doc: Move documents into subdirectories

This change creates the following directories under docs/
in order to provide a grouping for the content:

- components
- design
- getting_started
- perf
- process

In each of these directories an index.rst file is created
and this serves as an index / landing page for each of the
groups when the pages are compiled. Proper layout of the
top-level table of contents relies on this directory/index
structure.

Without this patch it is possible to build the documents
correctly with Sphinx but the output looks messy because
there is no overall hierarchy.

Change-Id: I3c9f4443ec98571a56a6edf775f2c8d74d7f429f
Signed-off-by: Paul Beesley <paul.beesley@arm.com>
diff --git a/docs/getting_started/user-guide.rst b/docs/getting_started/user-guide.rst
new file mode 100644
index 0000000..3cc5f3c
--- /dev/null
+++ b/docs/getting_started/user-guide.rst
@@ -0,0 +1,2142 @@
+Trusted Firmware-A User Guide
+=============================
+
+
+
+
+.. contents::
+
+This document describes how to build Trusted Firmware-A (TF-A) and run it with a
+tested set of other software components using defined configurations on the Juno
+Arm development platform and Arm Fixed Virtual Platform (FVP) models. It is
+possible to use other software components, configurations and platforms but that
+is outside the scope of this document.
+
+This document assumes that the reader has previous experience running a fully
+bootable Linux software stack on Juno or FVP using the prebuilt binaries and
+filesystems provided by `Linaro`_. Further information may be found in the
+`Linaro instructions`_. It also assumes that the user understands the role of
+the different software components required to boot a Linux system:
+
+-  Specific firmware images required by the platform (e.g. SCP firmware on Juno)
+-  Normal world bootloader (e.g. UEFI or U-Boot)
+-  Device tree
+-  Linux kernel image
+-  Root filesystem
+
+This document also assumes that the user is familiar with the `FVP models`_ and
+the different command line options available to launch the model.
+
+This document should be used in conjunction with the `Firmware Design`_.
+
+Host machine requirements
+-------------------------
+
+The minimum recommended machine specification for building the software and
+running the FVP models is a dual-core processor running at 2GHz with 12GB of
+RAM. For best performance, use a machine with a quad-core processor running at
+2.6GHz with 16GB of RAM.
+
+The software has been tested on Ubuntu 16.04 LTS (64-bit). Packages used for
+building the software were installed from that distribution unless otherwise
+specified.
+
+The software has also been built on Windows 7 Enterprise SP1, using CMD.EXE,
+Cygwin, and Msys (MinGW) shells, using version 5.3.1 of the GNU toolchain.
+
+Tools
+-----
+
+Install the required packages to build TF-A with the following command:
+
+::
+
+    sudo apt-get install device-tree-compiler build-essential gcc make git libssl-dev
+
+TF-A has been tested with Linaro Release 18.04.
+
+Download and install the AArch32 or AArch64 little-endian GCC cross compiler. If
+you would like to use the latest features available, download GCC 8.2-2019.01
+compiler from `arm Developer page`_. Otherwise, the `Linaro Release Notes`_
+documents which version of the compiler to use for a given Linaro Release. Also,
+these `Linaro instructions`_ provide further guidance and a script, which can be
+used to download Linaro deliverables automatically.
+
+Optionally, TF-A can be built using clang version 4.0 or newer or Arm
+Compiler 6. See instructions below on how to switch the default compiler.
+
+In addition, the following optional packages and tools may be needed:
+
+-  ``device-tree-compiler`` (dtc) package if you need to rebuild the Flattened Device
+   Tree (FDT) source files (``.dts`` files) provided with this software. The
+   version of dtc must be 1.4.6 or above.
+
+-  For debugging, Arm `Development Studio 5 (DS-5)`_.
+
+-  To create and modify the diagram files included in the documentation, `Dia`_.
+   This tool can be found in most Linux distributions. Inkscape is needed to
+   generate the actual \*.png files.
+
+Getting the TF-A source code
+----------------------------
+
+Clone the repository from the Gerrit server. The project details may be found
+on the `arm-trusted-firmware-a project page`_. We recommend the "`Clone with
+commit-msg hook`" clone method, which will setup the git commit hook that
+automatically generates and inserts appropriate `Change-Id:` lines in your
+commit messages.
+
+Checking source code style
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Trusted Firmware follows the `Linux Coding Style`_ . When making changes to the
+source, for submission to the project, the source must be in compliance with
+this style guide.
+
+Additional, project-specific guidelines are defined in the `Trusted Firmware-A
+Coding Guidelines`_ document.
+
+To assist with coding style compliance, the project Makefile contains two
+targets which both utilise the `checkpatch.pl` script that ships with the Linux
+source tree. The project also defines certain *checkpatch* options in the
+``.checkpatch.conf`` file in the top-level directory.
+
+**Note:** Checkpatch errors will gate upstream merging of pull requests.
+Checkpatch warnings will not gate merging but should be reviewed and fixed if
+possible.
+
+To check the entire source tree, you must first download copies of
+``checkpatch.pl``, ``spelling.txt`` and ``const_structs.checkpatch`` available
+in the `Linux master tree`_ *scripts* directory, then set the ``CHECKPATCH``
+environment variable to point to ``checkpatch.pl`` (with the other 2 files in
+the same directory) and build the `checkcodebase` target:
+
+::
+
+    make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkcodebase
+
+To just check the style on the files that differ between your local branch and
+the remote master, use:
+
+::
+
+    make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkpatch
+
+If you wish to check your patch against something other than the remote master,
+set the ``BASE_COMMIT`` variable to your desired branch. By default, ``BASE_COMMIT``
+is set to ``origin/master``.
+
+Building TF-A
+-------------
+
+-  Before building TF-A, the environment variable ``CROSS_COMPILE`` must point
+   to the Linaro cross compiler.
+
+   For AArch64:
+
+   ::
+
+       export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
+
+   For AArch32:
+
+   ::
+
+       export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-linux-gnueabihf-
+
+   It is possible to build TF-A using Clang or Arm Compiler 6. To do so
+   ``CC`` needs to point to the clang or armclang binary, which will
+   also select the clang or armclang assembler. Be aware that the
+   GNU linker is used by default.  In case of being needed the linker
+   can be overridden using the ``LD`` variable. Clang linker version 6 is
+   known to work with TF-A.
+
+   In both cases ``CROSS_COMPILE`` should be set as described above.
+
+   Arm Compiler 6 will be selected when the base name of the path assigned
+   to ``CC`` matches the string 'armclang'.
+
+   For AArch64 using Arm Compiler 6:
+
+   ::
+
+       export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
+       make CC=<path-to-armclang>/bin/armclang PLAT=<platform> all
+
+   Clang will be selected when the base name of the path assigned to ``CC``
+   contains the string 'clang'. This is to allow both clang and clang-X.Y
+   to work.
+
+   For AArch64 using clang:
+
+   ::
+
+       export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
+       make CC=<path-to-clang>/bin/clang PLAT=<platform> all
+
+-  Change to the root directory of the TF-A source tree and build.
+
+   For AArch64:
+
+   ::
+
+       make PLAT=<platform> all
+
+   For AArch32:
+
+   ::
+
+       make PLAT=<platform> ARCH=aarch32 AARCH32_SP=sp_min all
+
+   Notes:
+
+   -  If ``PLAT`` is not specified, ``fvp`` is assumed by default. See the
+      `Summary of build options`_ for more information on available build
+      options.
+
+   -  (AArch32 only) Currently only ``PLAT=fvp`` is supported.
+
+   -  (AArch32 only) ``AARCH32_SP`` is the AArch32 EL3 Runtime Software and it
+      corresponds to the BL32 image. A minimal ``AARCH32_SP``, sp_min, is
+      provided by TF-A to demonstrate how PSCI Library can be integrated with
+      an AArch32 EL3 Runtime Software. Some AArch32 EL3 Runtime Software may
+      include other runtime services, for example Trusted OS services. A guide
+      to integrate PSCI library with AArch32 EL3 Runtime Software can be found
+      `here`_.
+
+   -  (AArch64 only) The TSP (Test Secure Payload), corresponding to the BL32
+      image, is not compiled in by default. Refer to the
+      `Building the Test Secure Payload`_ section below.
+
+   -  By default this produces a release version of the build. To produce a
+      debug version instead, refer to the "Debugging options" section below.
+
+   -  The build process creates products in a ``build`` directory tree, building
+      the objects and binaries for each boot loader stage in separate
+      sub-directories. The following boot loader binary files are created
+      from the corresponding ELF files:
+
+      -  ``build/<platform>/<build-type>/bl1.bin``
+      -  ``build/<platform>/<build-type>/bl2.bin``
+      -  ``build/<platform>/<build-type>/bl31.bin`` (AArch64 only)
+      -  ``build/<platform>/<build-type>/bl32.bin`` (mandatory for AArch32)
+
+      where ``<platform>`` is the name of the chosen platform and ``<build-type>``
+      is either ``debug`` or ``release``. The actual number of images might differ
+      depending on the platform.
+
+-  Build products for a specific build variant can be removed using:
+
+   ::
+
+       make DEBUG=<D> PLAT=<platform> clean
+
+   ... where ``<D>`` is ``0`` or ``1``, as specified when building.
+
+   The build tree can be removed completely using:
+
+   ::
+
+       make realclean
+
+Summary of build options
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+The TF-A build system supports the following build options. Unless mentioned
+otherwise, these options are expected to be specified at the build command
+line and are not to be modified in any component makefiles. Note that the
+build system doesn't track dependency for build options. Therefore, if any of
+the build options are changed from a previous build, a clean build must be
+performed.
+
+Common build options
+^^^^^^^^^^^^^^^^^^^^
+
+-  ``AARCH32_INSTRUCTION_SET``: Choose the AArch32 instruction set that the
+   compiler should use. Valid values are T32 and A32. It defaults to T32 due to
+   code having a smaller resulting size.
+
+-  ``AARCH32_SP`` : Choose the AArch32 Secure Payload component to be built as
+   as the BL32 image when ``ARCH=aarch32``. The value should be the path to the
+   directory containing the SP source, relative to the ``bl32/``; the directory
+   is expected to contain a makefile called ``<aarch32_sp-value>.mk``.
+
+-  ``ARCH`` : Choose the target build architecture for TF-A. It can take either
+   ``aarch64`` or ``aarch32`` as values. By default, it is defined to
+   ``aarch64``.
+
+-  ``ARM_ARCH_MAJOR``: The major version of Arm Architecture to target when
+   compiling TF-A. Its value must be numeric, and defaults to 8 . See also,
+   *Armv8 Architecture Extensions* and *Armv7 Architecture Extensions* in
+   `Firmware Design`_.
+
+-  ``ARM_ARCH_MINOR``: The minor version of Arm Architecture to target when
+   compiling TF-A. Its value must be a numeric, and defaults to 0. See also,
+   *Armv8 Architecture Extensions* in `Firmware Design`_.
+
+-  ``BL2``: This is an optional build option which specifies the path to BL2
+   image for the ``fip`` target. In this case, the BL2 in the TF-A will not be
+   built.
+
+-  ``BL2U``: This is an optional build option which specifies the path to
+   BL2U image. In this case, the BL2U in TF-A will not be built.
+
+-  ``BL2_AT_EL3``: This is an optional build option that enables the use of
+   BL2 at EL3 execution level.
+
+-  ``BL2_IN_XIP_MEM``: In some use-cases BL2 will be stored in eXecute In Place
+   (XIP) memory, like BL1. In these use-cases, it is necessary to initialize
+   the RW sections in RAM, while leaving the RO sections in place. This option
+   enable this use-case. For now, this option is only supported when BL2_AT_EL3
+   is set to '1'.
+
+-  ``BL31``: This is an optional build option which specifies the path to
+   BL31 image for the ``fip`` target. In this case, the BL31 in TF-A will not
+   be built.
+
+-  ``BL31_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
+   file that contains the BL31 private key in PEM format. If ``SAVE_KEYS=1``,
+   this file name will be used to save the key.
+
+-  ``BL32``: This is an optional build option which specifies the path to
+   BL32 image for the ``fip`` target. In this case, the BL32 in TF-A will not
+   be built.
+
+-  ``BL32_EXTRA1``: This is an optional build option which specifies the path to
+   Trusted OS Extra1 image for the  ``fip`` target.
+
+-  ``BL32_EXTRA2``: This is an optional build option which specifies the path to
+   Trusted OS Extra2 image for the ``fip`` target.
+
+-  ``BL32_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
+   file that contains the BL32 private key in PEM format. If ``SAVE_KEYS=1``,
+   this file name will be used to save the key.
+
+-  ``BL33``: Path to BL33 image in the host file system. This is mandatory for
+   ``fip`` target in case TF-A BL2 is used.
+
+-  ``BL33_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
+   file that contains the BL33 private key in PEM format. If ``SAVE_KEYS=1``,
+   this file name will be used to save the key.
+
+-  ``BUILD_MESSAGE_TIMESTAMP``: String used to identify the time and date of the
+   compilation of each build. It must be set to a C string (including quotes
+   where applicable). Defaults to a string that contains the time and date of
+   the compilation.
+
+-  ``BUILD_STRING``: Input string for VERSION_STRING, which allows the TF-A
+   build to be uniquely identified. Defaults to the current git commit id.
+
+-  ``CFLAGS``: Extra user options appended on the compiler's command line in
+   addition to the options set by the build system.
+
+-  ``COLD_BOOT_SINGLE_CPU``: This option indicates whether the platform may
+   release several CPUs out of reset. It can take either 0 (several CPUs may be
+   brought up) or 1 (only one CPU will ever be brought up during cold reset).
+   Default is 0. If the platform always brings up a single CPU, there is no
+   need to distinguish between primary and secondary CPUs and the boot path can
+   be optimised. The ``plat_is_my_cpu_primary()`` and
+   ``plat_secondary_cold_boot_setup()`` platform porting interfaces do not need
+   to be implemented in this case.
+
+-  ``CRASH_REPORTING``: A non-zero value enables a console dump of processor
+   register state when an unexpected exception occurs during execution of
+   BL31. This option defaults to the value of ``DEBUG`` - i.e. by default
+   this is only enabled for a debug build of the firmware.
+
+-  ``CREATE_KEYS``: This option is used when ``GENERATE_COT=1``. It tells the
+   certificate generation tool to create new keys in case no valid keys are
+   present or specified. Allowed options are '0' or '1'. Default is '1'.
+
+-  ``CTX_INCLUDE_AARCH32_REGS`` : Boolean option that, when set to 1, will cause
+   the AArch32 system registers to be included when saving and restoring the
+   CPU context. The option must be set to 0 for AArch64-only platforms (that
+   is on hardware that does not implement AArch32, or at least not at EL1 and
+   higher ELs). Default value is 1.
+
+-  ``CTX_INCLUDE_FPREGS``: Boolean option that, when set to 1, will cause the FP
+   registers to be included when saving and restoring the CPU context. Default
+   is 0.
+
+-  ``CTX_INCLUDE_PAUTH_REGS``: Boolean option that, when set to 1, allows
+   Pointer Authentication for **Secure world**. This will cause the
+   Armv8.3-PAuth registers to be included when saving and restoring the CPU
+   context as part of a world switch. Default value is 0. Pointer Authentication
+   is an experimental feature.
+
+   Note that, if the CPU supports it, Pointer Authentication is allowed for
+   Non-secure world irrespectively of the value of this flag. "Allowed" means
+   that accesses to PAuth-related registers or execution of PAuth-related
+   instructions will not be trapped to EL3. As such, usage or not of PAuth in
+   Non-secure world images, depends on those images themselves.
+
+-  ``DEBUG``: Chooses between a debug and release build. It can take either 0
+   (release) or 1 (debug) as values. 0 is the default.
+
+-  ``DISABLE_BIN_GENERATION``: Boolean option to disable the generation
+   of the binary image. If set to 1, then only the ELF image is built.
+   0 is the default.
+
+-  ``DYN_DISABLE_AUTH``: Provides the capability to dynamically disable Trusted
+   Board Boot authentication at runtime. This option is meant to be enabled only
+   for development platforms. ``TRUSTED_BOARD_BOOT`` flag must be set if this
+   flag has to be enabled. 0 is the default.
+
+-  ``EL3_PAYLOAD_BASE``: This option enables booting an EL3 payload instead of
+   the normal boot flow. It must specify the entry point address of the EL3
+   payload. Please refer to the "Booting an EL3 payload" section for more
+   details.
+
+-  ``ENABLE_AMU``: Boolean option to enable Activity Monitor Unit extensions.
+   This is an optional architectural feature available on v8.4 onwards. Some
+   v8.2 implementations also implement an AMU and this option can be used to
+   enable this feature on those systems as well. Default is 0.
+
+-  ``ENABLE_ASSERTIONS``: This option controls whether or not calls to ``assert()``
+   are compiled out. For debug builds, this option defaults to 1, and calls to
+   ``assert()`` are left in place. For release builds, this option defaults to 0
+   and calls to ``assert()`` function are compiled out. This option can be set
+   independently of ``DEBUG``. It can also be used to hide any auxiliary code
+   that is only required for the assertion and does not fit in the assertion
+   itself.
+
+-  ``ENABLE_BACKTRACE``: This option controls whether to enables backtrace
+   dumps or not. It is supported in both AArch64 and AArch32. However, in
+   AArch32 the format of the frame records are not defined in the AAPCS and they
+   are defined by the implementation. This implementation of backtrace only
+   supports the format used by GCC when T32 interworking is disabled. For this
+   reason enabling this option in AArch32 will force the compiler to only
+   generate A32 code. This option is enabled by default only in AArch64 debug
+   builds, but this behaviour can be overridden in each platform's Makefile or
+   in the build command line.
+
+-  ``ENABLE_MPAM_FOR_LOWER_ELS``: Boolean option to enable lower ELs to use MPAM
+   feature. MPAM is an optional Armv8.4 extension that enables various memory
+   system components and resources to define partitions; software running at
+   various ELs can assign themselves to desired partition to control their
+   performance aspects.
+
+   When this option is set to ``1``, EL3 allows lower ELs to access their own
+   MPAM registers without trapping into EL3. This option doesn't make use of
+   partitioning in EL3, however. Platform initialisation code should configure
+   and use partitions in EL3 as required. This option defaults to ``0``.
+
+-  ``ENABLE_PAUTH``: Boolean option to enable Armv8.3 Pointer Authentication
+   for **TF-A BL images themselves**. If enabled, the compiler must support the
+   ``-msign-return-address`` option. This flag defaults to 0. Pointer
+   Authentication is an experimental feature.
+
+   If this flag is enabled, ``CTX_INCLUDE_PAUTH_REGS`` must also be enabled.
+
+-  ``ENABLE_PIE``: Boolean option to enable Position Independent Executable(PIE)
+   support within generic code in TF-A. This option is currently only supported
+   in BL31. Default is 0.
+
+-  ``ENABLE_PMF``: Boolean option to enable support for optional Performance
+   Measurement Framework(PMF). Default is 0.
+
+-  ``ENABLE_PSCI_STAT``: Boolean option to enable support for optional PSCI
+   functions ``PSCI_STAT_RESIDENCY`` and ``PSCI_STAT_COUNT``. Default is 0.
+   In the absence of an alternate stat collection backend, ``ENABLE_PMF`` must
+   be enabled. If ``ENABLE_PMF`` is set, the residency statistics are tracked in
+   software.
+
+-  ``ENABLE_RUNTIME_INSTRUMENTATION``: Boolean option to enable runtime
+   instrumentation which injects timestamp collection points into TF-A to
+   allow runtime performance to be measured. Currently, only PSCI is
+   instrumented. Enabling this option enables the ``ENABLE_PMF`` build option
+   as well. Default is 0.
+
+-  ``ENABLE_SPE_FOR_LOWER_ELS`` : Boolean option to enable Statistical Profiling
+   extensions. This is an optional architectural feature for AArch64.
+   The default is 1 but is automatically disabled when the target architecture
+   is AArch32.
+
+-  ``ENABLE_SPM`` : Boolean option to enable the Secure Partition Manager (SPM).
+   Refer to the `Secure Partition Manager Design guide`_ for more details about
+   this feature. Default is 0.
+
+-  ``ENABLE_SVE_FOR_NS``: Boolean option to enable Scalable Vector Extension
+   (SVE) for the Non-secure world only. SVE is an optional architectural feature
+   for AArch64. Note that when SVE is enabled for the Non-secure world, access
+   to SIMD and floating-point functionality from the Secure world is disabled.
+   This is to avoid corruption of the Non-secure world data in the Z-registers
+   which are aliased by the SIMD and FP registers. The build option is not
+   compatible with the ``CTX_INCLUDE_FPREGS`` build option, and will raise an
+   assert on platforms where SVE is implemented and ``ENABLE_SVE_FOR_NS`` set to
+   1. The default is 1 but is automatically disabled when the target
+   architecture is AArch32.
+
+-  ``ENABLE_STACK_PROTECTOR``: String option to enable the stack protection
+   checks in GCC. Allowed values are "all", "strong", "default" and "none". The
+   default value is set to "none". "strong" is the recommended stack protection
+   level if this feature is desired. "none" disables the stack protection. For
+   all values other than "none", the ``plat_get_stack_protector_canary()``
+   platform hook needs to be implemented. The value is passed as the last
+   component of the option ``-fstack-protector-$ENABLE_STACK_PROTECTOR``.
+
+-  ``ERROR_DEPRECATED``: This option decides whether to treat the usage of
+   deprecated platform APIs, helper functions or drivers within Trusted
+   Firmware as error. It can take the value 1 (flag the use of deprecated
+   APIs as error) or 0. The default is 0.
+
+-  ``EL3_EXCEPTION_HANDLING``: When set to ``1``, enable handling of exceptions
+   targeted at EL3. When set ``0`` (default), no exceptions are expected or
+   handled at EL3, and a panic will result. This is supported only for AArch64
+   builds.
+
+-  ``FAULT_INJECTION_SUPPORT``: ARMv8.4 extensions introduced support for fault
+   injection from lower ELs, and this build option enables lower ELs to use
+   Error Records accessed via System Registers to inject faults. This is
+   applicable only to AArch64 builds.
+
+   This feature is intended for testing purposes only, and is advisable to keep
+   disabled for production images.
+
+-  ``FIP_NAME``: This is an optional build option which specifies the FIP
+   filename for the ``fip`` target. Default is ``fip.bin``.
+
+-  ``FWU_FIP_NAME``: This is an optional build option which specifies the FWU
+   FIP filename for the ``fwu_fip`` target. Default is ``fwu_fip.bin``.
+
+-  ``GENERATE_COT``: Boolean flag used to build and execute the ``cert_create``
+   tool to create certificates as per the Chain of Trust described in
+   `Trusted Board Boot`_. The build system then calls ``fiptool`` to
+   include the certificates in the FIP and FWU_FIP. Default value is '0'.
+
+   Specify both ``TRUSTED_BOARD_BOOT=1`` and ``GENERATE_COT=1`` to include support
+   for the Trusted Board Boot feature in the BL1 and BL2 images, to generate
+   the corresponding certificates, and to include those certificates in the
+   FIP and FWU_FIP.
+
+   Note that if ``TRUSTED_BOARD_BOOT=0`` and ``GENERATE_COT=1``, the BL1 and BL2
+   images will not include support for Trusted Board Boot. The FIP will still
+   include the corresponding certificates. This FIP can be used to verify the
+   Chain of Trust on the host machine through other mechanisms.
+
+   Note that if ``TRUSTED_BOARD_BOOT=1`` and ``GENERATE_COT=0``, the BL1 and BL2
+   images will include support for Trusted Board Boot, but the FIP and FWU_FIP
+   will not include the corresponding certificates, causing a boot failure.
+
+-  ``GICV2_G0_FOR_EL3``: Unlike GICv3, the GICv2 architecture doesn't have
+   inherent support for specific EL3 type interrupts. Setting this build option
+   to ``1`` assumes GICv2 *Group 0* interrupts are expected to target EL3, both
+   by `platform abstraction layer`__ and `Interrupt Management Framework`__.
+   This allows GICv2 platforms to enable features requiring EL3 interrupt type.
+   This also means that all GICv2 Group 0 interrupts are delivered to EL3, and
+   the Secure Payload interrupts needs to be synchronously handed over to Secure
+   EL1 for handling. The default value of this option is ``0``, which means the
+   Group 0 interrupts are assumed to be handled by Secure EL1.
+
+   .. __: `platform-interrupt-controller-API.rst`
+   .. __: `interrupt-framework-design.rst`
+
+-  ``HANDLE_EA_EL3_FIRST``: When set to ``1``, External Aborts and SError
+   Interrupts will be always trapped in EL3 i.e. in BL31 at runtime. When set to
+   ``0`` (default), these exceptions will be trapped in the current exception
+   level (or in EL1 if the current exception level is EL0).
+
+-  ``HW_ASSISTED_COHERENCY``: On most Arm systems to-date, platform-specific
+   software operations are required for CPUs to enter and exit coherency.
+   However, newer systems exist where CPUs' entry to and exit from coherency
+   is managed in hardware. Such systems require software to only initiate these
+   operations, and the rest is managed in hardware, minimizing active software
+   management. In such systems, this boolean option enables TF-A to carry out
+   build and run-time optimizations during boot and power management operations.
+   This option defaults to 0 and if it is enabled, then it implies
+   ``WARMBOOT_ENABLE_DCACHE_EARLY`` is also enabled.
+
+   If this flag is disabled while the platform which TF-A is compiled for
+   includes cores that manage coherency in hardware, then a compilation error is
+   generated. This is based on the fact that a system cannot have, at the same
+   time, cores that manage coherency in hardware and cores that don't. In other
+   words, a platform cannot have, at the same time, cores that require
+   ``HW_ASSISTED_COHERENCY=1`` and cores that require
+   ``HW_ASSISTED_COHERENCY=0``.
+
+   Note that, when ``HW_ASSISTED_COHERENCY`` is enabled, version 2 of
+   translation library (xlat tables v2) must be used; version 1 of translation
+   library is not supported.
+
+-  ``JUNO_AARCH32_EL3_RUNTIME``: This build flag enables you to execute EL3
+   runtime software in AArch32 mode, which is required to run AArch32 on Juno.
+   By default this flag is set to '0'. Enabling this flag builds BL1 and BL2 in
+   AArch64 and facilitates the loading of ``SP_MIN`` and BL33 as AArch32 executable
+   images.
+
+-  ``KEY_ALG``: This build flag enables the user to select the algorithm to be
+   used for generating the PKCS keys and subsequent signing of the certificate.
+   It accepts 3 values: ``rsa``, ``rsa_1_5`` and ``ecdsa``. The option
+   ``rsa_1_5`` is the legacy PKCS#1 RSA 1.5 algorithm which is not TBBR
+   compliant and is retained only for compatibility. The default value of this
+   flag is ``rsa`` which is the TBBR compliant PKCS#1 RSA 2.1 scheme.
+
+-  ``HASH_ALG``: This build flag enables the user to select the secure hash
+   algorithm. It accepts 3 values: ``sha256``, ``sha384`` and ``sha512``.
+   The default value of this flag is ``sha256``.
+
+-  ``LDFLAGS``: Extra user options appended to the linkers' command line in
+   addition to the one set by the build system.
+
+-  ``LOG_LEVEL``: Chooses the log level, which controls the amount of console log
+   output compiled into the build. This should be one of the following:
+
+   ::
+
+       0  (LOG_LEVEL_NONE)
+       10 (LOG_LEVEL_ERROR)
+       20 (LOG_LEVEL_NOTICE)
+       30 (LOG_LEVEL_WARNING)
+       40 (LOG_LEVEL_INFO)
+       50 (LOG_LEVEL_VERBOSE)
+
+   All log output up to and including the selected log level is compiled into
+   the build. The default value is 40 in debug builds and 20 in release builds.
+
+-  ``NON_TRUSTED_WORLD_KEY``: This option is used when ``GENERATE_COT=1``. It
+   specifies the file that contains the Non-Trusted World private key in PEM
+   format. If ``SAVE_KEYS=1``, this file name will be used to save the key.
+
+-  ``NS_BL2U``: Path to NS_BL2U image in the host file system. This image is
+   optional. It is only needed if the platform makefile specifies that it
+   is required in order to build the ``fwu_fip`` target.
+
+-  ``NS_TIMER_SWITCH``: Enable save and restore for non-secure timer register
+   contents upon world switch. It can take either 0 (don't save and restore) or
+   1 (do save and restore). 0 is the default. An SPD may set this to 1 if it
+   wants the timer registers to be saved and restored.
+
+-  ``OVERRIDE_LIBC``: This option allows platforms to override the default libc
+   for the BL image. It can be either 0 (include) or 1 (remove). The default
+   value is 0.
+
+-  ``PL011_GENERIC_UART``: Boolean option to indicate the PL011 driver that
+   the underlying hardware is not a full PL011 UART but a minimally compliant
+   generic UART, which is a subset of the PL011. The driver will not access
+   any register that is not part of the SBSA generic UART specification.
+   Default value is 0 (a full PL011 compliant UART is present).
+
+-  ``PLAT``: Choose a platform to build TF-A for. The chosen platform name
+   must be subdirectory of any depth under ``plat/``, and must contain a
+   platform makefile named ``platform.mk``. For example, to build TF-A for the
+   Arm Juno board, select PLAT=juno.
+
+-  ``PRELOADED_BL33_BASE``: This option enables booting a preloaded BL33 image
+   instead of the normal boot flow. When defined, it must specify the entry
+   point address for the preloaded BL33 image. This option is incompatible with
+   ``EL3_PAYLOAD_BASE``. If both are defined, ``EL3_PAYLOAD_BASE`` has priority
+   over ``PRELOADED_BL33_BASE``.
+
+-  ``PROGRAMMABLE_RESET_ADDRESS``: This option indicates whether the reset
+   vector address can be programmed or is fixed on the platform. It can take
+   either 0 (fixed) or 1 (programmable). Default is 0. If the platform has a
+   programmable reset address, it is expected that a CPU will start executing
+   code directly at the right address, both on a cold and warm reset. In this
+   case, there is no need to identify the entrypoint on boot and the boot path
+   can be optimised. The ``plat_get_my_entrypoint()`` platform porting interface
+   does not need to be implemented in this case.
+
+-  ``PSCI_EXTENDED_STATE_ID``: As per PSCI1.0 Specification, there are 2 formats
+   possible for the PSCI power-state parameter: original and extended State-ID
+   formats. This flag if set to 1, configures the generic PSCI layer to use the
+   extended format. The default value of this flag is 0, which means by default
+   the original power-state format is used by the PSCI implementation. This flag
+   should be specified by the platform makefile and it governs the return value
+   of PSCI_FEATURES API for CPU_SUSPEND smc function id. When this option is
+   enabled on Arm platforms, the option ``ARM_RECOM_STATE_ID_ENC`` needs to be
+   set to 1 as well.
+
+-  ``RAS_EXTENSION``: When set to ``1``, enable Armv8.2 RAS features. RAS features
+   are an optional extension for pre-Armv8.2 CPUs, but are mandatory for Armv8.2
+   or later CPUs.
+
+   When ``RAS_EXTENSION`` is set to ``1``, ``HANDLE_EA_EL3_FIRST`` must also be
+   set to ``1``.
+
+   This option is disabled by default.
+
+-  ``RESET_TO_BL31``: Enable BL31 entrypoint as the CPU reset vector instead
+   of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
+   entrypoint) or 1 (CPU reset to BL31 entrypoint).
+   The default value is 0.
+
+-  ``RESET_TO_SP_MIN``: SP_MIN is the minimal AArch32 Secure Payload provided
+   in TF-A. This flag configures SP_MIN entrypoint as the CPU reset vector
+   instead of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
+   entrypoint) or 1 (CPU reset to SP_MIN entrypoint). The default value is 0.
+
+-  ``ROT_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
+   file that contains the ROT private key in PEM format. If ``SAVE_KEYS=1``, this
+   file name will be used to save the key.
+
+-  ``SAVE_KEYS``: This option is used when ``GENERATE_COT=1``. It tells the
+   certificate generation tool to save the keys used to establish the Chain of
+   Trust. Allowed options are '0' or '1'. Default is '0' (do not save).
+
+-  ``SCP_BL2``: Path to SCP_BL2 image in the host file system. This image is optional.
+   If a SCP_BL2 image is present then this option must be passed for the ``fip``
+   target.
+
+-  ``SCP_BL2_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
+   file that contains the SCP_BL2 private key in PEM format. If ``SAVE_KEYS=1``,
+   this file name will be used to save the key.
+
+-  ``SCP_BL2U``: Path to SCP_BL2U image in the host file system. This image is
+   optional. It is only needed if the platform makefile specifies that it
+   is required in order to build the ``fwu_fip`` target.
+
+-  ``SDEI_SUPPORT``: Setting this to ``1`` enables support for Software
+   Delegated Exception Interface to BL31 image. This defaults to ``0``.
+
+   When set to ``1``, the build option ``EL3_EXCEPTION_HANDLING`` must also be
+   set to ``1``.
+
+-  ``SEPARATE_CODE_AND_RODATA``: Whether code and read-only data should be
+   isolated on separate memory pages. This is a trade-off between security and
+   memory usage. See "Isolating code and read-only data on separate memory
+   pages" section in `Firmware Design`_. This flag is disabled by default and
+   affects all BL images.
+
+-  ``SPD``: Choose a Secure Payload Dispatcher component to be built into TF-A.
+   This build option is only valid if ``ARCH=aarch64``. The value should be
+   the path to the directory containing the SPD source, relative to
+   ``services/spd/``; the directory is expected to contain a makefile called
+   ``<spd-value>.mk``.
+
+-  ``SPIN_ON_BL1_EXIT``: This option introduces an infinite loop in BL1. It can
+   take either 0 (no loop) or 1 (add a loop). 0 is the default. This loop stops
+   execution in BL1 just before handing over to BL31. At this point, all
+   firmware images have been loaded in memory, and the MMU and caches are
+   turned off. Refer to the "Debugging options" section for more details.
+
+-  ``SP_MIN_WITH_SECURE_FIQ``: Boolean flag to indicate the SP_MIN handles
+   secure interrupts (caught through the FIQ line). Platforms can enable
+   this directive if they need to handle such interruption. When enabled,
+   the FIQ are handled in monitor mode and non secure world is not allowed
+   to mask these events. Platforms that enable FIQ handling in SP_MIN shall
+   implement the api ``sp_min_plat_fiq_handler()``. The default value is 0.
+
+-  ``TRUSTED_BOARD_BOOT``: Boolean flag to include support for the Trusted Board
+   Boot feature. When set to '1', BL1 and BL2 images include support to load
+   and verify the certificates and images in a FIP, and BL1 includes support
+   for the Firmware Update. The default value is '0'. Generation and inclusion
+   of certificates in the FIP and FWU_FIP depends upon the value of the
+   ``GENERATE_COT`` option.
+
+   Note: This option depends on ``CREATE_KEYS`` to be enabled. If the keys
+   already exist in disk, they will be overwritten without further notice.
+
+-  ``TRUSTED_WORLD_KEY``: This option is used when ``GENERATE_COT=1``. It
+   specifies the file that contains the Trusted World private key in PEM
+   format. If ``SAVE_KEYS=1``, this file name will be used to save the key.
+
+-  ``TSP_INIT_ASYNC``: Choose BL32 initialization method as asynchronous or
+   synchronous, (see "Initializing a BL32 Image" section in
+   `Firmware Design`_). It can take the value 0 (BL32 is initialized using
+   synchronous method) or 1 (BL32 is initialized using asynchronous method).
+   Default is 0.
+
+-  ``TSP_NS_INTR_ASYNC_PREEMPT``: A non zero value enables the interrupt
+   routing model which routes non-secure interrupts asynchronously from TSP
+   to EL3 causing immediate preemption of TSP. The EL3 is responsible
+   for saving and restoring the TSP context in this routing model. The
+   default routing model (when the value is 0) is to route non-secure
+   interrupts to TSP allowing it to save its context and hand over
+   synchronously to EL3 via an SMC.
+
+   Note: when ``EL3_EXCEPTION_HANDLING`` is ``1``, ``TSP_NS_INTR_ASYNC_PREEMPT``
+   must also be set to ``1``.
+
+-  ``USE_ARM_LINK``: This flag determines whether to enable support for ARM
+   linker. When the ``LINKER`` build variable points to the armlink linker,
+   this flag is enabled automatically. To enable support for armlink, platforms
+   will have to provide a scatter file for the BL image. Currently, Tegra
+   platforms use the armlink support to compile BL3-1 images.
+
+-  ``USE_COHERENT_MEM``: This flag determines whether to include the coherent
+   memory region in the BL memory map or not (see "Use of Coherent memory in
+   TF-A" section in `Firmware Design`_). It can take the value 1
+   (Coherent memory region is included) or 0 (Coherent memory region is
+   excluded). Default is 1.
+
+-  ``USE_ROMLIB``: This flag determines whether library at ROM will be used.
+   This feature creates a library of functions to be placed in ROM and thus
+   reduces SRAM usage. Refer to `Library at ROM`_ for further details. Default
+   is 0.
+
+-  ``V``: Verbose build. If assigned anything other than 0, the build commands
+   are printed. Default is 0.
+
+-  ``VERSION_STRING``: String used in the log output for each TF-A image.
+   Defaults to a string formed by concatenating the version number, build type
+   and build string.
+
+-  ``WARMBOOT_ENABLE_DCACHE_EARLY`` : Boolean option to enable D-cache early on
+   the CPU after warm boot. This is applicable for platforms which do not
+   require interconnect programming to enable cache coherency (eg: single
+   cluster platforms). If this option is enabled, then warm boot path
+   enables D-caches immediately after enabling MMU. This option defaults to 0.
+
+Arm development platform specific build options
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+-  ``ARM_BL31_IN_DRAM``: Boolean option to select loading of BL31 in TZC secured
+   DRAM. By default, BL31 is in the secure SRAM. Set this flag to 1 to load
+   BL31 in TZC secured DRAM. If TSP is present, then setting this option also
+   sets the TSP location to DRAM and ignores the ``ARM_TSP_RAM_LOCATION`` build
+   flag.
+
+-  ``ARM_CONFIG_CNTACR``: boolean option to unlock access to the ``CNTBase<N>``
+   frame registers by setting the ``CNTCTLBase.CNTACR<N>`` register bits. The
+   frame number ``<N>`` is defined by ``PLAT_ARM_NSTIMER_FRAME_ID``, which should
+   match the frame used by the Non-Secure image (normally the Linux kernel).
+   Default is true (access to the frame is allowed).
+
+-  ``ARM_DISABLE_TRUSTED_WDOG``: boolean option to disable the Trusted Watchdog.
+   By default, Arm platforms use a watchdog to trigger a system reset in case
+   an error is encountered during the boot process (for example, when an image
+   could not be loaded or authenticated). The watchdog is enabled in the early
+   platform setup hook at BL1 and disabled in the BL1 prepare exit hook. The
+   Trusted Watchdog may be disabled at build time for testing or development
+   purposes.
+
+-  ``ARM_LINUX_KERNEL_AS_BL33``: The Linux kernel expects registers x0-x3 to
+   have specific values at boot. This boolean option allows the Trusted Firmware
+   to have a Linux kernel image as BL33 by preparing the registers to these
+   values before jumping to BL33. This option defaults to 0 (disabled). For
+   AArch64 ``RESET_TO_BL31`` and for AArch32 ``RESET_TO_SP_MIN`` must be 1 when
+   using it. If this option is set to 1, ``ARM_PRELOADED_DTB_BASE`` must be set
+   to the location of a device tree blob (DTB) already loaded in memory. The
+   Linux Image address must be specified using the ``PRELOADED_BL33_BASE``
+   option.
+
+-  ``ARM_PLAT_MT``: This flag determines whether the Arm platform layer has to
+   cater for the multi-threading ``MT`` bit when accessing MPIDR. When this flag
+   is set, the functions which deal with MPIDR assume that the ``MT`` bit in
+   MPIDR is set and access the bit-fields in MPIDR accordingly. Default value of
+   this flag is 0. Note that this option is not used on FVP platforms.
+
+-  ``ARM_RECOM_STATE_ID_ENC``: The PSCI1.0 specification recommends an encoding
+   for the construction of composite state-ID in the power-state parameter.
+   The existing PSCI clients currently do not support this encoding of
+   State-ID yet. Hence this flag is used to configure whether to use the
+   recommended State-ID encoding or not. The default value of this flag is 0,
+   in which case the platform is configured to expect NULL in the State-ID
+   field of power-state parameter.
+
+-  ``ARM_ROTPK_LOCATION``: used when ``TRUSTED_BOARD_BOOT=1``. It specifies the
+   location of the ROTPK hash returned by the function ``plat_get_rotpk_info()``
+   for Arm platforms. Depending on the selected option, the proper private key
+   must be specified using the ``ROT_KEY`` option when building the Trusted
+   Firmware. This private key will be used by the certificate generation tool
+   to sign the BL2 and Trusted Key certificates. Available options for
+   ``ARM_ROTPK_LOCATION`` are:
+
+   -  ``regs`` : return the ROTPK hash stored in the Trusted root-key storage
+      registers. The private key corresponding to this ROTPK hash is not
+      currently available.
+   -  ``devel_rsa`` : return a development public key hash embedded in the BL1
+      and BL2 binaries. This hash has been obtained from the RSA public key
+      ``arm_rotpk_rsa.der``, located in ``plat/arm/board/common/rotpk``. To use
+      this option, ``arm_rotprivk_rsa.pem`` must be specified as ``ROT_KEY`` when
+      creating the certificates.
+   -  ``devel_ecdsa`` : return a development public key hash embedded in the BL1
+      and BL2 binaries. This hash has been obtained from the ECDSA public key
+      ``arm_rotpk_ecdsa.der``, located in ``plat/arm/board/common/rotpk``. To use
+      this option, ``arm_rotprivk_ecdsa.pem`` must be specified as ``ROT_KEY``
+      when creating the certificates.
+
+-  ``ARM_TSP_RAM_LOCATION``: location of the TSP binary. Options:
+
+   -  ``tsram`` : Trusted SRAM (default option when TBB is not enabled)
+   -  ``tdram`` : Trusted DRAM (if available)
+   -  ``dram`` : Secure region in DRAM (default option when TBB is enabled,
+      configured by the TrustZone controller)
+
+-  ``ARM_XLAT_TABLES_LIB_V1``: boolean option to compile TF-A with version 1
+   of the translation tables library instead of version 2. It is set to 0 by
+   default, which selects version 2.
+
+-  ``ARM_CRYPTOCELL_INTEG`` : bool option to enable TF-A to invoke Arm®
+   TrustZone® CryptoCell functionality for Trusted Board Boot on capable Arm
+   platforms. If this option is specified, then the path to the CryptoCell
+   SBROM library must be specified via ``CCSBROM_LIB_PATH`` flag.
+
+For a better understanding of these options, the Arm development platform memory
+map is explained in the `Firmware Design`_.
+
+Arm CSS platform specific build options
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+-  ``CSS_DETECT_PRE_1_7_0_SCP``: Boolean flag to detect SCP version
+   incompatibility. Version 1.7.0 of the SCP firmware made a non-backwards
+   compatible change to the MTL protocol, used for AP/SCP communication.
+   TF-A no longer supports earlier SCP versions. If this option is set to 1
+   then TF-A will detect if an earlier version is in use. Default is 1.
+
+-  ``CSS_LOAD_SCP_IMAGES``: Boolean flag, which when set, adds SCP_BL2 and
+   SCP_BL2U to the FIP and FWU_FIP respectively, and enables them to be loaded
+   during boot. Default is 1.
+
+-  ``CSS_USE_SCMI_SDS_DRIVER``: Boolean flag which selects SCMI/SDS drivers
+   instead of SCPI/BOM driver for communicating with the SCP during power
+   management operations and for SCP RAM Firmware transfer. If this option
+   is set to 1, then SCMI/SDS drivers will be used. Default is 0.
+
+Arm FVP platform specific build options
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+-  ``FVP_CLUSTER_COUNT`` : Configures the cluster count to be used to
+   build the topology tree within TF-A. By default TF-A is configured for dual
+   cluster topology and this option can be used to override the default value.
+
+-  ``FVP_INTERCONNECT_DRIVER``: Selects the interconnect driver to be built. The
+   default interconnect driver depends on the value of ``FVP_CLUSTER_COUNT`` as
+   explained in the options below:
+
+   -  ``FVP_CCI`` : The CCI driver is selected. This is the default
+      if 0 < ``FVP_CLUSTER_COUNT`` <= 2.
+   -  ``FVP_CCN`` : The CCN driver is selected. This is the default
+      if ``FVP_CLUSTER_COUNT`` > 2.
+
+-  ``FVP_MAX_CPUS_PER_CLUSTER``: Sets the maximum number of CPUs implemented in
+   a single cluster.  This option defaults to 4.
+
+-  ``FVP_MAX_PE_PER_CPU``: Sets the maximum number of PEs implemented on any CPU
+   in the system. This option defaults to 1. Note that the build option
+   ``ARM_PLAT_MT`` doesn't have any effect on FVP platforms.
+
+-  ``FVP_USE_GIC_DRIVER`` : Selects the GIC driver to be built. Options:
+
+   -  ``FVP_GIC600`` : The GIC600 implementation of GICv3 is selected
+   -  ``FVP_GICV2`` : The GICv2 only driver is selected
+   -  ``FVP_GICV3`` : The GICv3 only driver is selected (default option)
+
+-  ``FVP_USE_SP804_TIMER`` : Use the SP804 timer instead of the Generic Timer
+   for functions that wait for an arbitrary time length (udelay and mdelay).
+   The default value is 0.
+
+-  ``FVP_HW_CONFIG_DTS`` : Specify the path to the DTS file to be compiled
+   to DTB and packaged in FIP as the HW_CONFIG. See `Firmware Design`_ for
+   details on HW_CONFIG. By default, this is initialized to a sensible DTS
+   file in ``fdts/`` folder depending on other build options. But some cases,
+   like shifted affinity format for MPIDR, cannot be detected at build time
+   and this option is needed to specify the appropriate DTS file.
+
+-  ``FVP_HW_CONFIG`` : Specify the path to the HW_CONFIG blob to be packaged in
+   FIP. See `Firmware Design`_ for details on HW_CONFIG. This option is
+   similar to the ``FVP_HW_CONFIG_DTS`` option, but it directly specifies the
+   HW_CONFIG blob instead of the DTS file. This option is useful to override
+   the default HW_CONFIG selected by the build system.
+
+ARM JUNO platform specific build options
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+-  ``JUNO_TZMP1`` : Boolean option to configure Juno to be used for TrustZone
+   Media Protection (TZ-MP1). Default value of this flag is 0.
+
+Debugging options
+~~~~~~~~~~~~~~~~~
+
+To compile a debug version and make the build more verbose use
+
+::
+
+    make PLAT=<platform> DEBUG=1 V=1 all
+
+AArch64 GCC uses DWARF version 4 debugging symbols by default. Some tools (for
+example DS-5) might not support this and may need an older version of DWARF
+symbols to be emitted by GCC. This can be achieved by using the
+``-gdwarf-<version>`` flag, with the version being set to 2 or 3. Setting the
+version to 2 is recommended for DS-5 versions older than 5.16.
+
+When debugging logic problems it might also be useful to disable all compiler
+optimizations by using ``-O0``.
+
+NOTE: Using ``-O0`` could cause output images to be larger and base addresses
+might need to be recalculated (see the **Memory layout on Arm development
+platforms** section in the `Firmware Design`_).
+
+Extra debug options can be passed to the build system by setting ``CFLAGS`` or
+``LDFLAGS``:
+
+.. code:: makefile
+
+    CFLAGS='-O0 -gdwarf-2'                                     \
+    make PLAT=<platform> DEBUG=1 V=1 all
+
+Note that using ``-Wl,`` style compilation driver options in ``CFLAGS`` will be
+ignored as the linker is called directly.
+
+It is also possible to introduce an infinite loop to help in debugging the
+post-BL2 phase of TF-A. This can be done by rebuilding BL1 with the
+``SPIN_ON_BL1_EXIT=1`` build flag. Refer to the `Summary of build options`_
+section. In this case, the developer may take control of the target using a
+debugger when indicated by the console output. When using DS-5, the following
+commands can be used:
+
+::
+
+    # Stop target execution
+    interrupt
+
+    #
+    # Prepare your debugging environment, e.g. set breakpoints
+    #
+
+    # Jump over the debug loop
+    set var $AARCH64::$Core::$PC = $AARCH64::$Core::$PC + 4
+
+    # Resume execution
+    continue
+
+Building the Test Secure Payload
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The TSP is coupled with a companion runtime service in the BL31 firmware,
+called the TSPD. Therefore, if you intend to use the TSP, the BL31 image
+must be recompiled as well. For more information on SPs and SPDs, see the
+`Secure-EL1 Payloads and Dispatchers`_ section in the `Firmware Design`_.
+
+First clean the TF-A build directory to get rid of any previous BL31 binary.
+Then to build the TSP image use:
+
+::
+
+    make PLAT=<platform> SPD=tspd all
+
+An additional boot loader binary file is created in the ``build`` directory:
+
+::
+
+    build/<platform>/<build-type>/bl32.bin
+
+
+Building and using the FIP tool
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Firmware Image Package (FIP) is a packaging format used by TF-A to package
+firmware images in a single binary. The number and type of images that should
+be packed in a FIP is platform specific and may include TF-A images and other
+firmware images required by the platform. For example, most platforms require
+a BL33 image which corresponds to the normal world bootloader (e.g. UEFI or
+U-Boot).
+
+The TF-A build system provides the make target ``fip`` to create a FIP file
+for the specified platform using the FIP creation tool included in the TF-A
+project. Examples below show how to build a FIP file for FVP, packaging TF-A
+and BL33 images.
+
+For AArch64:
+
+::
+
+    make PLAT=fvp BL33=<path-to>/bl33.bin fip
+
+For AArch32:
+
+::
+
+    make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=<path-to>/bl33.bin fip
+
+The resulting FIP may be found in:
+
+::
+
+    build/fvp/<build-type>/fip.bin
+
+For advanced operations on FIP files, it is also possible to independently build
+the tool and create or modify FIPs using this tool. To do this, follow these
+steps:
+
+It is recommended to remove old artifacts before building the tool:
+
+::
+
+    make -C tools/fiptool clean
+
+Build the tool:
+
+::
+
+    make [DEBUG=1] [V=1] fiptool
+
+The tool binary can be located in:
+
+::
+
+    ./tools/fiptool/fiptool
+
+Invoking the tool with ``help`` will print a help message with all available
+options.
+
+Example 1: create a new Firmware package ``fip.bin`` that contains BL2 and BL31:
+
+::
+
+    ./tools/fiptool/fiptool create \
+        --tb-fw build/<platform>/<build-type>/bl2.bin \
+        --soc-fw build/<platform>/<build-type>/bl31.bin \
+        fip.bin
+
+Example 2: view the contents of an existing Firmware package:
+
+::
+
+    ./tools/fiptool/fiptool info <path-to>/fip.bin
+
+Example 3: update the entries of an existing Firmware package:
+
+::
+
+    # Change the BL2 from Debug to Release version
+    ./tools/fiptool/fiptool update \
+        --tb-fw build/<platform>/release/bl2.bin \
+        build/<platform>/debug/fip.bin
+
+Example 4: unpack all entries from an existing Firmware package:
+
+::
+
+    # Images will be unpacked to the working directory
+    ./tools/fiptool/fiptool unpack <path-to>/fip.bin
+
+Example 5: remove an entry from an existing Firmware package:
+
+::
+
+    ./tools/fiptool/fiptool remove \
+        --tb-fw build/<platform>/debug/fip.bin
+
+Note that if the destination FIP file exists, the create, update and
+remove operations will automatically overwrite it.
+
+The unpack operation will fail if the images already exist at the
+destination. In that case, use -f or --force to continue.
+
+More information about FIP can be found in the `Firmware Design`_ document.
+
+Building FIP images with support for Trusted Board Boot
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Trusted Board Boot primarily consists of the following two features:
+
+-  Image Authentication, described in `Trusted Board Boot`_, and
+-  Firmware Update, described in `Firmware Update`_
+
+The following steps should be followed to build FIP and (optionally) FWU_FIP
+images with support for these features:
+
+#. Fulfill the dependencies of the ``mbedtls`` cryptographic and image parser
+   modules by checking out a recent version of the `mbed TLS Repository`_. It
+   is important to use a version that is compatible with TF-A and fixes any
+   known security vulnerabilities. See `mbed TLS Security Center`_ for more
+   information. The latest version of TF-A is tested with tag
+   ``mbedtls-2.16.0``.
+
+   The ``drivers/auth/mbedtls/mbedtls_*.mk`` files contain the list of mbed TLS
+   source files the modules depend upon.
+   ``include/drivers/auth/mbedtls/mbedtls_config.h`` contains the configuration
+   options required to build the mbed TLS sources.
+
+   Note that the mbed TLS library is licensed under the Apache version 2.0
+   license. Using mbed TLS source code will affect the licensing of TF-A
+   binaries that are built using this library.
+
+#. To build the FIP image, ensure the following command line variables are set
+   while invoking ``make`` to build TF-A:
+
+   -  ``MBEDTLS_DIR=<path of the directory containing mbed TLS sources>``
+   -  ``TRUSTED_BOARD_BOOT=1``
+   -  ``GENERATE_COT=1``
+
+   In the case of Arm platforms, the location of the ROTPK hash must also be
+   specified at build time. Two locations are currently supported (see
+   ``ARM_ROTPK_LOCATION`` build option):
+
+   -  ``ARM_ROTPK_LOCATION=regs``: the ROTPK hash is obtained from the Trusted
+      root-key storage registers present in the platform. On Juno, this
+      registers are read-only. On FVP Base and Cortex models, the registers
+      are read-only, but the value can be specified using the command line
+      option ``bp.trusted_key_storage.public_key`` when launching the model.
+      On both Juno and FVP models, the default value corresponds to an
+      ECDSA-SECP256R1 public key hash, whose private part is not currently
+      available.
+
+   -  ``ARM_ROTPK_LOCATION=devel_rsa``: use the ROTPK hash that is hardcoded
+      in the Arm platform port. The private/public RSA key pair may be
+      found in ``plat/arm/board/common/rotpk``.
+
+   -  ``ARM_ROTPK_LOCATION=devel_ecdsa``: use the ROTPK hash that is hardcoded
+      in the Arm platform port. The private/public ECDSA key pair may be
+      found in ``plat/arm/board/common/rotpk``.
+
+   Example of command line using RSA development keys:
+
+   ::
+
+       MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
+       make PLAT=<platform> TRUSTED_BOARD_BOOT=1 GENERATE_COT=1        \
+       ARM_ROTPK_LOCATION=devel_rsa                                    \
+       ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem        \
+       BL33=<path-to>/<bl33_image>                                     \
+       all fip
+
+   The result of this build will be the bl1.bin and the fip.bin binaries. This
+   FIP will include the certificates corresponding to the Chain of Trust
+   described in the TBBR-client document. These certificates can also be found
+   in the output build directory.
+
+#. The optional FWU_FIP contains any additional images to be loaded from
+   Non-Volatile storage during the `Firmware Update`_ process. To build the
+   FWU_FIP, any FWU images required by the platform must be specified on the
+   command line. On Arm development platforms like Juno, these are:
+
+   -  NS_BL2U. The AP non-secure Firmware Updater image.
+   -  SCP_BL2U. The SCP Firmware Update Configuration image.
+
+   Example of Juno command line for generating both ``fwu`` and ``fwu_fip``
+   targets using RSA development:
+
+   ::
+
+       MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
+       make PLAT=juno TRUSTED_BOARD_BOOT=1 GENERATE_COT=1              \
+       ARM_ROTPK_LOCATION=devel_rsa                                    \
+       ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem        \
+       BL33=<path-to>/<bl33_image>                                     \
+       SCP_BL2=<path-to>/<scp_bl2_image>                               \
+       SCP_BL2U=<path-to>/<scp_bl2u_image>                             \
+       NS_BL2U=<path-to>/<ns_bl2u_image>                               \
+       all fip fwu_fip
+
+   Note: The BL2U image will be built by default and added to the FWU_FIP.
+   The user may override this by adding ``BL2U=<path-to>/<bl2u_image>``
+   to the command line above.
+
+   Note: Building and installing the non-secure and SCP FWU images (NS_BL1U,
+   NS_BL2U and SCP_BL2U) is outside the scope of this document.
+
+   The result of this build will be bl1.bin, fip.bin and fwu_fip.bin binaries.
+   Both the FIP and FWU_FIP will include the certificates corresponding to the
+   Chain of Trust described in the TBBR-client document. These certificates
+   can also be found in the output build directory.
+
+Building the Certificate Generation Tool
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The ``cert_create`` tool is built as part of the TF-A build process when the
+``fip`` make target is specified and TBB is enabled (as described in the
+previous section), but it can also be built separately with the following
+command:
+
+::
+
+    make PLAT=<platform> [DEBUG=1] [V=1] certtool
+
+For platforms that require their own IDs in certificate files, the generic
+'cert_create' tool can be built with the following command. Note that the target
+platform must define its IDs within a ``platform_oid.h`` header file for the
+build to succeed.
+
+::
+
+    make PLAT=<platform> USE_TBBR_DEFS=0 [DEBUG=1] [V=1] certtool
+
+``DEBUG=1`` builds the tool in debug mode. ``V=1`` makes the build process more
+verbose. The following command should be used to obtain help about the tool:
+
+::
+
+    ./tools/cert_create/cert_create -h
+
+Building a FIP for Juno and FVP
+-------------------------------
+
+This section provides Juno and FVP specific instructions to build Trusted
+Firmware, obtain the additional required firmware, and pack it all together in
+a single FIP binary. It assumes that a `Linaro Release`_ has been installed.
+
+Note: Pre-built binaries for AArch32 are available from Linaro Release 16.12
+onwards. Before that release, pre-built binaries are only available for AArch64.
+
+Note: Follow the full instructions for one platform before switching to a
+different one. Mixing instructions for different platforms may result in
+corrupted binaries.
+
+Note: The uboot image downloaded by the Linaro workspace script does not always
+match the uboot image packaged as BL33 in the corresponding fip file. It is
+recommended to use the version that is packaged in the fip file using the
+instructions below.
+
+Note: For the FVP, the kernel FDT is packaged in FIP during build and loaded
+by the firmware at runtime. See `Obtaining the Flattened Device Trees`_
+section for more info on selecting the right FDT to use.
+
+#. Clean the working directory
+
+   ::
+
+       make realclean
+
+#. Obtain SCP_BL2 (Juno) and BL33 (all platforms)
+
+   Use the fiptool to extract the SCP_BL2 and BL33 images from the FIP
+   package included in the Linaro release:
+
+   ::
+
+       # Build the fiptool
+       make [DEBUG=1] [V=1] fiptool
+
+       # Unpack firmware images from Linaro FIP
+       ./tools/fiptool/fiptool unpack <path-to-linaro-release>/fip.bin
+
+   The unpack operation will result in a set of binary images extracted to the
+   current working directory. The SCP_BL2 image corresponds to
+   ``scp-fw.bin`` and BL33 corresponds to ``nt-fw.bin``.
+
+   Note: The fiptool will complain if the images to be unpacked already
+   exist in the current directory. If that is the case, either delete those
+   files or use the ``--force`` option to overwrite.
+
+   Note: For AArch32, the instructions below assume that nt-fw.bin is a normal
+   world boot loader that supports AArch32.
+
+#. Build TF-A images and create a new FIP for FVP
+
+   ::
+
+       # AArch64
+       make PLAT=fvp BL33=nt-fw.bin all fip
+
+       # AArch32
+       make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=nt-fw.bin all fip
+
+#. Build TF-A images and create a new FIP for Juno
+
+   For AArch64:
+
+   Building for AArch64 on Juno simply requires the addition of ``SCP_BL2``
+   as a build parameter.
+
+   ::
+
+       make PLAT=juno BL33=nt-fw.bin SCP_BL2=scp-fw.bin all fip
+
+   For AArch32:
+
+   Hardware restrictions on Juno prevent cold reset into AArch32 execution mode,
+   therefore BL1 and BL2 must be compiled for AArch64, and BL32 is compiled
+   separately for AArch32.
+
+   -  Before building BL32, the environment variable ``CROSS_COMPILE`` must point
+      to the AArch32 Linaro cross compiler.
+
+      ::
+
+          export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-linux-gnueabihf-
+
+   -  Build BL32 in AArch32.
+
+      ::
+
+          make ARCH=aarch32 PLAT=juno AARCH32_SP=sp_min \
+          RESET_TO_SP_MIN=1 JUNO_AARCH32_EL3_RUNTIME=1 bl32
+
+   -  Save ``bl32.bin`` to a temporary location and clean the build products.
+
+      ::
+
+          cp <path-to-build>/bl32.bin <path-to-temporary>
+          make realclean
+
+   -  Before building BL1 and BL2, the environment variable ``CROSS_COMPILE``
+      must point to the AArch64 Linaro cross compiler.
+
+      ::
+
+          export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
+
+   -  The following parameters should be used to build BL1 and BL2 in AArch64
+      and point to the BL32 file.
+
+      ::
+
+          make ARCH=aarch64 PLAT=juno JUNO_AARCH32_EL3_RUNTIME=1 \
+          BL33=nt-fw.bin SCP_BL2=scp-fw.bin \
+          BL32=<path-to-temporary>/bl32.bin all fip
+
+The resulting BL1 and FIP images may be found in:
+
+::
+
+    # Juno
+    ./build/juno/release/bl1.bin
+    ./build/juno/release/fip.bin
+
+    # FVP
+    ./build/fvp/release/bl1.bin
+    ./build/fvp/release/fip.bin
+
+
+Booting Firmware Update images
+-------------------------------------
+
+When Firmware Update (FWU) is enabled there are at least 2 new images
+that have to be loaded, the Non-Secure FWU ROM (NS-BL1U), and the
+FWU FIP.
+
+Juno
+~~~~
+
+The new images must be programmed in flash memory by adding
+an entry in the ``SITE1/HBI0262x/images.txt`` configuration file
+on the Juno SD card (where ``x`` depends on the revision of the Juno board).
+Refer to the `Juno Getting Started Guide`_, section 2.3 "Flash memory
+programming" for more information. User should ensure these do not
+overlap with any other entries in the file.
+
+::
+
+	NOR10UPDATE: AUTO                       ;Image Update:NONE/AUTO/FORCE
+	NOR10ADDRESS: 0x00400000                ;Image Flash Address [ns_bl2u_base_address]
+	NOR10FILE: \SOFTWARE\fwu_fip.bin        ;Image File Name
+	NOR10LOAD: 00000000                     ;Image Load Address
+	NOR10ENTRY: 00000000                    ;Image Entry Point
+
+	NOR11UPDATE: AUTO                       ;Image Update:NONE/AUTO/FORCE
+	NOR11ADDRESS: 0x03EB8000                ;Image Flash Address [ns_bl1u_base_address]
+	NOR11FILE: \SOFTWARE\ns_bl1u.bin        ;Image File Name
+	NOR11LOAD: 00000000                     ;Image Load Address
+
+The address ns_bl1u_base_address is the value of NS_BL1U_BASE - 0x8000000.
+In the same way, the address ns_bl2u_base_address is the value of
+NS_BL2U_BASE - 0x8000000.
+
+FVP
+~~~
+
+The additional fip images must be loaded with:
+
+::
+
+    --data cluster0.cpu0="<path_to>/ns_bl1u.bin"@0x0beb8000	[ns_bl1u_base_address]
+    --data cluster0.cpu0="<path_to>/fwu_fip.bin"@0x08400000	[ns_bl2u_base_address]
+
+The address ns_bl1u_base_address is the value of NS_BL1U_BASE.
+In the same way, the address ns_bl2u_base_address is the value of
+NS_BL2U_BASE.
+
+
+EL3 payloads alternative boot flow
+----------------------------------
+
+On a pre-production system, the ability to execute arbitrary, bare-metal code at
+the highest exception level is required. It allows full, direct access to the
+hardware, for example to run silicon soak tests.
+
+Although it is possible to implement some baremetal secure firmware from
+scratch, this is a complex task on some platforms, depending on the level of
+configuration required to put the system in the expected state.
+
+Rather than booting a baremetal application, a possible compromise is to boot
+``EL3 payloads`` through TF-A instead. This is implemented as an alternative
+boot flow, where a modified BL2 boots an EL3 payload, instead of loading the
+other BL images and passing control to BL31. It reduces the complexity of
+developing EL3 baremetal code by:
+
+-  putting the system into a known architectural state;
+-  taking care of platform secure world initialization;
+-  loading the SCP_BL2 image if required by the platform.
+
+When booting an EL3 payload on Arm standard platforms, the configuration of the
+TrustZone controller is simplified such that only region 0 is enabled and is
+configured to permit secure access only. This gives full access to the whole
+DRAM to the EL3 payload.
+
+The system is left in the same state as when entering BL31 in the default boot
+flow. In particular:
+
+-  Running in EL3;
+-  Current state is AArch64;
+-  Little-endian data access;
+-  All exceptions disabled;
+-  MMU disabled;
+-  Caches disabled.
+
+Booting an EL3 payload
+~~~~~~~~~~~~~~~~~~~~~~
+
+The EL3 payload image is a standalone image and is not part of the FIP. It is
+not loaded by TF-A. Therefore, there are 2 possible scenarios:
+
+-  The EL3 payload may reside in non-volatile memory (NVM) and execute in
+   place. In this case, booting it is just a matter of specifying the right
+   address in NVM through ``EL3_PAYLOAD_BASE`` when building TF-A.
+
+-  The EL3 payload needs to be loaded in volatile memory (e.g. DRAM) at
+   run-time.
+
+To help in the latter scenario, the ``SPIN_ON_BL1_EXIT=1`` build option can be
+used. The infinite loop that it introduces in BL1 stops execution at the right
+moment for a debugger to take control of the target and load the payload (for
+example, over JTAG).
+
+It is expected that this loading method will work in most cases, as a debugger
+connection is usually available in a pre-production system. The user is free to
+use any other platform-specific mechanism to load the EL3 payload, though.
+
+Booting an EL3 payload on FVP
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The EL3 payloads boot flow requires the CPU's mailbox to be cleared at reset for
+the secondary CPUs holding pen to work properly. Unfortunately, its reset value
+is undefined on the FVP platform and the FVP platform code doesn't clear it.
+Therefore, one must modify the way the model is normally invoked in order to
+clear the mailbox at start-up.
+
+One way to do that is to create an 8-byte file containing all zero bytes using
+the following command:
+
+::
+
+    dd if=/dev/zero of=mailbox.dat bs=1 count=8
+
+and pre-load it into the FVP memory at the mailbox address (i.e. ``0x04000000``)
+using the following model parameters:
+
+::
+
+    --data cluster0.cpu0=mailbox.dat@0x04000000   [Base FVPs]
+    --data=mailbox.dat@0x04000000                 [Foundation FVP]
+
+To provide the model with the EL3 payload image, the following methods may be
+used:
+
+#. If the EL3 payload is able to execute in place, it may be programmed into
+   flash memory. On Base Cortex and AEM FVPs, the following model parameter
+   loads it at the base address of the NOR FLASH1 (the NOR FLASH0 is already
+   used for the FIP):
+
+   ::
+
+       -C bp.flashloader1.fname="<path-to>/<el3-payload>"
+
+   On Foundation FVP, there is no flash loader component and the EL3 payload
+   may be programmed anywhere in flash using method 3 below.
+
+#. When using the ``SPIN_ON_BL1_EXIT=1`` loading method, the following DS-5
+   command may be used to load the EL3 payload ELF image over JTAG:
+
+   ::
+
+       load <path-to>/el3-payload.elf
+
+#. The EL3 payload may be pre-loaded in volatile memory using the following
+   model parameters:
+
+   ::
+
+       --data cluster0.cpu0="<path-to>/el3-payload>"@address   [Base FVPs]
+       --data="<path-to>/<el3-payload>"@address                [Foundation FVP]
+
+   The address provided to the FVP must match the ``EL3_PAYLOAD_BASE`` address
+   used when building TF-A.
+
+Booting an EL3 payload on Juno
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+If the EL3 payload is able to execute in place, it may be programmed in flash
+memory by adding an entry in the ``SITE1/HBI0262x/images.txt`` configuration file
+on the Juno SD card (where ``x`` depends on the revision of the Juno board).
+Refer to the `Juno Getting Started Guide`_, section 2.3 "Flash memory
+programming" for more information.
+
+Alternatively, the same DS-5 command mentioned in the FVP section above can
+be used to load the EL3 payload's ELF file over JTAG on Juno.
+
+Preloaded BL33 alternative boot flow
+------------------------------------
+
+Some platforms have the ability to preload BL33 into memory instead of relying
+on TF-A to load it. This may simplify packaging of the normal world code and
+improve performance in a development environment. When secure world cold boot
+is complete, TF-A simply jumps to a BL33 base address provided at build time.
+
+For this option to be used, the ``PRELOADED_BL33_BASE`` build option has to be
+used when compiling TF-A. For example, the following command will create a FIP
+without a BL33 and prepare to jump to a BL33 image loaded at address
+0x80000000:
+
+::
+
+    make PRELOADED_BL33_BASE=0x80000000 PLAT=fvp all fip
+
+Boot of a preloaded kernel image on Base FVP
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The following example uses a simplified boot flow by directly jumping from the
+TF-A to the Linux kernel, which will use a ramdisk as filesystem. This can be
+useful if both the kernel and the device tree blob (DTB) are already present in
+memory (like in FVP).
+
+For example, if the kernel is loaded at ``0x80080000`` and the DTB is loaded at
+address ``0x82000000``, the firmware can be built like this:
+
+::
+
+    CROSS_COMPILE=aarch64-linux-gnu-  \
+    make PLAT=fvp DEBUG=1             \
+    RESET_TO_BL31=1                   \
+    ARM_LINUX_KERNEL_AS_BL33=1        \
+    PRELOADED_BL33_BASE=0x80080000    \
+    ARM_PRELOADED_DTB_BASE=0x82000000 \
+    all fip
+
+Now, it is needed to modify the DTB so that the kernel knows the address of the
+ramdisk. The following script generates a patched DTB from the provided one,
+assuming that the ramdisk is loaded at address ``0x84000000``. Note that this
+script assumes that the user is using a ramdisk image prepared for U-Boot, like
+the ones provided by Linaro. If using a ramdisk without this header,the ``0x40``
+offset in ``INITRD_START`` has to be removed.
+
+.. code:: bash
+
+    #!/bin/bash
+
+    # Path to the input DTB
+    KERNEL_DTB=<path-to>/<fdt>
+    # Path to the output DTB
+    PATCHED_KERNEL_DTB=<path-to>/<patched-fdt>
+    # Base address of the ramdisk
+    INITRD_BASE=0x84000000
+    # Path to the ramdisk
+    INITRD=<path-to>/<ramdisk.img>
+
+    # Skip uboot header (64 bytes)
+    INITRD_START=$(printf "0x%x" $((${INITRD_BASE} + 0x40)) )
+    INITRD_SIZE=$(stat -Lc %s ${INITRD})
+    INITRD_END=$(printf "0x%x" $((${INITRD_BASE} + ${INITRD_SIZE})) )
+
+    CHOSEN_NODE=$(echo                                        \
+    "/ {                                                      \
+            chosen {                                          \
+                    linux,initrd-start = <${INITRD_START}>;   \
+                    linux,initrd-end = <${INITRD_END}>;       \
+            };                                                \
+    };")
+
+    echo $(dtc -O dts -I dtb ${KERNEL_DTB}) ${CHOSEN_NODE} |  \
+            dtc -O dtb -o ${PATCHED_KERNEL_DTB} -
+
+And the FVP binary can be run with the following command:
+
+::
+
+    <path-to>/FVP_Base_AEMv8A-AEMv8A                            \
+    -C pctl.startup=0.0.0.0                                     \
+    -C bp.secure_memory=1                                       \
+    -C cluster0.NUM_CORES=4                                     \
+    -C cluster1.NUM_CORES=4                                     \
+    -C cache_state_modelled=1                                   \
+    -C cluster0.cpu0.RVBAR=0x04020000                           \
+    -C cluster0.cpu1.RVBAR=0x04020000                           \
+    -C cluster0.cpu2.RVBAR=0x04020000                           \
+    -C cluster0.cpu3.RVBAR=0x04020000                           \
+    -C cluster1.cpu0.RVBAR=0x04020000                           \
+    -C cluster1.cpu1.RVBAR=0x04020000                           \
+    -C cluster1.cpu2.RVBAR=0x04020000                           \
+    -C cluster1.cpu3.RVBAR=0x04020000                           \
+    --data cluster0.cpu0="<path-to>/bl31.bin"@0x04020000        \
+    --data cluster0.cpu0="<path-to>/<patched-fdt>"@0x82000000   \
+    --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
+    --data cluster0.cpu0="<path-to>/<ramdisk.img>"@0x84000000
+
+Boot of a preloaded kernel image on Juno
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The Trusted Firmware must be compiled in a similar way as for FVP explained
+above. The process to load binaries to memory is the one explained in
+`Booting an EL3 payload on Juno`_.
+
+Running the software on FVP
+---------------------------
+
+The latest version of the AArch64 build of TF-A has been tested on the following
+Arm FVPs without shifted affinities, and that do not support threaded CPU cores
+(64-bit host machine only).
+
+The FVP models used are Version 11.6 Build 45, unless otherwise stated.
+
+-  ``FVP_Base_AEMv8A-AEMv8A``
+-  ``FVP_Base_AEMv8A-AEMv8A-AEMv8A-AEMv8A-CCN502``
+-  ``FVP_Base_RevC-2xAEMv8A``
+-  ``FVP_Base_Cortex-A32x4``
+-  ``FVP_Base_Cortex-A35x4``
+-  ``FVP_Base_Cortex-A53x4``
+-  ``FVP_Base_Cortex-A55x4+Cortex-A75x4``
+-  ``FVP_Base_Cortex-A55x4``
+-  ``FVP_Base_Cortex-A57x1-A53x1``
+-  ``FVP_Base_Cortex-A57x2-A53x4``
+-  ``FVP_Base_Cortex-A57x4-A53x4``
+-  ``FVP_Base_Cortex-A57x4``
+-  ``FVP_Base_Cortex-A72x4-A53x4``
+-  ``FVP_Base_Cortex-A72x4``
+-  ``FVP_Base_Cortex-A73x4-A53x4``
+-  ``FVP_Base_Cortex-A73x4``
+-  ``FVP_Base_Cortex-A75x4``
+-  ``FVP_Base_Cortex-A76x4``
+-  ``FVP_Base_Cortex-A76AEx4``
+-  ``FVP_Base_Cortex-A76AEx8``
+-  ``FVP_Base_Neoverse-N1x4``
+-  ``FVP_Base_Deimos``
+-  ``FVP_CSS_SGI-575`` (Version 11.3 build 42)
+-  ``FVP_CSS_SGM-775`` (Version 11.3 build 42)
+-  ``FVP_RD_E1Edge`` (Version 11.3 build 42)
+-  ``FVP_RD_N1Edge``
+-  ``Foundation_Platform``
+
+The latest version of the AArch32 build of TF-A has been tested on the following
+Arm FVPs without shifted affinities, and that do not support threaded CPU cores
+(64-bit host machine only).
+
+-  ``FVP_Base_AEMv8A-AEMv8A``
+-  ``FVP_Base_Cortex-A32x4``
+
+NOTE: The ``FVP_Base_RevC-2xAEMv8A`` FVP only supports shifted affinities, which
+is not compatible with legacy GIC configurations. Therefore this FVP does not
+support these legacy GIC configurations.
+
+NOTE: The build numbers quoted above are those reported by launching the FVP
+with the ``--version`` parameter.
+
+NOTE: Linaro provides a ramdisk image in prebuilt FVP configurations and full
+file systems that can be downloaded separately. To run an FVP with a virtio
+file system image an additional FVP configuration option
+``-C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>`` can be
+used.
+
+NOTE: The software will not work on Version 1.0 of the Foundation FVP.
+The commands below would report an ``unhandled argument`` error in this case.
+
+NOTE: FVPs can be launched with ``--cadi-server`` option such that a
+CADI-compliant debugger (for example, Arm DS-5) can connect to and control its
+execution.
+
+NOTE: Since FVP model Version 11.0 Build 11.0.34 and Version 8.5 Build 0.8.5202
+the internal synchronisation timings changed compared to older versions of the
+models. The models can be launched with ``-Q 100`` option if they are required
+to match the run time characteristics of the older versions.
+
+The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be
+downloaded for free from `Arm's website`_.
+
+The Cortex-A models listed above are also available to download from
+`Arm's website`_.
+
+Please refer to the FVP documentation for a detailed description of the model
+parameter options. A brief description of the important ones that affect TF-A
+and normal world software behavior is provided below.
+
+Obtaining the Flattened Device Trees
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Depending on the FVP configuration and Linux configuration used, different
+FDT files are required. FDT source files for the Foundation and Base FVPs can
+be found in the TF-A source directory under ``fdts/``. The Foundation FVP has
+a subset of the Base FVP components. For example, the Foundation FVP lacks
+CLCD and MMC support, and has only one CPU cluster.
+
+Note: It is not recommended to use the FDTs built along the kernel because not
+all FDTs are available from there.
+
+The dynamic configuration capability is enabled in the firmware for FVPs.
+This means that the firmware can authenticate and load the FDT if present in
+FIP. A default FDT is packaged into FIP during the build based on
+the build configuration. This can be overridden by using the ``FVP_HW_CONFIG``
+or ``FVP_HW_CONFIG_DTS`` build options (refer to the
+`Arm FVP platform specific build options`_ section for detail on the options).
+
+-  ``fvp-base-gicv2-psci.dts``
+
+   For use with models such as the Cortex-A57-A53 Base FVPs without shifted
+   affinities and with Base memory map configuration.
+
+-  ``fvp-base-gicv2-psci-aarch32.dts``
+
+   For use with models such as the Cortex-A32 Base FVPs without shifted
+   affinities and running Linux in AArch32 state with Base memory map
+   configuration.
+
+-  ``fvp-base-gicv3-psci.dts``
+
+   For use with models such as the Cortex-A57-A53 Base FVPs without shifted
+   affinities and with Base memory map configuration and Linux GICv3 support.
+
+-  ``fvp-base-gicv3-psci-1t.dts``
+
+   For use with models such as the AEMv8-RevC Base FVP with shifted affinities,
+   single threaded CPUs, Base memory map configuration and Linux GICv3 support.
+
+-  ``fvp-base-gicv3-psci-dynamiq.dts``
+
+   For use with models as the Cortex-A55-A75 Base FVPs with shifted affinities,
+   single cluster, single threaded CPUs, Base memory map configuration and Linux
+   GICv3 support.
+
+-  ``fvp-base-gicv3-psci-aarch32.dts``
+
+   For use with models such as the Cortex-A32 Base FVPs without shifted
+   affinities and running Linux in AArch32 state with Base memory map
+   configuration and Linux GICv3 support.
+
+-  ``fvp-foundation-gicv2-psci.dts``
+
+   For use with Foundation FVP with Base memory map configuration.
+
+-  ``fvp-foundation-gicv3-psci.dts``
+
+   (Default) For use with Foundation FVP with Base memory map configuration
+   and Linux GICv3 support.
+
+Running on the Foundation FVP with reset to BL1 entrypoint
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The following ``Foundation_Platform`` parameters should be used to boot Linux with
+4 CPUs using the AArch64 build of TF-A.
+
+::
+
+    <path-to>/Foundation_Platform                   \
+    --cores=4                                       \
+    --arm-v8.0                                      \
+    --secure-memory                                 \
+    --visualization                                 \
+    --gicv3                                         \
+    --data="<path-to>/<bl1-binary>"@0x0             \
+    --data="<path-to>/<FIP-binary>"@0x08000000      \
+    --data="<path-to>/<kernel-binary>"@0x80080000   \
+    --data="<path-to>/<ramdisk-binary>"@0x84000000
+
+Notes:
+
+-  BL1 is loaded at the start of the Trusted ROM.
+-  The Firmware Image Package is loaded at the start of NOR FLASH0.
+-  The firmware loads the FDT packaged in FIP to the DRAM. The FDT load address
+   is specified via the ``hw_config_addr`` property in `TB_FW_CONFIG for FVP`_.
+-  The default use-case for the Foundation FVP is to use the ``--gicv3`` option
+   and enable the GICv3 device in the model. Note that without this option,
+   the Foundation FVP defaults to legacy (Versatile Express) memory map which
+   is not supported by TF-A.
+-  In order for TF-A to run correctly on the Foundation FVP, the architecture
+   versions must match. The Foundation FVP defaults to the highest v8.x
+   version it supports but the default build for TF-A is for v8.0. To avoid
+   issues either start the Foundation FVP to use v8.0 architecture using the
+   ``--arm-v8.0`` option, or build TF-A with an appropriate value for
+   ``ARM_ARCH_MINOR``.
+
+Running on the AEMv8 Base FVP with reset to BL1 entrypoint
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The following ``FVP_Base_RevC-2xAEMv8A`` parameters should be used to boot Linux
+with 8 CPUs using the AArch64 build of TF-A.
+
+::
+
+    <path-to>/FVP_Base_RevC-2xAEMv8A                            \
+    -C pctl.startup=0.0.0.0                                     \
+    -C bp.secure_memory=1                                       \
+    -C bp.tzc_400.diagnostics=1                                 \
+    -C cluster0.NUM_CORES=4                                     \
+    -C cluster1.NUM_CORES=4                                     \
+    -C cache_state_modelled=1                                   \
+    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>"      \
+    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"           \
+    --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
+    --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
+
+Note: The ``FVP_Base_RevC-2xAEMv8A`` has shifted affinities and requires a
+specific DTS for all the CPUs to be loaded.
+
+Running on the AEMv8 Base FVP (AArch32) with reset to BL1 entrypoint
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
+with 8 CPUs using the AArch32 build of TF-A.
+
+::
+
+    <path-to>/FVP_Base_AEMv8A-AEMv8A                            \
+    -C pctl.startup=0.0.0.0                                     \
+    -C bp.secure_memory=1                                       \
+    -C bp.tzc_400.diagnostics=1                                 \
+    -C cluster0.NUM_CORES=4                                     \
+    -C cluster1.NUM_CORES=4                                     \
+    -C cache_state_modelled=1                                   \
+    -C cluster0.cpu0.CONFIG64=0                                 \
+    -C cluster0.cpu1.CONFIG64=0                                 \
+    -C cluster0.cpu2.CONFIG64=0                                 \
+    -C cluster0.cpu3.CONFIG64=0                                 \
+    -C cluster1.cpu0.CONFIG64=0                                 \
+    -C cluster1.cpu1.CONFIG64=0                                 \
+    -C cluster1.cpu2.CONFIG64=0                                 \
+    -C cluster1.cpu3.CONFIG64=0                                 \
+    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>"      \
+    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"           \
+    --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
+    --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
+
+Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
+boot Linux with 8 CPUs using the AArch64 build of TF-A.
+
+::
+
+    <path-to>/FVP_Base_Cortex-A57x4-A53x4                       \
+    -C pctl.startup=0.0.0.0                                     \
+    -C bp.secure_memory=1                                       \
+    -C bp.tzc_400.diagnostics=1                                 \
+    -C cache_state_modelled=1                                   \
+    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>"      \
+    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"           \
+    --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
+    --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
+
+Running on the Cortex-A32 Base FVP (AArch32) with reset to BL1 entrypoint
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
+boot Linux with 4 CPUs using the AArch32 build of TF-A.
+
+::
+
+    <path-to>/FVP_Base_Cortex-A32x4                             \
+    -C pctl.startup=0.0.0.0                                     \
+    -C bp.secure_memory=1                                       \
+    -C bp.tzc_400.diagnostics=1                                 \
+    -C cache_state_modelled=1                                   \
+    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>"      \
+    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"           \
+    --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
+    --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
+
+Running on the AEMv8 Base FVP with reset to BL31 entrypoint
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The following ``FVP_Base_RevC-2xAEMv8A`` parameters should be used to boot Linux
+with 8 CPUs using the AArch64 build of TF-A.
+
+::
+
+    <path-to>/FVP_Base_RevC-2xAEMv8A                             \
+    -C pctl.startup=0.0.0.0                                      \
+    -C bp.secure_memory=1                                        \
+    -C bp.tzc_400.diagnostics=1                                  \
+    -C cluster0.NUM_CORES=4                                      \
+    -C cluster1.NUM_CORES=4                                      \
+    -C cache_state_modelled=1                                    \
+    -C cluster0.cpu0.RVBAR=0x04010000                            \
+    -C cluster0.cpu1.RVBAR=0x04010000                            \
+    -C cluster0.cpu2.RVBAR=0x04010000                            \
+    -C cluster0.cpu3.RVBAR=0x04010000                            \
+    -C cluster1.cpu0.RVBAR=0x04010000                            \
+    -C cluster1.cpu1.RVBAR=0x04010000                            \
+    -C cluster1.cpu2.RVBAR=0x04010000                            \
+    -C cluster1.cpu3.RVBAR=0x04010000                            \
+    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04010000    \
+    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0xff000000    \
+    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
+    --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000            \
+    --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000  \
+    --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
+
+Notes:
+
+-  If Position Independent Executable (PIE) support is enabled for BL31
+   in this config, it can be loaded at any valid address for execution.
+
+-  Since a FIP is not loaded when using BL31 as reset entrypoint, the
+   ``--data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary>``
+   parameter is needed to load the individual bootloader images in memory.
+   BL32 image is only needed if BL31 has been built to expect a Secure-EL1
+   Payload. For the same reason, the FDT needs to be compiled from the DT source
+   and loaded via the ``--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000``
+   parameter.
+
+-  The ``FVP_Base_RevC-2xAEMv8A`` has shifted affinities and requires a
+   specific DTS for all the CPUs to be loaded.
+
+-  The ``-C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31>`` parameter, where
+   X and Y are the cluster and CPU numbers respectively, is used to set the
+   reset vector for each core.
+
+-  Changing the default value of ``ARM_TSP_RAM_LOCATION`` will also require
+   changing the value of
+   ``--data="<path-to><bl32-binary>"@<base-address-of-bl32>`` to the new value of
+   ``BL32_BASE``.
+
+Running on the AEMv8 Base FVP (AArch32) with reset to SP_MIN entrypoint
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
+with 8 CPUs using the AArch32 build of TF-A.
+
+::
+
+    <path-to>/FVP_Base_AEMv8A-AEMv8A                             \
+    -C pctl.startup=0.0.0.0                                      \
+    -C bp.secure_memory=1                                        \
+    -C bp.tzc_400.diagnostics=1                                  \
+    -C cluster0.NUM_CORES=4                                      \
+    -C cluster1.NUM_CORES=4                                      \
+    -C cache_state_modelled=1                                    \
+    -C cluster0.cpu0.CONFIG64=0                                  \
+    -C cluster0.cpu1.CONFIG64=0                                  \
+    -C cluster0.cpu2.CONFIG64=0                                  \
+    -C cluster0.cpu3.CONFIG64=0                                  \
+    -C cluster1.cpu0.CONFIG64=0                                  \
+    -C cluster1.cpu1.CONFIG64=0                                  \
+    -C cluster1.cpu2.CONFIG64=0                                  \
+    -C cluster1.cpu3.CONFIG64=0                                  \
+    -C cluster0.cpu0.RVBAR=0x04002000                            \
+    -C cluster0.cpu1.RVBAR=0x04002000                            \
+    -C cluster0.cpu2.RVBAR=0x04002000                            \
+    -C cluster0.cpu3.RVBAR=0x04002000                            \
+    -C cluster1.cpu0.RVBAR=0x04002000                            \
+    -C cluster1.cpu1.RVBAR=0x04002000                            \
+    -C cluster1.cpu2.RVBAR=0x04002000                            \
+    -C cluster1.cpu3.RVBAR=0x04002000                            \
+    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04002000    \
+    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
+    --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000            \
+    --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000  \
+    --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
+
+Note: The load address of ``<bl32-binary>`` depends on the value ``BL32_BASE``.
+It should match the address programmed into the RVBAR register as well.
+
+Running on the Cortex-A57-A53 Base FVP with reset to BL31 entrypoint
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
+boot Linux with 8 CPUs using the AArch64 build of TF-A.
+
+::
+
+    <path-to>/FVP_Base_Cortex-A57x4-A53x4                        \
+    -C pctl.startup=0.0.0.0                                      \
+    -C bp.secure_memory=1                                        \
+    -C bp.tzc_400.diagnostics=1                                  \
+    -C cache_state_modelled=1                                    \
+    -C cluster0.cpu0.RVBARADDR=0x04010000                        \
+    -C cluster0.cpu1.RVBARADDR=0x04010000                        \
+    -C cluster0.cpu2.RVBARADDR=0x04010000                        \
+    -C cluster0.cpu3.RVBARADDR=0x04010000                        \
+    -C cluster1.cpu0.RVBARADDR=0x04010000                        \
+    -C cluster1.cpu1.RVBARADDR=0x04010000                        \
+    -C cluster1.cpu2.RVBARADDR=0x04010000                        \
+    -C cluster1.cpu3.RVBARADDR=0x04010000                        \
+    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04010000    \
+    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0xff000000    \
+    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
+    --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000            \
+    --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000  \
+    --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
+
+Running on the Cortex-A32 Base FVP (AArch32) with reset to SP_MIN entrypoint
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
+boot Linux with 4 CPUs using the AArch32 build of TF-A.
+
+::
+
+    <path-to>/FVP_Base_Cortex-A32x4                             \
+    -C pctl.startup=0.0.0.0                                     \
+    -C bp.secure_memory=1                                       \
+    -C bp.tzc_400.diagnostics=1                                 \
+    -C cache_state_modelled=1                                   \
+    -C cluster0.cpu0.RVBARADDR=0x04002000                       \
+    -C cluster0.cpu1.RVBARADDR=0x04002000                       \
+    -C cluster0.cpu2.RVBARADDR=0x04002000                       \
+    -C cluster0.cpu3.RVBARADDR=0x04002000                       \
+    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04002000   \
+    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000   \
+    --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000           \
+    --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
+    --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
+
+Running the software on Juno
+----------------------------
+
+This version of TF-A has been tested on variants r0, r1 and r2 of Juno.
+
+To execute the software stack on Juno, the version of the Juno board recovery
+image indicated in the `Linaro Release Notes`_ must be installed. If you have an
+earlier version installed or are unsure which version is installed, please
+re-install the recovery image by following the
+`Instructions for using Linaro's deliverables on Juno`_.
+
+Preparing TF-A images
+~~~~~~~~~~~~~~~~~~~~~
+
+After building TF-A, the files ``bl1.bin`` and ``fip.bin`` need copying to the
+``SOFTWARE/`` directory of the Juno SD card.
+
+Other Juno software information
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Please visit the `Arm Platforms Portal`_ to get support and obtain any other Juno
+software information. Please also refer to the `Juno Getting Started Guide`_ to
+get more detailed information about the Juno Arm development platform and how to
+configure it.
+
+Testing SYSTEM SUSPEND on Juno
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The SYSTEM SUSPEND is a PSCI API which can be used to implement system suspend
+to RAM. For more details refer to section 5.16 of `PSCI`_. To test system suspend
+on Juno, at the linux shell prompt, issue the following command:
+
+::
+
+    echo +10 > /sys/class/rtc/rtc0/wakealarm
+    echo -n mem > /sys/power/state
+
+The Juno board should suspend to RAM and then wakeup after 10 seconds due to
+wakeup interrupt from RTC.
+
+--------------
+
+*Copyright (c) 2013-2019, Arm Limited and Contributors. All rights reserved.*
+
+.. _arm Developer page: https://developer.arm.com/open-source/gnu-toolchain/gnu-a/downloads
+.. _Linaro: `Linaro Release Notes`_
+.. _Linaro Release: `Linaro Release Notes`_
+.. _Linaro Release Notes: https://community.arm.com/dev-platforms/w/docs/226/old-release-notes
+.. _Linaro instructions: https://community.arm.com/dev-platforms/w/docs/304/arm-reference-platforms-deliverables
+.. _Instructions for using Linaro's deliverables on Juno: https://community.arm.com/dev-platforms/w/docs/303/juno
+.. _Arm Platforms Portal: https://community.arm.com/dev-platforms/
+.. _Development Studio 5 (DS-5): https://developer.arm.com/products/software-development-tools/ds-5-development-studio
+.. _arm-trusted-firmware-a project page: https://review.trustedfirmware.org/admin/projects/TF-A/trusted-firmware-a
+.. _`Linux Coding Style`: https://www.kernel.org/doc/html/latest/process/coding-style.html
+.. _Linux master tree: https://github.com/torvalds/linux/tree/master/
+.. _Dia: https://wiki.gnome.org/Apps/Dia/Download
+.. _here: psci-lib-integration-guide.rst
+.. _Trusted Board Boot: trusted-board-boot.rst
+.. _TB_FW_CONFIG for FVP: ../plat/arm/board/fvp/fdts/fvp_tb_fw_config.dts
+.. _Secure-EL1 Payloads and Dispatchers: firmware-design.rst#user-content-secure-el1-payloads-and-dispatchers
+.. _Firmware Update: firmware-update.rst
+.. _Firmware Design: firmware-design.rst
+.. _mbed TLS Repository: https://github.com/ARMmbed/mbedtls.git
+.. _mbed TLS Security Center: https://tls.mbed.org/security
+.. _Arm's website: `FVP models`_
+.. _FVP models: https://developer.arm.com/products/system-design/fixed-virtual-platforms
+.. _Juno Getting Started Guide: http://infocenter.arm.com/help/topic/com.arm.doc.dui0928e/DUI0928E_juno_arm_development_platform_gsg.pdf
+.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf
+.. _Secure Partition Manager Design guide: secure-partition-manager-design.rst
+.. _`Trusted Firmware-A Coding Guidelines`: coding-guidelines.rst
+.. _`Library at ROM`: romlib-design.rst