blob: 39acd96c52878d4af9faaa94498c30c4a0c62df0 [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
Gilles Peskine79733992022-06-20 18:41:20 +020015 * Note that many of the constants defined in this file are embedded in
16 * the persistent key store, as part of key metadata (including usage
17 * policies). As a consequence, they must not be changed (unless the storage
18 * format version changes).
19 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +010020 * This header file only defines preprocessor macros.
21 */
22/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020023 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010024 * SPDX-License-Identifier: Apache-2.0
25 *
26 * Licensed under the Apache License, Version 2.0 (the "License"); you may
27 * not use this file except in compliance with the License.
28 * You may obtain a copy of the License at
29 *
30 * http://www.apache.org/licenses/LICENSE-2.0
31 *
32 * Unless required by applicable law or agreed to in writing, software
33 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
34 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
35 * See the License for the specific language governing permissions and
36 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010037 */
38
39#ifndef PSA_CRYPTO_VALUES_H
40#define PSA_CRYPTO_VALUES_H
Mateusz Starzyk363eb292021-05-19 17:32:44 +020041#include "mbedtls/private_access.h"
Gilles Peskinef3b731e2018-12-12 13:38:31 +010042
43/** \defgroup error Error codes
44 * @{
45 */
46
David Saadab4ecc272019-02-14 13:48:10 +020047/* PSA error codes */
48
Gilles Peskine79733992022-06-20 18:41:20 +020049/* Error codes are standardized across PSA domains (framework, crypto, storage,
Gilles Peskine955993c2022-06-29 14:37:17 +020050 * etc.). Do not change the values in this section or even the expansions
51 * of each macro: it must be possible to `#include` both this header
52 * and some other PSA component's headers in the same C source,
53 * which will lead to duplicate definitions of the `PSA_SUCCESS` and
54 * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
55 * to the same sequence of tokens.
56 *
57 * If you must add a new
Gilles Peskine79733992022-06-20 18:41:20 +020058 * value, check with the Arm PSA framework group to pick one that other
59 * domains aren't already using. */
60
Gilles Peskine45873ce2023-01-04 19:50:27 +010061/* Tell uncrustify not to touch the constant definitions, otherwise
62 * it might change the spacing to something that is not PSA-compliant
63 * (e.g. adding a space after casts).
64 *
65 * *INDENT-OFF*
66 */
67
Gilles Peskinef3b731e2018-12-12 13:38:31 +010068/** The action was completed successfully. */
69#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010070
71/** An error occurred that does not correspond to any defined
72 * failure cause.
73 *
74 * Implementations may use this error code if none of the other standard
75 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020076#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010077
78/** The requested operation or a parameter is not supported
79 * by this implementation.
80 *
81 * Implementations should return this error code when an enumeration
82 * parameter such as a key type, algorithm, etc. is not recognized.
83 * If a combination of parameters is recognized and identified as
84 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020085#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010086
87/** The requested action is denied by a policy.
88 *
89 * Implementations should return this error code when the parameters
90 * are recognized as valid and supported, and a policy explicitly
91 * denies the requested operation.
92 *
93 * If a subset of the parameters of a function call identify a
94 * forbidden operation, and another subset of the parameters are
95 * not valid or not supported, it is unspecified whether the function
96 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
97 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020098#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010099
100/** An output buffer is too small.
101 *
102 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
103 * description to determine a sufficient buffer size.
104 *
105 * Implementations should preferably return this error code only
106 * in cases when performing the operation with a larger output
107 * buffer would succeed. However implementations may return this
108 * error if a function has invalid or unsupported parameters in addition
109 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +0200110#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100111
David Saadab4ecc272019-02-14 13:48:10 +0200112/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100113 *
David Saadab4ecc272019-02-14 13:48:10 +0200114 * Implementations should return this error, when attempting
115 * to write an item (like a key) that already exists. */
116#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100117
David Saadab4ecc272019-02-14 13:48:10 +0200118/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100119 *
David Saadab4ecc272019-02-14 13:48:10 +0200120 * Implementations should return this error, if a requested item (like
121 * a key) does not exist. */
122#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100123
124/** The requested action cannot be performed in the current state.
125 *
126 * Multipart operations return this error when one of the
127 * functions is called out of sequence. Refer to the function
128 * descriptions for permitted sequencing of functions.
129 *
130 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100131 * that a key either exists or not,
132 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100133 * as applicable.
134 *
135 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200136 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100137 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200138#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100139
140/** The parameters passed to the function are invalid.
141 *
142 * Implementations may return this error any time a parameter or
143 * combination of parameters are recognized as invalid.
144 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100145 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200146 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100147 * instead.
148 */
David Saadab4ecc272019-02-14 13:48:10 +0200149#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100150
151/** There is not enough runtime memory.
152 *
153 * If the action is carried out across multiple security realms, this
154 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200155#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100156
157/** There is not enough persistent storage.
158 *
159 * Functions that modify the key storage return this error code if
160 * there is insufficient storage space on the host media. In addition,
161 * many functions that do not otherwise access storage may return this
162 * error code if the implementation requires a mandatory log entry for
163 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200164#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100165
166/** There was a communication failure inside the implementation.
167 *
168 * This can indicate a communication failure between the application
169 * and an external cryptoprocessor or between the cryptoprocessor and
170 * an external volatile or persistent memory. A communication failure
171 * may be transient or permanent depending on the cause.
172 *
173 * \warning If a function returns this error, it is undetermined
174 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200175 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100176 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
177 * if the requested action was completed successfully in an external
178 * cryptoprocessor but there was a breakdown of communication before
179 * the cryptoprocessor could report the status to the application.
180 */
David Saadab4ecc272019-02-14 13:48:10 +0200181#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100182
183/** There was a storage failure that may have led to data loss.
184 *
185 * This error indicates that some persistent storage is corrupted.
186 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200187 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100188 * between the cryptoprocessor and its external storage (use
189 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
190 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
191 *
192 * Note that a storage failure does not indicate that any data that was
193 * previously read is invalid. However this previously read data may no
194 * longer be readable from storage.
195 *
196 * When a storage failure occurs, it is no longer possible to ensure
197 * the global integrity of the keystore. Depending on the global
198 * integrity guarantees offered by the implementation, access to other
199 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100200 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100201 *
202 * Implementations should only use this error code to report a
203 * permanent storage corruption. However application writers should
204 * keep in mind that transient errors while reading the storage may be
205 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200206#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100207
208/** A hardware failure was detected.
209 *
210 * A hardware failure may be transient or permanent depending on the
211 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200212#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100213
214/** A tampering attempt was detected.
215 *
216 * If an application receives this error code, there is no guarantee
217 * that previously accessed or computed data was correct and remains
218 * confidential. Applications should not perform any security function
219 * and should enter a safe failure state.
220 *
221 * Implementations may return this error code if they detect an invalid
222 * state that cannot happen during normal operation and that indicates
223 * that the implementation's security guarantees no longer hold. Depending
224 * on the implementation architecture and on its security and safety goals,
225 * the implementation may forcibly terminate the application.
226 *
227 * This error code is intended as a last resort when a security breach
228 * is detected and it is unsure whether the keystore data is still
229 * protected. Implementations shall only return this error code
230 * to report an alarm from a tampering detector, to indicate that
231 * the confidentiality of stored data can no longer be guaranteed,
232 * or to indicate that the integrity of previously returned data is now
233 * considered compromised. Implementations shall not use this error code
234 * to indicate a hardware failure that merely makes it impossible to
235 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
236 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
237 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
238 * instead).
239 *
240 * This error indicates an attack against the application. Implementations
241 * shall not return this error code as a consequence of the behavior of
242 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200243#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100244
245/** There is not enough entropy to generate random data needed
246 * for the requested action.
247 *
248 * This error indicates a failure of a hardware random generator.
249 * Application writers should note that this error can be returned not
250 * only by functions whose purpose is to generate random data, such
251 * as key, IV or nonce generation, but also by functions that execute
252 * an algorithm with a randomized result, as well as functions that
253 * use randomization of intermediate computations as a countermeasure
254 * to certain attacks.
255 *
256 * Implementations should avoid returning this error after psa_crypto_init()
257 * has succeeded. Implementations should generate sufficient
258 * entropy during initialization and subsequently use a cryptographically
259 * secure pseudorandom generator (PRNG). However implementations may return
260 * this error at any time if a policy requires the PRNG to be reseeded
261 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200262#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100263
264/** The signature, MAC or hash is incorrect.
265 *
266 * Verification functions return this error if the verification
267 * calculations completed successfully, and the value to be verified
268 * was determined to be incorrect.
269 *
270 * If the value to verify has an invalid size, implementations may return
271 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200272#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100273
274/** The decrypted padding is incorrect.
275 *
276 * \warning In some protocols, when decrypting data, it is essential that
277 * the behavior of the application does not depend on whether the padding
278 * is correct, down to precise timing. Applications should prefer
279 * protocols that use authenticated encryption rather than plain
280 * encryption. If the application must perform a decryption of
281 * unauthenticated data, the application writer should take care not
282 * to reveal whether the padding is invalid.
283 *
284 * Implementations should strive to make valid and invalid padding
285 * as close as possible to indistinguishable to an external observer.
286 * In particular, the timing of a decryption operation should not
287 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200288#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100289
David Saadab4ecc272019-02-14 13:48:10 +0200290/** Return this error when there's insufficient data when attempting
291 * to read from a resource. */
292#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100293
Ronald Croncf56a0a2020-08-04 09:51:30 +0200294/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100295 */
David Saadab4ecc272019-02-14 13:48:10 +0200296#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100297
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100298/** Stored data has been corrupted.
299 *
300 * This error indicates that some persistent storage has suffered corruption.
301 * It does not indicate the following situations, which have specific error
302 * codes:
303 *
304 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
305 * - A communication error between the cryptoprocessor and its external
306 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
307 * - When the storage is in a valid state but is full - use
308 * #PSA_ERROR_INSUFFICIENT_STORAGE.
309 * - When the storage fails for other reasons - use
310 * #PSA_ERROR_STORAGE_FAILURE.
311 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
312 *
313 * \note A storage corruption does not indicate that any data that was
314 * previously read is invalid. However this previously read data might no
315 * longer be readable from storage.
316 *
317 * When a storage failure occurs, it is no longer possible to ensure the
318 * global integrity of the keystore.
319 */
320#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
321
gabor-mezei-armfe309242020-11-09 17:39:56 +0100322/** Data read from storage is not valid for the implementation.
323 *
324 * This error indicates that some data read from storage does not have a valid
325 * format. It does not indicate the following situations, which have specific
326 * error codes:
327 *
328 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
329 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
330 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
331 *
332 * This error is typically a result of either storage corruption on a
333 * cleartext storage backend, or an attempt to read data that was
334 * written by an incompatible version of the library.
335 */
336#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
337
Paul Elliott1265f002022-09-09 17:15:43 +0100338/** The function that returns this status is defined as interruptible and
339 * still has work to do, thus the user should call the function again with the
340 * same operation context until it either returns #PSA_SUCCESS or any other
341 * error. This is not an error per se, more a notification of status.
342 */
343#define PSA_OPERATION_INCOMPLETE ((psa_status_t)-248)
344
Gilles Peskine45873ce2023-01-04 19:50:27 +0100345/* *INDENT-ON* */
346
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100347/**@}*/
348
349/** \defgroup crypto_types Key and algorithm types
350 * @{
351 */
352
Gilles Peskine79733992022-06-20 18:41:20 +0200353/* Note that key type values, including ECC family and DH group values, are
354 * embedded in the persistent key store, as part of key metadata. As a
355 * consequence, they must not be changed (unless the storage format version
356 * changes).
357 */
358
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100359/** An invalid key type value.
360 *
361 * Zero is not the encoding of any key type.
362 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100363#define PSA_KEY_TYPE_NONE ((psa_key_type_t) 0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100364
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100365/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100366 *
367 * Key types defined by this standard will never have the
368 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
369 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
370 * respect the bitwise structure used by standard encodings whenever practical.
371 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100372#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t) 0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100373
Gilles Peskine449bd832023-01-11 14:50:10 +0100374#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t) 0x7000)
375#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t) 0x1000)
376#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t) 0x2000)
377#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t) 0x4000)
378#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t) 0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100379
Gilles Peskine449bd832023-01-11 14:50:10 +0100380#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t) 0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100381
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100382/** Whether a key type is vendor-defined.
383 *
384 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
385 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100386#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
387 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
388
389/** Whether a key type is an unstructured array of bytes.
390 *
391 * This encompasses both symmetric keys and non-key data.
392 */
393#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100394 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
395 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100396
397/** Whether a key type is asymmetric: either a key pair or a public key. */
398#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
399 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
400 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
401 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
402/** Whether a key type is the public part of a key pair. */
403#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
404 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
405/** Whether a key type is a key pair containing a private part and a public
406 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200407#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100408 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
409/** The key pair type corresponding to a public key type.
410 *
411 * You may also pass a key pair type as \p type, it will be left unchanged.
412 *
413 * \param type A public key type or key pair type.
414 *
415 * \return The corresponding key pair type.
416 * If \p type is not a public key or a key pair,
417 * the return value is undefined.
418 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200419#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100420 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
421/** The public key type corresponding to a key pair type.
422 *
423 * You may also pass a key pair type as \p type, it will be left unchanged.
424 *
425 * \param type A public key type or key pair type.
426 *
427 * \return The corresponding public key type.
428 * If \p type is not a public key or a key pair,
429 * the return value is undefined.
430 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200431#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100432 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
433
434/** Raw data.
435 *
436 * A "key" of this type cannot be used for any cryptographic operation.
437 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100438#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t) 0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100439
440/** HMAC key.
441 *
442 * The key policy determines which underlying hash algorithm the key can be
443 * used for.
444 *
445 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100446 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100447 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100448#define PSA_KEY_TYPE_HMAC ((psa_key_type_t) 0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100449
450/** A secret for key derivation.
451 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200452 * This key type is for high-entropy secrets only. For low-entropy secrets,
453 * #PSA_KEY_TYPE_PASSWORD should be used instead.
454 *
455 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
456 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
457 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100458 * The key policy determines which key derivation algorithm the key
459 * can be used for.
460 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100461#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t) 0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100462
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200463/** A low-entropy secret for password hashing or key derivation.
464 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200465 * This key type is suitable for passwords and passphrases which are typically
466 * intended to be memorizable by humans, and have a low entropy relative to
467 * their size. It can be used for randomly generated or derived keys with
Manuel Pégourié-Gonnardf9a68ad2021-05-07 12:11:38 +0200468 * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200469 * for such keys. It is not suitable for passwords with extremely low entropy,
470 * such as numerical PINs.
471 *
472 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
473 * key derivation algorithms. Algorithms that accept such an input were
474 * designed to accept low-entropy secret and are known as password hashing or
475 * key stretching algorithms.
476 *
477 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
478 * key derivation algorithms, as the algorithms that take such an input expect
479 * it to be high-entropy.
480 *
481 * The key policy determines which key derivation algorithm the key can be
482 * used for, among the permissible subset defined above.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200483 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100484#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t) 0x1203)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200485
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200486/** A secret value that can be used to verify a password hash.
487 *
488 * The key policy determines which key derivation algorithm the key
489 * can be used for, among the same permissible subset as for
490 * #PSA_KEY_TYPE_PASSWORD.
491 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100492#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t) 0x1205)
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200493
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200494/** A secret value that can be used in when computing a password hash.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200495 *
496 * The key policy determines which key derivation algorithm the key
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200497 * can be used for, among the subset of algorithms that can use pepper.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200498 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100499#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t) 0x1206)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200500
Gilles Peskine737c6be2019-05-21 16:01:06 +0200501/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100502 *
503 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
504 * 32 bytes (AES-256).
505 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100506#define PSA_KEY_TYPE_AES ((psa_key_type_t) 0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100507
Gilles Peskine6c12a1e2021-09-21 11:59:39 +0200508/** Key for a cipher, AEAD or MAC algorithm based on the
509 * ARIA block cipher. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100510#define PSA_KEY_TYPE_ARIA ((psa_key_type_t) 0x2406)
Gilles Peskine6c12a1e2021-09-21 11:59:39 +0200511
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100512/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
513 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100514 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
515 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100516 *
517 * Note that single DES and 2-key 3DES are weak and strongly
518 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
519 * is weak and deprecated and should only be used in legacy protocols.
520 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100521#define PSA_KEY_TYPE_DES ((psa_key_type_t) 0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100522
Gilles Peskine737c6be2019-05-21 16:01:06 +0200523/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100524 * Camellia block cipher. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100525#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t) 0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100526
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200527/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
528 *
529 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
530 *
Gilles Peskine14d35542022-03-10 18:36:37 +0100531 * \note For ChaCha20 and ChaCha20_Poly1305, Mbed TLS only supports
532 * 12-byte nonces.
533 *
534 * \note For ChaCha20, the initial counter value is 0. To encrypt or decrypt
535 * with the initial counter value 1, you can process and discard a
536 * 64-byte block before the real data.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200537 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100538#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t) 0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200539
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100540/** RSA public key.
541 *
542 * The size of an RSA key is the bit size of the modulus.
543 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100544#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t) 0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100545/** RSA key pair (private and public key).
546 *
547 * The size of an RSA key is the bit size of the modulus.
548 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100549#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t) 0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100550/** Whether a key type is an RSA key (pair or public-only). */
551#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200552 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100553
Gilles Peskine449bd832023-01-11 14:50:10 +0100554#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4100)
555#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t) 0x7100)
556#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t) 0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100557/** Elliptic curve key pair.
558 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100559 * The size of an elliptic curve key is the bit size associated with the curve,
560 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
561 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
562 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100563 * \param curve A value of type ::psa_ecc_family_t that
564 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100565 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200566#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
567 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100568/** Elliptic curve public key.
569 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100570 * The size of an elliptic curve public key is the same as the corresponding
571 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
572 * `PSA_ECC_FAMILY_xxx` curve families).
573 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100574 * \param curve A value of type ::psa_ecc_family_t that
575 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100576 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100577#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
578 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
579
580/** Whether a key type is an elliptic curve key (pair or public-only). */
581#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200582 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100583 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100584/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200585#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100586 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200587 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100588/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100589#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
590 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
591 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
592
593/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100594#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
595 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskine449bd832023-01-11 14:50:10 +0100596 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
597 0))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100598
Przemyslaw Stekiel6d3d18b2022-01-20 22:41:17 +0100599/** Check if the curve of given family is Weierstrass elliptic curve. */
600#define PSA_ECC_FAMILY_IS_WEIERSTRASS(family) ((family & 0xc0) == 0)
601
Gilles Peskine228abc52019-12-03 17:24:19 +0100602/** SEC Koblitz curves over prime fields.
603 *
604 * This family comprises the following curves:
605 * secp192k1, secp224k1, secp256k1.
606 * They are defined in _Standards for Efficient Cryptography_,
607 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
608 * https://www.secg.org/sec2-v2.pdf
609 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100610#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100611
612/** SEC random curves over prime fields.
613 *
614 * This family comprises the following curves:
615 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
616 * They are defined in _Standards for Efficient Cryptography_,
617 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
618 * https://www.secg.org/sec2-v2.pdf
619 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100620#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100621/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100622#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100623
624/** SEC Koblitz curves over binary fields.
625 *
626 * This family comprises the following curves:
627 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
628 * They are defined in _Standards for Efficient Cryptography_,
629 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
630 * https://www.secg.org/sec2-v2.pdf
631 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100632#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100633
634/** SEC random curves over binary fields.
635 *
636 * This family comprises the following curves:
637 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
638 * They are defined in _Standards for Efficient Cryptography_,
639 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
640 * https://www.secg.org/sec2-v2.pdf
641 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100642#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100643
644/** SEC additional random curves over binary fields.
645 *
646 * This family comprises the following curve:
647 * sect163r2.
648 * It is defined in _Standards for Efficient Cryptography_,
649 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
650 * https://www.secg.org/sec2-v2.pdf
651 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100652#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100653
654/** Brainpool P random curves.
655 *
656 * This family comprises the following curves:
657 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
658 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
659 * It is defined in RFC 5639.
660 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100661#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100662
663/** Curve25519 and Curve448.
664 *
665 * This family comprises the following Montgomery curves:
666 * - 255-bit: Bernstein et al.,
667 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
668 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
669 * - 448-bit: Hamburg,
670 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
671 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
672 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100673#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100674
Gilles Peskine67546802021-02-24 21:49:40 +0100675/** The twisted Edwards curves Ed25519 and Ed448.
676 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100677 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100678 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100679 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100680 *
681 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100682 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100683 * to Curve25519.
684 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
685 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
686 * to Curve448.
687 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
688 */
689#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
690
Gilles Peskine449bd832023-01-11 14:50:10 +0100691#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4200)
692#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t) 0x7200)
693#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t) 0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100694/** Diffie-Hellman key pair.
695 *
Paul Elliott75e27032020-06-03 15:17:39 +0100696 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100697 * Diffie-Hellman group to be used.
698 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200699#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
700 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100701/** Diffie-Hellman public key.
702 *
Paul Elliott75e27032020-06-03 15:17:39 +0100703 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100704 * Diffie-Hellman group to be used.
705 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200706#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
707 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
708
709/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
710#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200711 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200712 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
713/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200714#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200715 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200716 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200717/** Whether a key type is a Diffie-Hellman public key. */
718#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
719 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
720 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
721
722/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100723#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
724 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskine449bd832023-01-11 14:50:10 +0100725 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
726 0))
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200727
Gilles Peskine228abc52019-12-03 17:24:19 +0100728/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
729 *
730 * This family includes groups with the following key sizes (in bits):
731 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
732 * all of these sizes or only a subset.
733 */
Paul Elliott75e27032020-06-03 15:17:39 +0100734#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100735
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100736#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100737 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100738/** The block size of a block cipher.
739 *
740 * \param type A cipher key type (value of type #psa_key_type_t).
741 *
742 * \return The block size for a block cipher, or 1 for a stream cipher.
743 * The return value is undefined if \p type is not a supported
744 * cipher key type.
745 *
746 * \note It is possible to build stream cipher algorithms on top of a block
747 * cipher, for example CTR mode (#PSA_ALG_CTR).
748 * This macro only takes the key type into account, so it cannot be
749 * used to determine the size of the data that #psa_cipher_update()
750 * might buffer for future processing in general.
751 *
752 * \note This macro returns a compile-time constant if its argument is one.
753 *
754 * \warning This macro may evaluate its argument multiple times.
755 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100756#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100757 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100758 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine449bd832023-01-11 14:50:10 +0100759 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100760
Gilles Peskine79733992022-06-20 18:41:20 +0200761/* Note that algorithm values are embedded in the persistent key store,
762 * as part of key metadata. As a consequence, they must not be changed
763 * (unless the storage format version changes).
764 */
765
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100766/** Vendor-defined algorithm flag.
767 *
768 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
769 * bit set. Vendors who define additional algorithms must use an encoding with
770 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
771 * used by standard encodings whenever practical.
772 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100773#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t) 0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100774
Gilles Peskine449bd832023-01-11 14:50:10 +0100775#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t) 0x7f000000)
776#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t) 0x02000000)
777#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t) 0x03000000)
778#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t) 0x04000000)
779#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t) 0x05000000)
780#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t) 0x06000000)
781#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t) 0x07000000)
782#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t) 0x08000000)
783#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t) 0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100784
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100785/** Whether an algorithm is vendor-defined.
786 *
787 * See also #PSA_ALG_VENDOR_FLAG.
788 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100789#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
790 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
791
792/** Whether the specified algorithm is a hash algorithm.
793 *
794 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
795 *
796 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
797 * This macro may return either 0 or 1 if \p alg is not a supported
798 * algorithm identifier.
799 */
800#define PSA_ALG_IS_HASH(alg) \
801 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
802
803/** Whether the specified algorithm is a MAC algorithm.
804 *
805 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
806 *
807 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
808 * This macro may return either 0 or 1 if \p alg is not a supported
809 * algorithm identifier.
810 */
811#define PSA_ALG_IS_MAC(alg) \
812 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
813
814/** Whether the specified algorithm is a symmetric cipher algorithm.
815 *
816 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
817 *
818 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
819 * This macro may return either 0 or 1 if \p alg is not a supported
820 * algorithm identifier.
821 */
822#define PSA_ALG_IS_CIPHER(alg) \
823 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
824
825/** Whether the specified algorithm is an authenticated encryption
826 * with associated data (AEAD) algorithm.
827 *
828 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
829 *
830 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
831 * This macro may return either 0 or 1 if \p alg is not a supported
832 * algorithm identifier.
833 */
834#define PSA_ALG_IS_AEAD(alg) \
835 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
836
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200837/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200838 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100839 *
840 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
841 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200842 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100843 * This macro may return either 0 or 1 if \p alg is not a supported
844 * algorithm identifier.
845 */
846#define PSA_ALG_IS_SIGN(alg) \
847 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
848
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200849/** Whether the specified algorithm is an asymmetric encryption algorithm,
850 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100851 *
852 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
853 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200854 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100855 * This macro may return either 0 or 1 if \p alg is not a supported
856 * algorithm identifier.
857 */
858#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
859 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
860
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100861/** Whether the specified algorithm is a key agreement algorithm.
862 *
863 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
864 *
865 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
866 * This macro may return either 0 or 1 if \p alg is not a supported
867 * algorithm identifier.
868 */
869#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100870 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100871
872/** Whether the specified algorithm is a key derivation algorithm.
873 *
874 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
875 *
876 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
877 * This macro may return either 0 or 1 if \p alg is not a supported
878 * algorithm identifier.
879 */
880#define PSA_ALG_IS_KEY_DERIVATION(alg) \
881 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
882
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200883/** Whether the specified algorithm is a key stretching / password hashing
884 * algorithm.
885 *
886 * A key stretching / password hashing algorithm is a key derivation algorithm
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200887 * that is suitable for use with a low-entropy secret such as a password.
888 * Equivalently, it's a key derivation algorithm that uses a
889 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200890 *
891 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
892 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +0100893 * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200894 * otherwise. This macro may return either 0 or 1 if \p alg is not a
895 * supported algorithm identifier.
896 */
897#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
898 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
899 (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
900
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200901/** An invalid algorithm identifier value. */
Gilles Peskinea6516072023-01-04 19:52:38 +0100902/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200903#define PSA_ALG_NONE ((psa_algorithm_t)0)
Gilles Peskinea6516072023-01-04 19:52:38 +0100904/* *INDENT-ON* */
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200905
Gilles Peskine449bd832023-01-11 14:50:10 +0100906#define PSA_ALG_HASH_MASK ((psa_algorithm_t) 0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100907/** MD5 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100908#define PSA_ALG_MD5 ((psa_algorithm_t) 0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100909/** PSA_ALG_RIPEMD160 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100910#define PSA_ALG_RIPEMD160 ((psa_algorithm_t) 0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100911/** SHA1 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100912#define PSA_ALG_SHA_1 ((psa_algorithm_t) 0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100913/** SHA2-224 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100914#define PSA_ALG_SHA_224 ((psa_algorithm_t) 0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100915/** SHA2-256 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100916#define PSA_ALG_SHA_256 ((psa_algorithm_t) 0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100917/** SHA2-384 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100918#define PSA_ALG_SHA_384 ((psa_algorithm_t) 0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100919/** SHA2-512 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100920#define PSA_ALG_SHA_512 ((psa_algorithm_t) 0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100921/** SHA2-512/224 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100922#define PSA_ALG_SHA_512_224 ((psa_algorithm_t) 0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100923/** SHA2-512/256 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100924#define PSA_ALG_SHA_512_256 ((psa_algorithm_t) 0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100925/** SHA3-224 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100926#define PSA_ALG_SHA3_224 ((psa_algorithm_t) 0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100927/** SHA3-256 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100928#define PSA_ALG_SHA3_256 ((psa_algorithm_t) 0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100929/** SHA3-384 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100930#define PSA_ALG_SHA3_384 ((psa_algorithm_t) 0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100931/** SHA3-512 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100932#define PSA_ALG_SHA3_512 ((psa_algorithm_t) 0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100933/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100934 *
935 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
936 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
937 * has the same output size and a (theoretically) higher security strength.
938 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100939#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t) 0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100940
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100941/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100942 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100943 * This value may be used to form the algorithm usage field of a policy
944 * for a signature algorithm that is parametrized by a hash. The key
945 * may then be used to perform operations using the same signature
946 * algorithm parametrized with any supported hash.
947 *
948 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskineacd2d0e2021-10-04 18:10:38 +0200949 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100950 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100951 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100952 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
953 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100954 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200955 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100956 * ```
957 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100958 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100959 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
960 * call to sign or verify a message may use a different hash.
961 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200962 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
963 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
964 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100965 * ```
966 *
967 * This value may not be used to build other algorithms that are
968 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100969 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100970 *
971 * This value may not be used to build an algorithm specification to
972 * perform an operation. It is only valid to build policies.
973 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100974#define PSA_ALG_ANY_HASH ((psa_algorithm_t) 0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100975
Gilles Peskine449bd832023-01-11 14:50:10 +0100976#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t) 0x00c00000)
977#define PSA_ALG_HMAC_BASE ((psa_algorithm_t) 0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100978/** Macro to build an HMAC algorithm.
979 *
980 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
981 *
982 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
983 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
984 *
985 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100986 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100987 * hash algorithm.
988 */
989#define PSA_ALG_HMAC(hash_alg) \
990 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
991
992#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
993 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
994
995/** Whether the specified algorithm is an HMAC algorithm.
996 *
997 * HMAC is a family of MAC algorithms that are based on a hash function.
998 *
999 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1000 *
1001 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
1002 * This macro may return either 0 or 1 if \p alg is not a supported
1003 * algorithm identifier.
1004 */
1005#define PSA_ALG_IS_HMAC(alg) \
1006 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1007 PSA_ALG_HMAC_BASE)
1008
1009/* In the encoding of a MAC algorithm, the bits corresponding to
1010 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
1011 * truncated. As an exception, the value 0 means the untruncated algorithm,
1012 * whatever its length is. The length is encoded in 6 bits, so it can
1013 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
1014 * to full length is correctly encoded as 0 and any non-trivial truncation
1015 * is correctly encoded as a value between 1 and 63. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001016#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t) 0x003f0000)
Bence Szépkútia2945512020-12-03 21:40:17 +01001017#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001018
Steven Cooremand927ed72021-02-22 19:59:35 +01001019/* In the encoding of a MAC algorithm, the bit corresponding to
1020 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001021 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1022 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001023 * same base class and having a (potentially truncated) MAC length greater or
1024 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001025#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
Steven Cooremand927ed72021-02-22 19:59:35 +01001026
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001027/** Macro to build a truncated MAC algorithm.
1028 *
1029 * A truncated MAC algorithm is identical to the corresponding MAC
1030 * algorithm except that the MAC value for the truncated algorithm
1031 * consists of only the first \p mac_length bytes of the MAC value
1032 * for the untruncated algorithm.
1033 *
1034 * \note This macro may allow constructing algorithm identifiers that
1035 * are not valid, either because the specified length is larger
1036 * than the untruncated MAC or because the specified length is
1037 * smaller than permitted by the implementation.
1038 *
1039 * \note It is implementation-defined whether a truncated MAC that
1040 * is truncated to the same length as the MAC of the untruncated
1041 * algorithm is considered identical to the untruncated algorithm
1042 * for policy comparison purposes.
1043 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001044 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001045 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001046 * is true). This may be a truncated or untruncated
1047 * MAC algorithm.
1048 * \param mac_length Desired length of the truncated MAC in bytes.
1049 * This must be at most the full length of the MAC
1050 * and must be at least an implementation-specified
1051 * minimum. The implementation-specified minimum
1052 * shall not be zero.
1053 *
1054 * \return The corresponding MAC algorithm with the specified
1055 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001056 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001057 * MAC algorithm or if \p mac_length is too small or
1058 * too large for the specified MAC algorithm.
1059 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001060#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
1061 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1062 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001063 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1064
1065/** Macro to build the base MAC algorithm corresponding to a truncated
1066 * MAC algorithm.
1067 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001068 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001069 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001070 * is true). This may be a truncated or untruncated
1071 * MAC algorithm.
1072 *
1073 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001074 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001075 * MAC algorithm.
1076 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001077#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1078 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1079 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001080
1081/** Length to which a MAC algorithm is truncated.
1082 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001083 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001084 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001085 * is true).
1086 *
1087 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001088 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1089 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001090 * MAC algorithm.
1091 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001092#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1093 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001094
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001095/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001096 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001097 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001098 * sharing the same base algorithm, and where the (potentially truncated) MAC
1099 * length of the specific algorithm is equal to or larger then the wildcard
1100 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001101 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001102 * \note When setting the minimum required MAC length to less than the
1103 * smallest MAC length allowed by the base algorithm, this effectively
1104 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001105 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001106 * \param mac_alg A MAC algorithm identifier (value of type
1107 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1108 * is true).
1109 * \param min_mac_length Desired minimum length of the message authentication
1110 * code in bytes. This must be at most the untruncated
1111 * length of the MAC and must be at least 1.
1112 *
1113 * \return The corresponding MAC wildcard algorithm with the
1114 * specified minimum length.
1115 * \return Unspecified if \p mac_alg is not a supported MAC
1116 * algorithm or if \p min_mac_length is less than 1 or
1117 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001118 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001119#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
Gilles Peskine449bd832023-01-11 14:50:10 +01001120 (PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1121 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001122
Gilles Peskine449bd832023-01-11 14:50:10 +01001123#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t) 0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001124/** The CBC-MAC construction over a block cipher
1125 *
1126 * \warning CBC-MAC is insecure in many cases.
1127 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1128 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001129#define PSA_ALG_CBC_MAC ((psa_algorithm_t) 0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001130/** The CMAC construction over a block cipher */
Gilles Peskine449bd832023-01-11 14:50:10 +01001131#define PSA_ALG_CMAC ((psa_algorithm_t) 0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001132
1133/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1134 *
1135 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1136 *
1137 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1138 * This macro may return either 0 or 1 if \p alg is not a supported
1139 * algorithm identifier.
1140 */
1141#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1142 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1143 PSA_ALG_CIPHER_MAC_BASE)
1144
Gilles Peskine449bd832023-01-11 14:50:10 +01001145#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t) 0x00800000)
1146#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001147
1148/** Whether the specified algorithm is a stream cipher.
1149 *
1150 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1151 * by applying a bitwise-xor with a stream of bytes that is generated
1152 * from a key.
1153 *
1154 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1155 *
1156 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1157 * This macro may return either 0 or 1 if \p alg is not a supported
1158 * algorithm identifier or if it is not a symmetric cipher algorithm.
1159 */
1160#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1161 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
Gilles Peskine449bd832023-01-11 14:50:10 +01001162 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001163
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001164/** The stream cipher mode of a stream cipher algorithm.
1165 *
1166 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001167 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001168 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001169#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t) 0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001170
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001171/** The CTR stream cipher mode.
1172 *
1173 * CTR is a stream cipher which is built from a block cipher.
1174 * The underlying block cipher is determined by the key type.
1175 * For example, to use AES-128-CTR, use this algorithm with
1176 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1177 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001178#define PSA_ALG_CTR ((psa_algorithm_t) 0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001179
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001180/** The CFB stream cipher mode.
1181 *
1182 * The underlying block cipher is determined by the key type.
1183 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001184#define PSA_ALG_CFB ((psa_algorithm_t) 0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001185
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001186/** The OFB stream cipher mode.
1187 *
1188 * The underlying block cipher is determined by the key type.
1189 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001190#define PSA_ALG_OFB ((psa_algorithm_t) 0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001191
1192/** The XTS cipher mode.
1193 *
1194 * XTS is a cipher mode which is built from a block cipher. It requires at
1195 * least one full block of input, but beyond this minimum the input
1196 * does not need to be a whole number of blocks.
1197 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001198#define PSA_ALG_XTS ((psa_algorithm_t) 0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001199
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001200/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1201 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001202 * \warning ECB mode does not protect the confidentiality of the encrypted data
1203 * except in extremely narrow circumstances. It is recommended that applications
1204 * only use ECB if they need to construct an operating mode that the
1205 * implementation does not provide. Implementations are encouraged to provide
1206 * the modes that applications need in preference to supporting direct access
1207 * to ECB.
1208 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001209 * The underlying block cipher is determined by the key type.
1210 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001211 * This symmetric cipher mode can only be used with messages whose lengths are a
1212 * multiple of the block size of the chosen block cipher.
1213 *
1214 * ECB mode does not accept an initialization vector (IV). When using a
1215 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1216 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001217 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001218#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t) 0x04404400)
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001219
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001220/** The CBC block cipher chaining mode, with no padding.
1221 *
1222 * The underlying block cipher is determined by the key type.
1223 *
1224 * This symmetric cipher mode can only be used with messages whose lengths
1225 * are whole number of blocks for the chosen block cipher.
1226 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001227#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t) 0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001228
1229/** The CBC block cipher chaining mode with PKCS#7 padding.
1230 *
1231 * The underlying block cipher is determined by the key type.
1232 *
1233 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1234 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001235#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t) 0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001236
Gilles Peskine449bd832023-01-11 14:50:10 +01001237#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
Gilles Peskine679693e2019-05-06 15:10:16 +02001238
1239/** Whether the specified algorithm is an AEAD mode on a block cipher.
1240 *
1241 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1242 *
1243 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1244 * a block cipher, 0 otherwise.
1245 * This macro may return either 0 or 1 if \p alg is not a supported
1246 * algorithm identifier.
1247 */
1248#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1249 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1250 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1251
Gilles Peskine9153ec02019-02-15 13:02:02 +01001252/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001253 *
1254 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001255 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001256#define PSA_ALG_CCM ((psa_algorithm_t) 0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001257
Mateusz Starzyk594215b2021-10-14 12:23:06 +02001258/** The CCM* cipher mode without authentication.
1259 *
1260 * This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
1261 * For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
1262 *
1263 * The underlying block cipher is determined by the key type.
1264 *
1265 * Currently only 13-byte long IV's are supported.
1266 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001267#define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t) 0x04c01300)
Mateusz Starzyk594215b2021-10-14 12:23:06 +02001268
Gilles Peskine9153ec02019-02-15 13:02:02 +01001269/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001270 *
1271 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001272 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001273#define PSA_ALG_GCM ((psa_algorithm_t) 0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001274
1275/** The Chacha20-Poly1305 AEAD algorithm.
1276 *
1277 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001278 *
1279 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1280 * and should reject other sizes.
1281 *
1282 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001283 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001284#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t) 0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001285
Tom Cosgrovece7f18c2022-07-28 05:50:56 +01001286/* In the encoding of an AEAD algorithm, the bits corresponding to
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001287 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1288 * The constants for default lengths follow this encoding.
1289 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001290#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t) 0x003f0000)
Bence Szépkútia2945512020-12-03 21:40:17 +01001291#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001292
Steven Cooremand927ed72021-02-22 19:59:35 +01001293/* In the encoding of an AEAD algorithm, the bit corresponding to
1294 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001295 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1296 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001297 * same base class and having a tag length greater than or equal to the one
1298 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001299#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
Steven Cooremand927ed72021-02-22 19:59:35 +01001300
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001301/** Macro to build a shortened AEAD algorithm.
1302 *
1303 * A shortened AEAD algorithm is similar to the corresponding AEAD
1304 * algorithm, but has an authentication tag that consists of fewer bytes.
1305 * Depending on the algorithm, the tag length may affect the calculation
1306 * of the ciphertext.
1307 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001308 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001309 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001310 * is true).
1311 * \param tag_length Desired length of the authentication tag in bytes.
1312 *
1313 * \return The corresponding AEAD algorithm with the specified
1314 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001315 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001316 * AEAD algorithm or if \p tag_length is not valid
1317 * for the specified AEAD algorithm.
1318 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001319#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001320 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1321 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001322 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
Gilles Peskine449bd832023-01-11 14:50:10 +01001323 PSA_ALG_AEAD_TAG_LENGTH_MASK))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001324
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001325/** Retrieve the tag length of a specified AEAD algorithm
1326 *
1327 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001328 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001329 * is true).
1330 *
1331 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001332 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001333 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001334 */
1335#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1336 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
Gilles Peskine449bd832023-01-11 14:50:10 +01001337 PSA_AEAD_TAG_LENGTH_OFFSET)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001338
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001339/** Calculate the corresponding AEAD algorithm with the default tag length.
1340 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001341 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001342 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001343 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001344 * \return The corresponding AEAD algorithm with the default
1345 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001346 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001347#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001348 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001349 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1350 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1351 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001352 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001353#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1354 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1355 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001356 ref :
1357
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001358/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001359 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001360 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001361 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001362 * algorithm is equal to or larger then the minimum tag length specified by the
1363 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001364 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001365 * \note When setting the minimum required tag length to less than the
1366 * smallest tag length allowed by the base algorithm, this effectively
1367 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001368 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001369 * \param aead_alg An AEAD algorithm identifier (value of type
1370 * #psa_algorithm_t such that
1371 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1372 * \param min_tag_length Desired minimum length of the authentication tag in
1373 * bytes. This must be at least 1 and at most the largest
1374 * allowed tag length of the algorithm.
1375 *
1376 * \return The corresponding AEAD wildcard algorithm with the
1377 * specified minimum length.
1378 * \return Unspecified if \p aead_alg is not a supported
1379 * AEAD algorithm or if \p min_tag_length is less than 1
1380 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001381 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001382#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Gilles Peskine449bd832023-01-11 14:50:10 +01001383 (PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1384 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001385
Gilles Peskine449bd832023-01-11 14:50:10 +01001386#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t) 0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001387/** RSA PKCS#1 v1.5 signature with hashing.
1388 *
1389 * This is the signature scheme defined by RFC 8017
1390 * (PKCS#1: RSA Cryptography Specifications) under the name
1391 * RSASSA-PKCS1-v1_5.
1392 *
1393 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1394 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001395 * This includes #PSA_ALG_ANY_HASH
1396 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001397 *
1398 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001399 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001400 * hash algorithm.
1401 */
1402#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1403 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1404/** Raw PKCS#1 v1.5 signature.
1405 *
1406 * The input to this algorithm is the DigestInfo structure used by
1407 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1408 * steps 3&ndash;6.
1409 */
1410#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1411#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1412 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1413
Gilles Peskine449bd832023-01-11 14:50:10 +01001414#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t) 0x06000300)
1415#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t) 0x06001300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001416/** RSA PSS signature with hashing.
1417 *
1418 * This is the signature scheme defined by RFC 8017
1419 * (PKCS#1: RSA Cryptography Specifications) under the name
1420 * RSASSA-PSS, with the message generation function MGF1, and with
Tuvshinzaya Erdenekhuu44baacd2022-06-17 10:25:05 +01001421 * a salt length equal to the length of the hash, or the largest
1422 * possible salt length for the algorithm and key size if that is
1423 * smaller than the hash length. The specified hash algorithm is
1424 * used to hash the input message, to create the salted hash, and
1425 * for the mask generation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001426 *
1427 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1428 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001429 * This includes #PSA_ALG_ANY_HASH
1430 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001431 *
1432 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001433 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001434 * hash algorithm.
1435 */
1436#define PSA_ALG_RSA_PSS(hash_alg) \
1437 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001438
1439/** RSA PSS signature with hashing with relaxed verification.
1440 *
1441 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1442 * but allows an arbitrary salt length (including \c 0) when verifying a
1443 * signature.
1444 *
1445 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1446 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1447 * This includes #PSA_ALG_ANY_HASH
1448 * when specifying the algorithm in a usage policy.
1449 *
1450 * \return The corresponding RSA PSS signature algorithm.
1451 * \return Unspecified if \p hash_alg is not a supported
1452 * hash algorithm.
1453 */
1454#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1455 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1456
1457/** Whether the specified algorithm is RSA PSS with standard salt.
1458 *
1459 * \param alg An algorithm value or an algorithm policy wildcard.
1460 *
1461 * \return 1 if \p alg is of the form
1462 * #PSA_ALG_RSA_PSS(\c hash_alg),
1463 * where \c hash_alg is a hash algorithm or
1464 * #PSA_ALG_ANY_HASH. 0 otherwise.
1465 * This macro may return either 0 or 1 if \p alg is not
1466 * a supported algorithm identifier or policy.
1467 */
1468#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001469 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1470
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001471/** Whether the specified algorithm is RSA PSS with any salt.
1472 *
1473 * \param alg An algorithm value or an algorithm policy wildcard.
1474 *
1475 * \return 1 if \p alg is of the form
1476 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1477 * where \c hash_alg is a hash algorithm or
1478 * #PSA_ALG_ANY_HASH. 0 otherwise.
1479 * This macro may return either 0 or 1 if \p alg is not
1480 * a supported algorithm identifier or policy.
1481 */
1482#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1483 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1484
1485/** Whether the specified algorithm is RSA PSS.
1486 *
1487 * This includes any of the RSA PSS algorithm variants, regardless of the
1488 * constraints on salt length.
1489 *
1490 * \param alg An algorithm value or an algorithm policy wildcard.
1491 *
1492 * \return 1 if \p alg is of the form
1493 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1494 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1495 * where \c hash_alg is a hash algorithm or
1496 * #PSA_ALG_ANY_HASH. 0 otherwise.
1497 * This macro may return either 0 or 1 if \p alg is not
1498 * a supported algorithm identifier or policy.
1499 */
1500#define PSA_ALG_IS_RSA_PSS(alg) \
Gilles Peskinef6892de2021-10-08 16:28:32 +02001501 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1502 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001503
Gilles Peskine449bd832023-01-11 14:50:10 +01001504#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t) 0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001505/** ECDSA signature with hashing.
1506 *
1507 * This is the ECDSA signature scheme defined by ANSI X9.62,
1508 * with a random per-message secret number (*k*).
1509 *
1510 * The representation of the signature as a byte string consists of
Shaun Case8b0ecbc2021-12-20 21:14:10 -08001511 * the concatenation of the signature values *r* and *s*. Each of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001512 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1513 * of the base point of the curve in octets. Each value is represented
1514 * in big-endian order (most significant octet first).
1515 *
1516 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1517 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001518 * This includes #PSA_ALG_ANY_HASH
1519 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001520 *
1521 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001522 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001523 * hash algorithm.
1524 */
1525#define PSA_ALG_ECDSA(hash_alg) \
1526 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1527/** ECDSA signature without hashing.
1528 *
1529 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1530 * without specifying a hash algorithm. This algorithm may only be
1531 * used to sign or verify a sequence of bytes that should be an
1532 * already-calculated hash. Note that the input is padded with
1533 * zeros on the left or truncated on the left as required to fit
1534 * the curve size.
1535 */
1536#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Gilles Peskine449bd832023-01-11 14:50:10 +01001537#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t) 0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001538/** Deterministic ECDSA signature with hashing.
1539 *
1540 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1541 *
1542 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1543 *
1544 * Note that when this algorithm is used for verification, signatures
1545 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1546 * same private key are accepted. In other words,
1547 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1548 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1549 *
1550 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1551 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001552 * This includes #PSA_ALG_ANY_HASH
1553 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001554 *
1555 * \return The corresponding deterministic ECDSA signature
1556 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001557 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001558 * hash algorithm.
1559 */
1560#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1561 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine449bd832023-01-11 14:50:10 +01001562#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t) 0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001563#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001564 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001565 PSA_ALG_ECDSA_BASE)
1566#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001567 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001568#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1569 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1570#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1571 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1572
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001573/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1574 * using standard parameters.
1575 *
1576 * Contexts are not supported in the current version of this specification
1577 * because there is no suitable signature interface that can take the
1578 * context as a parameter. A future version of this specification may add
1579 * suitable functions and extend this algorithm to support contexts.
1580 *
1581 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1582 * In this specification, the following curves are supported:
1583 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1584 * in RFC 8032.
1585 * The curve is Edwards25519.
1586 * The hash function used internally is SHA-512.
1587 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1588 * in RFC 8032.
1589 * The curve is Edwards448.
1590 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001591 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001592 *
1593 * This algorithm can be used with psa_sign_message() and
1594 * psa_verify_message(). Since there is no prehashing, it cannot be used
1595 * with psa_sign_hash() or psa_verify_hash().
1596 *
1597 * The signature format is the concatenation of R and S as defined by
1598 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1599 * string for Ed448).
1600 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001601#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t) 0x06000800)
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001602
Gilles Peskine449bd832023-01-11 14:50:10 +01001603#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t) 0x06000900)
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001604#define PSA_ALG_IS_HASH_EDDSA(alg) \
1605 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1606
1607/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001608 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001609 *
1610 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1611 *
1612 * This algorithm is Ed25519 as specified in RFC 8032.
1613 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001614 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001615 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001616 *
1617 * This is a hash-and-sign algorithm: to calculate a signature,
1618 * you can either:
1619 * - call psa_sign_message() on the message;
1620 * - or calculate the SHA-512 hash of the message
1621 * with psa_hash_compute()
1622 * or with a multi-part hash operation started with psa_hash_setup(),
1623 * using the hash algorithm #PSA_ALG_SHA_512,
1624 * then sign the calculated hash with psa_sign_hash().
1625 * Verifying a signature is similar, using psa_verify_message() or
1626 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001627 */
1628#define PSA_ALG_ED25519PH \
1629 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1630
1631/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1632 * using SHAKE256 and the Edwards448 curve.
1633 *
1634 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1635 *
1636 * This algorithm is Ed448 as specified in RFC 8032.
1637 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001638 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001639 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001640 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001641 *
1642 * This is a hash-and-sign algorithm: to calculate a signature,
1643 * you can either:
1644 * - call psa_sign_message() on the message;
1645 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1646 * with psa_hash_compute()
1647 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001648 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001649 * then sign the calculated hash with psa_sign_hash().
1650 * Verifying a signature is similar, using psa_verify_message() or
1651 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001652 */
1653#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001654 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001655
Gilles Peskine6d400852021-02-24 21:39:52 +01001656/* Default definition, to be overridden if the library is extended with
1657 * more hash-and-sign algorithms that we want to keep out of this header
1658 * file. */
1659#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1660
Gilles Peskinef2fe31a2021-09-22 16:42:02 +02001661/** Whether the specified algorithm is a signature algorithm that can be used
1662 * with psa_sign_hash() and psa_verify_hash().
1663 *
1664 * This encompasses all strict hash-and-sign algorithms categorized by
1665 * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1666 * paradigm more loosely:
1667 * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1668 * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1669 *
1670 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1671 *
1672 * \return 1 if alg is a signature algorithm that can be used to sign a
1673 * hash. 0 if alg is a signature algorithm that can only be used
1674 * to sign a message. 0 if alg is not a signature algorithm.
1675 * This macro can return either 0 or 1 if alg is not a
1676 * supported algorithm identifier.
1677 */
1678#define PSA_ALG_IS_SIGN_HASH(alg) \
1679 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1680 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
1681 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1682
1683/** Whether the specified algorithm is a signature algorithm that can be used
1684 * with psa_sign_message() and psa_verify_message().
1685 *
1686 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1687 *
1688 * \return 1 if alg is a signature algorithm that can be used to sign a
1689 * message. 0 if \p alg is a signature algorithm that can only be used
1690 * to sign an already-calculated hash. 0 if \p alg is not a signature
1691 * algorithm. This macro can return either 0 or 1 if \p alg is not a
1692 * supported algorithm identifier.
1693 */
1694#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
Gilles Peskine449bd832023-01-11 14:50:10 +01001695 (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA)
Gilles Peskinef2fe31a2021-09-22 16:42:02 +02001696
Gilles Peskined35b4892019-01-14 16:02:15 +01001697/** Whether the specified algorithm is a hash-and-sign algorithm.
1698 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001699 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1700 * structured in two parts: first the calculation of a hash in a way that
1701 * does not depend on the key, then the calculation of a signature from the
Gilles Peskinef7b41372021-09-22 16:15:05 +02001702 * hash value and the key. Hash-and-sign algorithms encode the hash
1703 * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1704 * to extract this algorithm.
1705 *
1706 * Thus, for a hash-and-sign algorithm,
1707 * `psa_sign_message(key, alg, input, ...)` is equivalent to
1708 * ```
1709 * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1710 * psa_sign_hash(key, alg, hash, ..., signature, ...);
1711 * ```
1712 * Most usefully, separating the hash from the signature allows the hash
1713 * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1714 * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1715 * calculating the hash and then calling psa_verify_hash().
Gilles Peskined35b4892019-01-14 16:02:15 +01001716 *
1717 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1718 *
1719 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1720 * This macro may return either 0 or 1 if \p alg is not a supported
1721 * algorithm identifier.
1722 */
1723#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
Gilles Peskinef7b41372021-09-22 16:15:05 +02001724 (PSA_ALG_IS_SIGN_HASH(alg) && \
1725 ((alg) & PSA_ALG_HASH_MASK) != 0)
Gilles Peskined35b4892019-01-14 16:02:15 +01001726
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001727/** Get the hash used by a hash-and-sign signature algorithm.
1728 *
1729 * A hash-and-sign algorithm is a signature algorithm which is
1730 * composed of two phases: first a hashing phase which does not use
1731 * the key and produces a hash of the input message, then a signing
1732 * phase which only uses the hash and the key and not the message
1733 * itself.
1734 *
1735 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1736 * #PSA_ALG_IS_SIGN(\p alg) is true).
1737 *
1738 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1739 * algorithm.
1740 * \return 0 if \p alg is a signature algorithm that does not
1741 * follow the hash-and-sign structure.
1742 * \return Unspecified if \p alg is not a signature algorithm or
1743 * if it is not supported by the implementation.
1744 */
1745#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001746 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001747 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1748 0)
1749
1750/** RSA PKCS#1 v1.5 encryption.
1751 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001752#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t) 0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001753
Gilles Peskine449bd832023-01-11 14:50:10 +01001754#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t) 0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001755/** RSA OAEP encryption.
1756 *
1757 * This is the encryption scheme defined by RFC 8017
1758 * (PKCS#1: RSA Cryptography Specifications) under the name
1759 * RSAES-OAEP, with the message generation function MGF1.
1760 *
1761 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1762 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1763 * for MGF1.
1764 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001765 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001766 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001767 * hash algorithm.
1768 */
1769#define PSA_ALG_RSA_OAEP(hash_alg) \
1770 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1771#define PSA_ALG_IS_RSA_OAEP(alg) \
1772 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1773#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1774 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1775 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1776 0)
1777
Gilles Peskine449bd832023-01-11 14:50:10 +01001778#define PSA_ALG_HKDF_BASE ((psa_algorithm_t) 0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001779/** Macro to build an HKDF algorithm.
1780 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001781 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA_256)` is HKDF using HMAC-SHA-256.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001782 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001783 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001784 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001785 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001786 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1787 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1788 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1789 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001790 * starting to generate output.
1791 *
Przemek Stekiel73f97d42022-06-03 09:05:08 +02001792 * \warning HKDF processes the salt as follows: first hash it with hash_alg
1793 * if the salt is longer than the block size of the hash algorithm; then
1794 * pad with null bytes up to the block size. As a result, it is possible
1795 * for distinct salt inputs to result in the same outputs. To ensure
1796 * unique outputs, it is recommended to use a fixed length for salt values.
1797 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001798 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1799 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1800 *
1801 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001802 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001803 * hash algorithm.
1804 */
1805#define PSA_ALG_HKDF(hash_alg) \
1806 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1807/** Whether the specified algorithm is an HKDF algorithm.
1808 *
1809 * HKDF is a family of key derivation algorithms that are based on a hash
1810 * function and the HMAC construction.
1811 *
1812 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1813 *
1814 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1815 * This macro may return either 0 or 1 if \c alg is not a supported
1816 * key derivation algorithm identifier.
1817 */
1818#define PSA_ALG_IS_HKDF(alg) \
1819 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1820#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1821 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1822
Gilles Peskine449bd832023-01-11 14:50:10 +01001823#define PSA_ALG_HKDF_EXTRACT_BASE ((psa_algorithm_t) 0x08000400)
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001824/** Macro to build an HKDF-Extract algorithm.
1825 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001826 * For example, `PSA_ALG_HKDF_EXTRACT(PSA_ALG_SHA_256)` is
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001827 * HKDF-Extract using HMAC-SHA-256.
1828 *
1829 * This key derivation algorithm uses the following inputs:
Przemek Stekielb398d862022-05-18 15:43:54 +02001830 * - PSA_KEY_DERIVATION_INPUT_SALT is the salt.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001831 * - PSA_KEY_DERIVATION_INPUT_SECRET is the input keying material used in the
1832 * "extract" step.
Przemek Stekielb398d862022-05-18 15:43:54 +02001833 * The inputs are mandatory and must be passed in the order above.
1834 * Each input may only be passed once.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001835 *
1836 * \warning HKDF-Extract is not meant to be used on its own. PSA_ALG_HKDF
1837 * should be used instead if possible. PSA_ALG_HKDF_EXTRACT is provided
1838 * as a separate algorithm for the sake of protocols that use it as a
1839 * building block. It may also be a slight performance optimization
1840 * in applications that use HKDF with the same salt and key but many
1841 * different info strings.
1842 *
Przemek Stekielb398d862022-05-18 15:43:54 +02001843 * \warning HKDF processes the salt as follows: first hash it with hash_alg
1844 * if the salt is longer than the block size of the hash algorithm; then
1845 * pad with null bytes up to the block size. As a result, it is possible
1846 * for distinct salt inputs to result in the same outputs. To ensure
1847 * unique outputs, it is recommended to use a fixed length for salt values.
1848 *
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001849 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1850 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1851 *
1852 * \return The corresponding HKDF-Extract algorithm.
1853 * \return Unspecified if \p hash_alg is not a supported
1854 * hash algorithm.
1855 */
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001856#define PSA_ALG_HKDF_EXTRACT(hash_alg) \
1857 (PSA_ALG_HKDF_EXTRACT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1858/** Whether the specified algorithm is an HKDF-Extract algorithm.
1859 *
1860 * HKDF-Extract is a family of key derivation algorithms that are based
1861 * on a hash function and the HMAC construction.
1862 *
1863 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1864 *
1865 * \return 1 if \c alg is an HKDF-Extract algorithm, 0 otherwise.
1866 * This macro may return either 0 or 1 if \c alg is not a supported
1867 * key derivation algorithm identifier.
1868 */
1869#define PSA_ALG_IS_HKDF_EXTRACT(alg) \
1870 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE)
1871
Gilles Peskine449bd832023-01-11 14:50:10 +01001872#define PSA_ALG_HKDF_EXPAND_BASE ((psa_algorithm_t) 0x08000500)
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001873/** Macro to build an HKDF-Expand algorithm.
1874 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001875 * For example, `PSA_ALG_HKDF_EXPAND(PSA_ALG_SHA_256)` is
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001876 * HKDF-Expand using HMAC-SHA-256.
1877 *
1878 * This key derivation algorithm uses the following inputs:
Przemek Stekiel459ee352022-06-02 11:16:52 +02001879 * - PSA_KEY_DERIVATION_INPUT_SECRET is the pseudorandom key (PRK).
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001880 * - PSA_KEY_DERIVATION_INPUT_INFO is the info string.
1881 *
1882 * The inputs are mandatory and must be passed in the order above.
1883 * Each input may only be passed once.
1884 *
1885 * \warning HKDF-Expand is not meant to be used on its own. `PSA_ALG_HKDF`
1886 * should be used instead if possible. `PSA_ALG_HKDF_EXPAND` is provided as
1887 * a separate algorithm for the sake of protocols that use it as a building
1888 * block. It may also be a slight performance optimization in applications
1889 * that use HKDF with the same salt and key but many different info strings.
1890 *
1891 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1892 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1893 *
1894 * \return The corresponding HKDF-Expand algorithm.
1895 * \return Unspecified if \p hash_alg is not a supported
1896 * hash algorithm.
1897 */
1898#define PSA_ALG_HKDF_EXPAND(hash_alg) \
1899 (PSA_ALG_HKDF_EXPAND_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Przemek Stekielebf62812022-05-11 14:16:05 +02001900/** Whether the specified algorithm is an HKDF-Expand algorithm.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001901 *
1902 * HKDF-Expand is a family of key derivation algorithms that are based
1903 * on a hash function and the HMAC construction.
1904 *
1905 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1906 *
1907 * \return 1 if \c alg is an HKDF-Expand algorithm, 0 otherwise.
1908 * This macro may return either 0 or 1 if \c alg is not a supported
1909 * key derivation algorithm identifier.
1910 */
1911#define PSA_ALG_IS_HKDF_EXPAND(alg) \
1912 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1913
Przemek Stekiela29b4882022-06-02 11:37:03 +02001914/** Whether the specified algorithm is an HKDF or HKDF-Extract or
1915 * HKDF-Expand algorithm.
1916 *
1917 *
1918 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1919 *
1920 * \return 1 if \c alg is any HKDF type algorithm, 0 otherwise.
1921 * This macro may return either 0 or 1 if \c alg is not a supported
1922 * key derivation algorithm identifier.
1923 */
1924#define PSA_ALG_IS_ANY_HKDF(alg) \
1925 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE || \
1926 ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE || \
1927 ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1928
Gilles Peskine449bd832023-01-11 14:50:10 +01001929#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t) 0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001930/** Macro to build a TLS-1.2 PRF algorithm.
1931 *
1932 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1933 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1934 * used with either SHA-256 or SHA-384.
1935 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001936 * This key derivation algorithm uses the following inputs, which must be
1937 * passed in the order given here:
1938 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001939 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1940 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001941 *
1942 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001943 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001944 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001945 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001946 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001947 * TLS 1.2 PRF using HMAC-SHA-256.
1948 *
1949 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1950 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1951 *
1952 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001953 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001954 * hash algorithm.
1955 */
1956#define PSA_ALG_TLS12_PRF(hash_alg) \
1957 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1958
1959/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1960 *
1961 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1962 *
1963 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1964 * This macro may return either 0 or 1 if \c alg is not a supported
1965 * key derivation algorithm identifier.
1966 */
1967#define PSA_ALG_IS_TLS12_PRF(alg) \
1968 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1969#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1970 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1971
Gilles Peskine449bd832023-01-11 14:50:10 +01001972#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t) 0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001973/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1974 *
1975 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1976 * from the PreSharedKey (PSK) through the application of padding
1977 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1978 * The latter is based on HMAC and can be used with either SHA-256
1979 * or SHA-384.
1980 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001981 * This key derivation algorithm uses the following inputs, which must be
1982 * passed in the order given here:
1983 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Przemek Stekiel37c81c42022-04-07 13:38:53 +02001984 * - #PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the
1985 * computation of the premaster secret. This input is optional;
1986 * if omitted, it defaults to a string of null bytes with the same length
1987 * as the secret (PSK) input.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001988 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1989 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001990 *
1991 * For the application to TLS-1.2, the seed (which is
1992 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1993 * ClientHello.Random + ServerHello.Random,
Przemek Stekiel37c81c42022-04-07 13:38:53 +02001994 * the label is "master secret" or "extended master secret" and
1995 * the other secret depends on the key exchange specified in the cipher suite:
1996 * - for a plain PSK cipher suite (RFC 4279, Section 2), omit
1997 * PSA_KEY_DERIVATION_INPUT_OTHER_SECRET
1998 * - for a DHE-PSK (RFC 4279, Section 3) or ECDHE-PSK cipher suite
1999 * (RFC 5489, Section 2), the other secret should be the output of the
2000 * PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer.
2001 * The recommended way to pass this input is to use a key derivation
2002 * algorithm constructed as
2003 * PSA_ALG_KEY_AGREEMENT(ka_alg, PSA_ALG_TLS12_PSK_TO_MS(hash_alg))
2004 * and to call psa_key_derivation_key_agreement(). Alternatively,
2005 * this input may be an output of `psa_raw_key_agreement()` passed with
2006 * psa_key_derivation_input_bytes(), or an equivalent input passed with
2007 * psa_key_derivation_input_bytes() or psa_key_derivation_input_key().
2008 * - for a RSA-PSK cipher suite (RFC 4279, Section 4), the other secret
2009 * should be the 48-byte client challenge (the PreMasterSecret of
2010 * (RFC 5246, Section 7.4.7.1)) concatenation of the TLS version and
2011 * a 46-byte random string chosen by the client. On the server, this is
2012 * typically an output of psa_asymmetric_decrypt() using
2013 * PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key derivation operation
2014 * with `psa_key_derivation_input_bytes()`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002015 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08002016 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002017 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
2018 *
2019 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
2020 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
2021 *
2022 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01002023 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002024 * hash algorithm.
2025 */
2026#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
2027 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2028
2029/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
2030 *
2031 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2032 *
2033 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
2034 * This macro may return either 0 or 1 if \c alg is not a supported
2035 * key derivation algorithm identifier.
2036 */
2037#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
2038 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
2039#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
2040 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
2041
Andrzej Kurek1fafb1f2022-09-16 07:19:49 -04002042/* The TLS 1.2 ECJPAKE-to-PMS KDF. It takes the shared secret K (an EC point
2043 * in case of EC J-PAKE) and calculates SHA256(K.X) that the rest of TLS 1.2
2044 * will use to derive the session secret, as defined by step 2 of
2045 * https://datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01#section-8.7.
2046 * Uses PSA_ALG_SHA_256.
2047 * This function takes a single input:
2048 * #PSA_KEY_DERIVATION_INPUT_SECRET is the shared secret K from EC J-PAKE.
2049 * The only supported curve is secp256r1 (the 256-bit curve in
2050 * #PSA_ECC_FAMILY_SECP_R1), so the input must be exactly 65 bytes.
Andrzej Kureke09aff82022-09-26 10:59:31 -04002051 * The output has to be read as a single chunk of 32 bytes, defined as
2052 * PSA_TLS12_ECJPAKE_TO_PMS_DATA_SIZE.
Andrzej Kurek08d34b82022-07-29 10:00:16 -04002053 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002054#define PSA_ALG_TLS12_ECJPAKE_TO_PMS ((psa_algorithm_t) 0x08000609)
Andrzej Kurek08d34b82022-07-29 10:00:16 -04002055
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02002056/* This flag indicates whether the key derivation algorithm is suitable for
2057 * use on low-entropy secrets such as password - these algorithms are also
2058 * known as key stretching or password hashing schemes. These are also the
2059 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02002060 *
2061 * Those algorithms cannot be combined with a key agreement algorithm.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02002062 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002063#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t) 0x00800000)
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02002064
Gilles Peskine449bd832023-01-11 14:50:10 +01002065#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t) 0x08800100)
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002066/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002067 *
2068 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002069 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
2070 * HMAC with the specified hash.
Pengyu Lvc1ecb252022-11-08 18:17:00 +08002071 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA_256)` specifies PBKDF2
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002072 * using the PRF HMAC-SHA-256.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002073 *
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02002074 * This key derivation algorithm uses the following inputs, which must be
2075 * provided in the following order:
2076 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002077 * This input step must be used exactly once.
2078 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
2079 * This input step must be used one or more times; if used several times, the
2080 * inputs will be concatenated. This can be used to build the final salt
2081 * from multiple sources, both public and secret (also known as pepper).
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02002082 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002083 * This input step must be used exactly once.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002084 *
2085 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
2086 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
2087 *
2088 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
2089 * \return Unspecified if \p hash_alg is not a supported
2090 * hash algorithm.
2091 */
2092#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
2093 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2094
2095/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
2096 *
2097 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2098 *
2099 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
2100 * This macro may return either 0 or 1 if \c alg is not a supported
2101 * key derivation algorithm identifier.
2102 */
2103#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
2104 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002105
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002106/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
2107 *
2108 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
2109 * This macro specifies the PBKDF2 algorithm constructed using the
2110 * AES-CMAC-PRF-128 PRF specified by RFC 4615.
2111 *
2112 * This key derivation algorithm uses the same inputs as
Manuel Pégourié-Gonnard5b79ee22021-05-04 10:34:56 +02002113 * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002114 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002115#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t) 0x08800200)
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002116
Gilles Peskine449bd832023-01-11 14:50:10 +01002117#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t) 0xfe00ffff)
2118#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t) 0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002119
Gilles Peskine6843c292019-01-18 16:44:49 +01002120/** Macro to build a combined algorithm that chains a key agreement with
2121 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002122 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002123 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
2124 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
2125 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
2126 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002127 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002128 * \return The corresponding key agreement and derivation
2129 * algorithm.
2130 * \return Unspecified if \p ka_alg is not a supported
2131 * key agreement algorithm or \p kdf_alg is not a
2132 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002133 */
Gilles Peskine6843c292019-01-18 16:44:49 +01002134#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
2135 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002136
2137#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
2138 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
2139
Gilles Peskine6843c292019-01-18 16:44:49 +01002140#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
2141 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002142
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002143/** Whether the specified algorithm is a raw key agreement algorithm.
2144 *
2145 * A raw key agreement algorithm is one that does not specify
2146 * a key derivation function.
2147 * Usually, raw key agreement algorithms are constructed directly with
2148 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02002149 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002150 *
2151 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2152 *
2153 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
2154 * This macro may return either 0 or 1 if \p alg is not a supported
2155 * algorithm identifier.
2156 */
Gilles Peskine6843c292019-01-18 16:44:49 +01002157#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002158 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
2159 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01002160
2161#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
2162 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
2163
2164/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002165 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002166 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002167 * `g^{ab}` in big-endian format.
2168 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
2169 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002170 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002171#define PSA_ALG_FFDH ((psa_algorithm_t) 0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01002172
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002173/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
2174 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002175 * This includes the raw finite field Diffie-Hellman algorithm as well as
2176 * finite-field Diffie-Hellman followed by any supporter key derivation
2177 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002178 *
2179 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2180 *
2181 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
2182 * This macro may return either 0 or 1 if \c alg is not a supported
2183 * key agreement algorithm identifier.
2184 */
2185#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01002186 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002187
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002188/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
2189 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002190 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002191 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
2192 * `m` is the bit size associated with the curve, i.e. the bit size of the
2193 * order of the curve's coordinate field. When `m` is not a multiple of 8,
2194 * the byte containing the most significant bit of the shared secret
2195 * is padded with zero bits. The byte order is either little-endian
2196 * or big-endian depending on the curve type.
2197 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01002198 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002199 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2200 * in little-endian byte order.
2201 * The bit size is 448 for Curve448 and 255 for Curve25519.
2202 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01002203 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002204 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2205 * in big-endian byte order.
2206 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
2207 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01002208 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002209 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2210 * in big-endian byte order.
2211 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002212 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002213#define PSA_ALG_ECDH ((psa_algorithm_t) 0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01002214
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002215/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
2216 * algorithm.
2217 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002218 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
2219 * elliptic curve Diffie-Hellman followed by any supporter key derivation
2220 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002221 *
2222 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2223 *
2224 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
2225 * 0 otherwise.
2226 * This macro may return either 0 or 1 if \c alg is not a supported
2227 * key agreement algorithm identifier.
2228 */
2229#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01002230 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002231
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002232/** Whether the specified algorithm encoding is a wildcard.
2233 *
2234 * Wildcard values may only be used to set the usage algorithm field in
2235 * a policy, not to perform an operation.
2236 *
2237 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2238 *
2239 * \return 1 if \c alg is a wildcard algorithm encoding.
2240 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
2241 * an operation).
2242 * \return This macro may return either 0 or 1 if \c alg is not a supported
2243 * algorithm identifier.
2244 */
Steven Cooremand927ed72021-02-22 19:59:35 +01002245#define PSA_ALG_IS_WILDCARD(alg) \
2246 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
2247 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
2248 PSA_ALG_IS_MAC(alg) ? \
2249 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
2250 PSA_ALG_IS_AEAD(alg) ? \
2251 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01002252 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002253
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002254/** Get the hash used by a composite algorithm.
2255 *
2256 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2257 *
2258 * \return The underlying hash algorithm if alg is a composite algorithm that
2259 * uses a hash algorithm.
2260 *
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02002261 * \return \c 0 if alg is not a composite algorithm that uses a hash.
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002262 */
2263#define PSA_ALG_GET_HASH(alg) \
Gilles Peskine449bd832023-01-11 14:50:10 +01002264 (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t) 0) : 0x02000000 | ((alg) & 0x000000ff))
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002265
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002266/**@}*/
2267
2268/** \defgroup key_lifetimes Key lifetimes
2269 * @{
2270 */
2271
Gilles Peskine79733992022-06-20 18:41:20 +02002272/* Note that location and persistence level values are embedded in the
2273 * persistent key store, as part of key metadata. As a consequence, they
2274 * must not be changed (unless the storage format version changes).
2275 */
2276
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002277/** The default lifetime for volatile keys.
2278 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02002279 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002280 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002281 *
2282 * A key with this lifetime is typically stored in the RAM area of the
2283 * PSA Crypto subsystem. However this is an implementation choice.
2284 * If an implementation stores data about the key in a non-volatile memory,
2285 * it must release all the resources associated with the key and erase the
2286 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002287 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002288#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t) 0x00000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002289
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002290/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002291 *
2292 * A persistent key remains in storage until it is explicitly destroyed or
2293 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02002294 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002295 * provide their own mechanism (for example to perform a factory reset,
2296 * to prepare for device refurbishment, or to uninstall an application).
2297 *
2298 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02002299 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002300 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002301 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002302#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t) 0x00000001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002303
Gilles Peskineaff11812020-05-04 19:03:10 +02002304/** The persistence level of volatile keys.
2305 *
2306 * See ::psa_key_persistence_t for more information.
2307 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002308#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t) 0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02002309
2310/** The default persistence level for persistent keys.
2311 *
2312 * See ::psa_key_persistence_t for more information.
2313 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002314#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t) 0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02002315
2316/** A persistence level indicating that a key is never destroyed.
2317 *
2318 * See ::psa_key_persistence_t for more information.
2319 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002320#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t) 0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002321
2322#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine449bd832023-01-11 14:50:10 +01002323 ((psa_key_persistence_t) ((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002324
2325#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine449bd832023-01-11 14:50:10 +01002326 ((psa_key_location_t) ((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002327
2328/** Whether a key lifetime indicates that the key is volatile.
2329 *
2330 * A volatile key is automatically destroyed by the implementation when
2331 * the application instance terminates. In particular, a volatile key
2332 * is automatically destroyed on a power reset of the device.
2333 *
2334 * A key that is not volatile is persistent. Persistent keys are
2335 * preserved until the application explicitly destroys them or until an
2336 * implementation-specific device management event occurs (for example,
2337 * a factory reset).
2338 *
2339 * \param lifetime The lifetime value to query (value of type
2340 * ::psa_key_lifetime_t).
2341 *
2342 * \return \c 1 if the key is volatile, otherwise \c 0.
2343 */
2344#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2345 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002346 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002347
Gilles Peskined133bb22021-04-21 20:05:59 +02002348/** Whether a key lifetime indicates that the key is read-only.
2349 *
2350 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2351 * They must be created through platform-specific means that bypass the API.
2352 *
2353 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine91466c82021-06-07 23:21:50 +02002354 * consider a platform with multiple levels of privilege, where a
2355 * low-privilege application can use a key but is not allowed to destroy
2356 * it, and the platform exposes the key to the application with a read-only
2357 * lifetime. High-privilege code can destroy the key even though the
2358 * application sees the key as read-only.
Gilles Peskined133bb22021-04-21 20:05:59 +02002359 *
2360 * \param lifetime The lifetime value to query (value of type
2361 * ::psa_key_lifetime_t).
2362 *
2363 * \return \c 1 if the key is read-only, otherwise \c 0.
2364 */
2365#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2366 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2367 PSA_KEY_PERSISTENCE_READ_ONLY)
2368
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002369/** Construct a lifetime from a persistence level and a location.
2370 *
2371 * \param persistence The persistence level
2372 * (value of type ::psa_key_persistence_t).
2373 * \param location The location indicator
2374 * (value of type ::psa_key_location_t).
2375 *
2376 * \return The constructed lifetime value.
2377 */
2378#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2379 ((location) << 8 | (persistence))
2380
Gilles Peskineaff11812020-05-04 19:03:10 +02002381/** The local storage area for persistent keys.
2382 *
2383 * This storage area is available on all systems that can store persistent
2384 * keys without delegating the storage to a third-party cryptoprocessor.
2385 *
2386 * See ::psa_key_location_t for more information.
2387 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002388#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t) 0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002389
Gilles Peskine449bd832023-01-11 14:50:10 +01002390#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t) 0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002391
Gilles Peskine79733992022-06-20 18:41:20 +02002392/* Note that key identifier values are embedded in the
2393 * persistent key store, as part of key metadata. As a consequence, they
2394 * must not be changed (unless the storage format version changes).
2395 */
2396
Mateusz Starzykc5c5b932021-08-26 13:32:30 +02002397/** The null key identifier.
2398 */
Gilles Peskinea6516072023-01-04 19:52:38 +01002399/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
Mateusz Starzykc5c5b932021-08-26 13:32:30 +02002400#define PSA_KEY_ID_NULL ((psa_key_id_t)0)
Gilles Peskinea6516072023-01-04 19:52:38 +01002401/* *INDENT-ON* */
Gilles Peskine4a231b82019-05-06 18:56:14 +02002402/** The minimum value for a key identifier chosen by the application.
2403 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002404#define PSA_KEY_ID_USER_MIN ((psa_key_id_t) 0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002405/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002406 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002407#define PSA_KEY_ID_USER_MAX ((psa_key_id_t) 0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002408/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002409 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002410#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t) 0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002411/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002412 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002413#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t) 0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002414
Ronald Cron7424f0d2020-09-14 16:17:41 +02002415
2416#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2417
Gilles Peskine449bd832023-01-11 14:50:10 +01002418#define MBEDTLS_SVC_KEY_ID_INIT ((psa_key_id_t) 0)
2419#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) (id)
2420#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) (0)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002421
2422/** Utility to initialize a key identifier at runtime.
2423 *
2424 * \param unused Unused parameter.
2425 * \param key_id Identifier of the key.
2426 */
2427static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
Gilles Peskine449bd832023-01-11 14:50:10 +01002428 unsigned int unused, psa_key_id_t key_id)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002429{
Gilles Peskine449bd832023-01-11 14:50:10 +01002430 (void) unused;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002431
Gilles Peskine449bd832023-01-11 14:50:10 +01002432 return key_id;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002433}
2434
2435/** Compare two key identifiers.
2436 *
2437 * \param id1 First key identifier.
2438 * \param id2 Second key identifier.
2439 *
2440 * \return Non-zero if the two key identifier are equal, zero otherwise.
2441 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002442static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2443 mbedtls_svc_key_id_t id2)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002444{
Gilles Peskine449bd832023-01-11 14:50:10 +01002445 return id1 == id2;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002446}
2447
Ronald Cronc4d1b512020-07-31 11:26:37 +02002448/** Check whether a key identifier is null.
2449 *
2450 * \param key Key identifier.
2451 *
2452 * \return Non-zero if the key identifier is null, zero otherwise.
2453 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002454static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
Ronald Cronc4d1b512020-07-31 11:26:37 +02002455{
Gilles Peskine449bd832023-01-11 14:50:10 +01002456 return key == 0;
Ronald Cronc4d1b512020-07-31 11:26:37 +02002457}
2458
Ronald Cron7424f0d2020-09-14 16:17:41 +02002459#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2460
Gilles Peskine449bd832023-01-11 14:50:10 +01002461#define MBEDTLS_SVC_KEY_ID_INIT ((mbedtls_svc_key_id_t){ 0, 0 })
2462#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) ((id).MBEDTLS_PRIVATE(key_id))
2463#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) ((id).MBEDTLS_PRIVATE(owner))
Ronald Cron7424f0d2020-09-14 16:17:41 +02002464
2465/** Utility to initialize a key identifier at runtime.
2466 *
2467 * \param owner_id Identifier of the key owner.
2468 * \param key_id Identifier of the key.
2469 */
2470static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
Gilles Peskine449bd832023-01-11 14:50:10 +01002471 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002472{
Gilles Peskine449bd832023-01-11 14:50:10 +01002473 return (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2474 .MBEDTLS_PRIVATE(owner) = owner_id };
Ronald Cron7424f0d2020-09-14 16:17:41 +02002475}
2476
2477/** Compare two key identifiers.
2478 *
2479 * \param id1 First key identifier.
2480 * \param id2 Second key identifier.
2481 *
2482 * \return Non-zero if the two key identifier are equal, zero otherwise.
2483 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002484static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2485 mbedtls_svc_key_id_t id2)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002486{
Gilles Peskine449bd832023-01-11 14:50:10 +01002487 return (id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id)) &&
2488 mbedtls_key_owner_id_equal(id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner));
Ronald Cron7424f0d2020-09-14 16:17:41 +02002489}
2490
Ronald Cronc4d1b512020-07-31 11:26:37 +02002491/** Check whether a key identifier is null.
2492 *
2493 * \param key Key identifier.
2494 *
2495 * \return Non-zero if the key identifier is null, zero otherwise.
2496 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002497static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
Ronald Cronc4d1b512020-07-31 11:26:37 +02002498{
Gilles Peskine449bd832023-01-11 14:50:10 +01002499 return key.MBEDTLS_PRIVATE(key_id) == 0;
Ronald Cronc4d1b512020-07-31 11:26:37 +02002500}
2501
Ronald Cron7424f0d2020-09-14 16:17:41 +02002502#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002503
2504/**@}*/
2505
2506/** \defgroup policy Key policies
2507 * @{
2508 */
2509
Gilles Peskine79733992022-06-20 18:41:20 +02002510/* Note that key usage flags are embedded in the
2511 * persistent key store, as part of key metadata. As a consequence, they
2512 * must not be changed (unless the storage format version changes).
2513 */
2514
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002515/** Whether the key may be exported.
2516 *
2517 * A public key or the public part of a key pair may always be exported
2518 * regardless of the value of this permission flag.
2519 *
2520 * If a key does not have export permission, implementations shall not
2521 * allow the key to be exported in plain form from the cryptoprocessor,
2522 * whether through psa_export_key() or through a proprietary interface.
2523 * The key may however be exportable in a wrapped form, i.e. in a form
2524 * where it is encrypted by another key.
2525 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002526#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t) 0x00000001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002527
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002528/** Whether the key may be copied.
2529 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002530 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002531 * with the same policy or a more restrictive policy.
2532 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002533 * For lifetimes for which the key is located in a secure element which
2534 * enforce the non-exportability of keys, copying a key outside the secure
2535 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2536 * Copying the key inside the secure element is permitted with just
2537 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2538 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002539 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2540 * is sufficient to permit the copy.
2541 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002542#define PSA_KEY_USAGE_COPY ((psa_key_usage_t) 0x00000002)
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002543
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002544/** Whether the key may be used to encrypt a message.
2545 *
2546 * This flag allows the key to be used for a symmetric encryption operation,
2547 * for an AEAD encryption-and-authentication operation,
2548 * or for an asymmetric encryption operation,
2549 * if otherwise permitted by the key's type and policy.
2550 *
2551 * For a key pair, this concerns the public key.
2552 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002553#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t) 0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002554
2555/** Whether the key may be used to decrypt a message.
2556 *
2557 * This flag allows the key to be used for a symmetric decryption operation,
2558 * for an AEAD decryption-and-verification operation,
2559 * or for an asymmetric decryption operation,
2560 * if otherwise permitted by the key's type and policy.
2561 *
2562 * For a key pair, this concerns the private key.
2563 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002564#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t) 0x00000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002565
2566/** Whether the key may be used to sign a message.
2567 *
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002568 * This flag allows the key to be used for a MAC calculation operation or for
2569 * an asymmetric message signature operation, if otherwise permitted by the
2570 * key’s type and policy.
2571 *
2572 * For a key pair, this concerns the private key.
2573 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002574#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t) 0x00000400)
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002575
2576/** Whether the key may be used to verify a message.
2577 *
2578 * This flag allows the key to be used for a MAC verification operation or for
2579 * an asymmetric message signature verification operation, if otherwise
2580 * permitted by the key’s type and policy.
2581 *
2582 * For a key pair, this concerns the public key.
2583 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002584#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t) 0x00000800)
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002585
2586/** Whether the key may be used to sign a message.
2587 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002588 * This flag allows the key to be used for a MAC calculation operation
2589 * or for an asymmetric signature operation,
2590 * if otherwise permitted by the key's type and policy.
2591 *
2592 * For a key pair, this concerns the private key.
2593 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002594#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t) 0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002595
2596/** Whether the key may be used to verify a message signature.
2597 *
2598 * This flag allows the key to be used for a MAC verification operation
2599 * or for an asymmetric signature verification operation,
Tom Cosgrove1797b052022-12-04 17:19:59 +00002600 * if otherwise permitted by the key's type and policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002601 *
2602 * For a key pair, this concerns the public key.
2603 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002604#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t) 0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002605
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002606/** Whether the key may be used to derive other keys or produce a password
2607 * hash.
Andrew Thoelke52d18cd2021-06-25 11:03:57 +01002608 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002609 * This flag allows the key to be used for a key derivation operation or for
Tom Cosgrove1797b052022-12-04 17:19:59 +00002610 * a key agreement operation, if otherwise permitted by the key's type and
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002611 * policy.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002612 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002613 * If this flag is present on all keys used in calls to
2614 * psa_key_derivation_input_key() for a key derivation operation, then it
2615 * permits calling psa_key_derivation_output_bytes() or
2616 * psa_key_derivation_output_key() at the end of the operation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002617 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002618#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t) 0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002619
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002620/** Whether the key may be used to verify the result of a key derivation,
2621 * including password hashing.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002622 *
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002623 * This flag allows the key to be used:
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002624 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002625 * This flag allows the key to be used in a key derivation operation, if
Tom Cosgrove1797b052022-12-04 17:19:59 +00002626 * otherwise permitted by the key's type and policy.
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002627 *
2628 * If this flag is present on all keys used in calls to
2629 * psa_key_derivation_input_key() for a key derivation operation, then it
2630 * permits calling psa_key_derivation_verify_bytes() or
2631 * psa_key_derivation_verify_key() at the end of the operation.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002632 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002633#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t) 0x00008000)
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002634
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002635/**@}*/
2636
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002637/** \defgroup derivation Key derivation
2638 * @{
2639 */
2640
Gilles Peskine79733992022-06-20 18:41:20 +02002641/* Key input steps are not embedded in the persistent storage, so you can
2642 * change them if needed: it's only an ABI change. */
2643
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002644/** A secret input for key derivation.
2645 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002646 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2647 * (passed to psa_key_derivation_input_key())
2648 * or the shared secret resulting from a key agreement
2649 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002650 *
2651 * The secret can also be a direct input (passed to
2652 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002653 * may not be used to derive keys: the operation will only allow
2654 * psa_key_derivation_output_bytes(),
2655 * psa_key_derivation_verify_bytes(), or
2656 * psa_key_derivation_verify_key(), but not
2657 * psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002658 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002659#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t) 0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002660
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002661/** A low-entropy secret input for password hashing / key stretching.
2662 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002663 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2664 * psa_key_derivation_input_key()) or a direct input (passed to
2665 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2666 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2667 * the shared secret resulting from a key agreement.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002668 *
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002669 * The secret can also be a direct input (passed to
2670 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002671 * may not be used to derive keys: the operation will only allow
2672 * psa_key_derivation_output_bytes(),
2673 * psa_key_derivation_verify_bytes(), or
2674 * psa_key_derivation_verify_key(), but not
2675 * psa_key_derivation_output_key().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002676 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002677#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t) 0x0102)
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002678
Przemek Stekiel37c81c42022-04-07 13:38:53 +02002679/** A high-entropy additional secret input for key derivation.
2680 *
2681 * This is typically the shared secret resulting from a key agreement obtained
2682 * via `psa_key_derivation_key_agreement()`. It may alternatively be a key of
2683 * type `PSA_KEY_TYPE_DERIVE` passed to `psa_key_derivation_input_key()`, or
2684 * a direct input passed to `psa_key_derivation_input_bytes()`.
2685 */
2686#define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \
Gilles Peskine449bd832023-01-11 14:50:10 +01002687 ((psa_key_derivation_step_t) 0x0103)
Przemek Stekiel37c81c42022-04-07 13:38:53 +02002688
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002689/** A label for key derivation.
2690 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002691 * This should be a direct input.
2692 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002693 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002694#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t) 0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002695
2696/** A salt for key derivation.
2697 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002698 * This should be a direct input.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002699 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2700 * #PSA_KEY_TYPE_PEPPER.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002701 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002702#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t) 0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002703
2704/** An information string for key derivation.
2705 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002706 * This should be a direct input.
2707 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002708 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002709#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t) 0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002710
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002711/** A seed for key derivation.
2712 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002713 * This should be a direct input.
2714 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002715 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002716#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t) 0x0204)
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002717
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002718/** A cost parameter for password hashing / key stretching.
2719 *
Manuel Pégourié-Gonnard22f08bc2021-04-20 11:57:34 +02002720 * This must be a direct input, passed to psa_key_derivation_input_integer().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002721 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002722#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t) 0x0205)
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002723
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002724/**@}*/
2725
Bence Szépkútib639d432021-04-21 10:33:54 +02002726/** \defgroup helper_macros Helper macros
2727 * @{
2728 */
2729
2730/* Helper macros */
2731
2732/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2733 * regardless of the tag length they encode.
2734 *
2735 * \param aead_alg_1 An AEAD algorithm identifier.
2736 * \param aead_alg_2 An AEAD algorithm identifier.
2737 *
2738 * \return 1 if both identifiers refer to the same AEAD algorithm,
2739 * 0 otherwise.
2740 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2741 * a supported AEAD algorithm.
2742 */
2743#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2744 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2745 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2746
2747/**@}*/
2748
Paul Elliott1265f002022-09-09 17:15:43 +01002749/**@}*/
2750
2751/** \defgroup interruptible Interruptible operations
2752 * @{
2753 */
2754
2755/** Maximum value for use with \c psa_interruptible_set_max_ops() to determine
2756 * the maximum number of ops allowed to be executed by an interruptible
2757 * function in a single call.
2758 */
Paul Elliottab7c5c82023-02-03 15:49:42 +00002759#define PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED UINT32_MAX
Paul Elliott1265f002022-09-09 17:15:43 +01002760
2761/**@}*/
2762
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002763#endif /* PSA_CRYPTO_VALUES_H */