NXP: Driver for NXP Security Monitor

NXP Security Monitor IP provides hardware anchored
- current security state of the SoC.
- Tamper detect etc.

Signed-off-by: Ruchika Gupta <ruchika.gupta@nxp.com>
Signed-off-by: Pankaj Gupta <pankaj.gupta@nxp.com>
Change-Id: I8ff809fe2f3fd013844ab3d4a8733f53c2b06c81
diff --git a/drivers/nxp/sec_mon/snvs.c b/drivers/nxp/sec_mon/snvs.c
new file mode 100644
index 0000000..6208b67
--- /dev/null
+++ b/drivers/nxp/sec_mon/snvs.c
@@ -0,0 +1,186 @@
+/*
+ * Copyright 2021 NXP
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ *
+ */
+
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+
+#include <snvs.h>
+
+static uintptr_t g_nxp_snvs_addr;
+
+void snvs_init(uintptr_t nxp_snvs_addr)
+{
+	g_nxp_snvs_addr = nxp_snvs_addr;
+}
+
+uint32_t get_snvs_state(void)
+{
+	struct snvs_regs *snvs = (struct snvs_regs *) (g_nxp_snvs_addr);
+
+	return (snvs_read32(&snvs->hp_stat) & HPSTS_MASK_SSM_ST);
+}
+
+static uint32_t do_snvs_state_transition(uint32_t state_transtion_bit,
+					 uint32_t target_state)
+{
+	struct snvs_regs *snvs = (struct snvs_regs *) (g_nxp_snvs_addr);
+	uint32_t sts = get_snvs_state();
+	uint32_t fetch_cnt = 16U;
+	uint32_t val = snvs_read32(&snvs->hp_com) | state_transtion_bit;
+
+	snvs_write32(&snvs->hp_com, val);
+
+	/* polling loop till SNVS is in target state */
+	do {
+		sts = get_snvs_state();
+	} while ((sts != target_state) && ((--fetch_cnt) != 0));
+
+	return sts;
+}
+void transition_snvs_non_secure(void)
+{
+	struct snvs_regs *snvs = (struct snvs_regs *) (g_nxp_snvs_addr);
+	uint32_t sts = get_snvs_state();
+
+	switch (sts) {
+		/* If initial state is check or Non-Secure, then
+		 * set the Software Security Violation Bit and
+		 * transition to Non-Secure State.
+		 */
+	case HPSTS_CHECK_SSM_ST:
+		sts = do_snvs_state_transition(HPCOM_SW_SV, HPSTS_NON_SECURE_SSM_ST);
+		break;
+
+		/* If initial state is Trusted, Secure or Soft-Fail, then
+		 * first set the Software Security Violation Bit and
+		 * transition to Soft-Fail State.
+		 */
+	case HPSTS_TRUST_SSM_ST:
+	case HPSTS_SECURE_SSM_ST:
+	case HPSTS_SOFT_FAIL_SSM_ST:
+		sts = do_snvs_state_transition(HPCOM_SW_SV, HPSTS_NON_SECURE_SSM_ST);
+
+		/* If SSM Soft Fail to Non-Secure State Transition
+		 * Disable is not set, then set SSM_ST bit and
+		 * transition to Non-Secure State.
+		 */
+		if ((snvs_read32(&snvs->hp_com) & HPCOM_SSM_SFNS_DIS) == 0) {
+			sts = do_snvs_state_transition(HPCOM_SSM_ST, HPSTS_NON_SECURE_SSM_ST);
+		}
+		break;
+	default:
+		break;
+	}
+}
+
+void transition_snvs_soft_fail(void)
+{
+	do_snvs_state_transition(HPCOM_SW_FSV, HPSTS_SOFT_FAIL_SSM_ST);
+}
+
+uint32_t transition_snvs_trusted(void)
+{
+	struct snvs_regs *snvs = (struct snvs_regs *) (g_nxp_snvs_addr);
+	uint32_t sts = get_snvs_state();
+
+	switch (sts) {
+		/* If initial state is check, set the SSM_ST bit to
+		 * change the state to trusted.
+		 */
+	case HPSTS_CHECK_SSM_ST:
+		sts = do_snvs_state_transition(HPCOM_SSM_ST, HPSTS_TRUST_SSM_ST);
+		break;
+		/* If SSM Secure to Trusted State Transition Disable
+		 * is not set, then set SSM_ST bit and
+		 * transition to Trusted State.
+		 */
+	case HPSTS_SECURE_SSM_ST:
+		if ((snvs_read32(&snvs->hp_com) & HPCOM_SSM_ST_DIS) == 0) {
+			sts = do_snvs_state_transition(HPCOM_SSM_ST, HPSTS_TRUST_SSM_ST);
+		}
+		break;
+		/* If initial state is Soft-Fail or Non-Secure, then
+		 * transition to Trusted is not Possible.
+		 */
+	default:
+		break;
+	}
+
+	return sts;
+}
+
+uint32_t transition_snvs_secure(void)
+{
+	uint32_t sts = get_snvs_state();
+
+	if (sts == HPSTS_SECURE_SSM_ST) {
+		return sts;
+	}
+
+	if (sts != HPSTS_TRUST_SSM_ST) {
+		sts = transition_snvs_trusted();
+		if (sts != HPSTS_TRUST_SSM_ST) {
+			return sts;
+		}
+	}
+
+	sts = do_snvs_state_transition(HPCOM_SSM_ST, HPSTS_TRUST_SSM_ST);
+
+	return sts;
+}
+
+void snvs_write_lp_gpr_bit(uint32_t offset, uint32_t bit_pos, bool flag_val)
+{
+	if (flag_val) {
+		snvs_write32(g_nxp_snvs_addr + offset,
+			     (snvs_read32(g_nxp_snvs_addr + offset))
+			     | (1 << bit_pos));
+	} else {
+		snvs_write32(g_nxp_snvs_addr + offset,
+			     (snvs_read32(g_nxp_snvs_addr + offset))
+			     & ~(1 << bit_pos));
+	}
+}
+
+uint32_t snvs_read_lp_gpr_bit(uint32_t offset, uint32_t bit_pos)
+{
+	return (snvs_read32(g_nxp_snvs_addr + offset) & (1 << bit_pos));
+}
+
+void snvs_disable_zeroize_lp_gpr(void)
+{
+	snvs_write_lp_gpr_bit(NXP_LPCR_OFFSET,
+			  NXP_GPR_Z_DIS_BIT,
+			  true);
+}
+
+#if defined(NXP_NV_SW_MAINT_LAST_EXEC_DATA) && defined(NXP_COINED_BB)
+void snvs_write_app_data_bit(uint32_t bit_pos)
+{
+	snvs_write_lp_gpr_bit(NXP_APP_DATA_LP_GPR_OFFSET,
+			      bit_pos,
+			      true);
+}
+
+uint32_t snvs_read_app_data(void)
+{
+	return snvs_read32(g_nxp_snvs_addr + NXP_APP_DATA_LP_GPR_OFFSET);
+}
+
+uint32_t snvs_read_app_data_bit(uint32_t bit_pos)
+{
+	uint8_t ret = snvs_read_lp_gpr_bit(NXP_APP_DATA_LP_GPR_OFFSET, bit_pos);
+
+	return ((ret != 0U) ? 1U : 0U);
+}
+
+void snvs_clear_app_data(void)
+{
+	snvs_write32(g_nxp_snvs_addr + NXP_APP_DATA_LP_GPR_OFFSET, 0x0);
+}
+#endif