
2449}
2450
2451/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002452 * Pseudo-primality test: small factors, then Miller-Rabin
2453 */
Janos Follatha0b67c22018-09-18 14:48:23 +01002454int mbedtls_mpi_is_prime_ext( const mbedtls_mpi *X, int rounds,
2455 int (*f_rng)(void *, unsigned char *, size_t),
2456 void *p_rng )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002457{
Janos Follath24eed8d2019-11-22 13:21:35 +00002458 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002459 mbedtls_mpi XX;
Hanno Becker8ce11a32018-12-19 16:18:52 +00002460 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002461 MPI_VALIDATE_RET( f_rng != NULL );
Manuel Pégourié-Gonnard7f4ed672014-10-14 20:56:02 +02002462
2463 XX.s = 1;
2464 XX.n = X->n;
2465 XX.p = X->p;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002466
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002467 if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||
2468 mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )
2469 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002470
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002471 if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002472 return( 0 );
2473
2474 if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
2475 {
2476 if( ret == 1 )
2477 return( 0 );
2478
2479 return( ret );
2480 }
2481
Janos Follathda31fa12018-09-03 14:45:23 +01002482 return( mpi_miller_rabin( &XX, rounds, f_rng, p_rng ) );
Janos Follathf301d232018-08-14 13:34:01 +01002483}
2484
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002485/*
Paul Bakker5121ce52009-01-03 21:22:43 +00002486 * Prime number generation
Jethro Beekman66689272018-02-14 19:24:10 -08002487 *
Janos Follathf301d232018-08-14 13:34:01 +01002488 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2489 * be either 1024 bits or 1536 bits long, and flags must contain
2490 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
Paul Bakker5121ce52009-01-03 21:22:43 +00002491 */
Janos Follath7c025a92018-08-14 11:08:41 +01002492int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
Paul Bakkera3d195c2011-11-27 21:07:34 +00002493 int (*f_rng)(void *, unsigned char *, size_t),
2494 void *p_rng )
Paul Bakker5121ce52009-01-03 21:22:43 +00002495{
Jethro Beekman66689272018-02-14 19:24:10 -08002496#ifdef MBEDTLS_HAVE_INT64
2497// ceil(2^63.5)
2498#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2499#else
2500// ceil(2^31.5)
2501#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2502#endif
2503 int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker23986e52011-04-24 08:57:21 +00002504 size_t k, n;
Janos Follathda31fa12018-09-03 14:45:23 +01002505 int rounds;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002506 mbedtls_mpi_uint r;
2507 mbedtls_mpi Y;
Paul Bakker5121ce52009-01-03 21:22:43 +00002508
Hanno Becker8ce11a32018-12-19 16:18:52 +00002509 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002510 MPI_VALIDATE_RET( f_rng != NULL );
2511
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002512 if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )
2513 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002514
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002515 mbedtls_mpi_init( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002516
2517 n = BITS_TO_LIMBS( nbits );
2518
Janos Follathda31fa12018-09-03 14:45:23 +01002519 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR ) == 0 )
2520 {
2521 /*
2522 * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2523 */
2524 rounds = ( ( nbits >= 1300 ) ? 2 : ( nbits >= 850 ) ? 3 :
2525 ( nbits >= 650 ) ? 4 : ( nbits >= 350 ) ? 8 :
2526 ( nbits >= 250 ) ? 12 : ( nbits >= 150 ) ? 18 : 27 );
2527 }
2528 else
2529 {
2530 /*
2531 * 2^-100 error probability, number of rounds computed based on HAC,
2532 * fact 4.48
2533 */
2534 rounds = ( ( nbits >= 1450 ) ? 4 : ( nbits >= 1150 ) ? 5 :
2535 ( nbits >= 1000 ) ? 6 : ( nbits >= 850 ) ? 7 :
2536 ( nbits >= 750 ) ? 8 : ( nbits >= 500 ) ? 13 :
2537 ( nbits >= 250 ) ? 28 : ( nbits >= 150 ) ? 40 : 51 );
2538 }
2539
Jethro Beekman66689272018-02-14 19:24:10 -08002540 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002541 {
Jethro Beekman66689272018-02-14 19:24:10 -08002542 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
2543 /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
2544 if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue;
2545
2546 k = n * biL;
2547 if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) );
2548 X->p[0] |= 1;
2549
Janos Follath7c025a92018-08-14 11:08:41 +01002550 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002551 {
Janos Follatha0b67c22018-09-18 14:48:23 +01002552 ret = mbedtls_mpi_is_prime_ext( X, rounds, f_rng, p_rng );
Jethro Beekman66689272018-02-14 19:24:10 -08002553
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002554 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
Paul Bakker5121ce52009-01-03 21:22:43 +00002555 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002556 }
Jethro Beekman66689272018-02-14 19:24:10 -08002557 else
Paul Bakker5121ce52009-01-03 21:22:43 +00002558 {
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002559 /*
Tom Cosgrovece7f18c2022-07-28 05:50:56 +01002560 * A necessary condition for Y and X = 2Y + 1 to be prime
Jethro Beekman66689272018-02-14 19:24:10 -08002561 * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2562 * Make sure it is satisfied, while keeping X = 3 mod 4
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002563 */
Jethro Beekman66689272018-02-14 19:24:10 -08002564
2565 X->p[0] |= 2;
2566
2567 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
2568 if( r == 0 )
2569 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
2570 else if( r == 1 )
2571 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
2572
2573 /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
2574 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
2575 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
2576
2577 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002578 {
Jethro Beekman66689272018-02-14 19:24:10 -08002579 /*
2580 * First, check small factors for X and Y
2581 * before doing Miller-Rabin on any of them
2582 */
2583 if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
2584 ( ret = mpi_check_small_factors( &Y ) ) == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002585 ( ret = mpi_miller_rabin( X, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002586 == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002587 ( ret = mpi_miller_rabin( &Y, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002588 == 0 )
Jethro Beekman66689272018-02-14 19:24:10 -08002589 goto cleanup;
2590
2591 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
2592 goto cleanup;
2593
2594 /*
2595 * Next candidates. We want to preserve Y = (X-1) / 2 and
2596 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2597 * so up Y by 6 and X by 12.
2598 */
2599 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
2600 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002601 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002602 }
2603 }
2604
2605cleanup:
2606
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002607 mbedtls_mpi_free( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002608
2609 return( ret );
2610}
2611
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002612#endif /* MBEDTLS_GENPRIME */
Paul Bakker5121ce52009-01-03 21:22:43 +00002613
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002614#if defined(MBEDTLS_SELF_TEST)
Paul Bakker5121ce52009-01-03 21:22:43 +00002615
Paul Bakker23986e52011-04-24 08:57:21 +00002616#define GCD_PAIR_COUNT 3
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002617
2618static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2619{
2620 { 693, 609, 21 },
2621 { 1764, 868, 28 },
2622 { 768454923, 542167814, 1 }
2623};
2624
Paul Bakker5121ce52009-01-03 21:22:43 +00002625/*
2626 * Checkup routine
2627 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002628int mbedtls_mpi_self_test( int verbose )
Paul Bakker5121ce52009-01-03 21:22:43 +00002629{
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002630 int ret, i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002631 mbedtls_mpi A, E, N, X, Y, U, V;
Paul Bakker5121ce52009-01-03 21:22:43 +00002632
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002633 mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );
2634 mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00002635
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002636 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002637 "EFE021C2645FD1DC586E69184AF4A31E" \
2638 "D5F53E93B5F123FA41680867BA110131" \
2639 "944FE7952E2517337780CB0DB80E61AA" \
2640 "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
2641
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002642 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002643 "B2E7EFD37075B9F03FF989C7C5051C20" \
2644 "34D2A323810251127E7BF8625A4F49A5" \
2645 "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
2646 "5B5C25763222FEFCCFC38B832366C29E" ) );
2647
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002648 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002649 "0066A198186C18C10B2F5ED9B522752A" \
2650 "9830B69916E535C8F047518A889A43A5" \
2651 "94B6BED27A168D31D4A52F88925AA8F5" ) );
2652
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002653 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002654
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002655 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002656 "602AB7ECA597A3D6B56FF9829A5E8B85" \
2657 "9E857EA95A03512E2BAE7391688D264A" \
2658 "A5663B0341DB9CCFD2C4C5F421FEC814" \
2659 "8001B72E848A38CAE1C65F78E56ABDEF" \
2660 "E12D3C039B8A02D6BE593F0BBBDA56F1" \
2661 "ECF677152EF804370C1A305CAF3B5BF1" \
2662 "30879B56C61DE584A0F53A2447A51E" ) );
2663
2664 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002665 mbedtls_printf( " MPI test #1 (mul_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002666
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002667 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002668 {
2669 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002670 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002671
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002672 ret = 1;
2673 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002674 }
2675
2676 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002677 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002678
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002679 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002680
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002681 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002682 "256567336059E52CAE22925474705F39A94" ) );
2683
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002684 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002685 "6613F26162223DF488E9CD48CC132C7A" \
2686 "0AC93C701B001B092E4E5B9F73BCD27B" \
2687 "9EE50D0657C77F374E903CDFA4C642" ) );
2688
2689 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002690 mbedtls_printf( " MPI test #2 (div_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002691
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002692 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||
2693 mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002694 {
2695 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002696 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002697
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002698 ret = 1;
2699 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002700 }
2701
2702 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002703 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002704
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002705 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002706
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002707 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002708 "36E139AEA55215609D2816998ED020BB" \
2709 "BD96C37890F65171D948E9BC7CBAA4D9" \
2710 "325D24D6A3C12710F10A09FA08AB87" ) );
2711
2712 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002713 mbedtls_printf( " MPI test #3 (exp_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002714
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002715 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002716 {
2717 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002718 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002719
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002720 ret = 1;
2721 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002722 }
2723
2724 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002725 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002726
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002727 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002728
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002729 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002730 "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
2731 "C3DBA76456363A10869622EAC2DD84EC" \
2732 "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
2733
2734 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002735 mbedtls_printf( " MPI test #4 (inv_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002736
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002737 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002738 {
2739 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002740 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002741
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002742 ret = 1;
2743 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002744 }
2745
2746 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002747 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002748
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002749 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002750 mbedtls_printf( " MPI test #5 (simple gcd): " );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002751
Paul Bakker66d5d072014-06-17 16:39:18 +02002752 for( i = 0; i < GCD_PAIR_COUNT; i++ )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002753 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002754 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );
2755 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002756
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002757 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002758
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002759 if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002760 {
2761 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002762 mbedtls_printf( "failed at %d\n", i );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002763
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002764 ret = 1;
2765 goto cleanup;
2766 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002767 }
2768
2769 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002770 mbedtls_printf( "passed\n" );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002771
Paul Bakker5121ce52009-01-03 21:22:43 +00002772cleanup:
2773
2774 if( ret != 0 && verbose != 0 )
Kenneth Soerensen518d4352020-04-01 17:22:45 +02002775 mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00002776
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002777 mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );
2778 mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00002779
2780 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002781 mbedtls_printf( "\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002782
2783 return( ret );
2784}
2785
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002786#endif /* MBEDTLS_SELF_TEST */
Paul Bakker5121ce52009-01-03 21:22:43 +00002787
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002788#endif /* MBEDTLS_BIGNUM_C */