Sandrine Bailleux | 3cd87d7 | 2018-10-09 11:12:55 +0200 | [diff] [blame] | 1 | /* |
Varun Wadekar | 5904da4 | 2020-05-22 10:52:23 -0700 | [diff] [blame^] | 2 | * Copyright (c) 2018-2020, Arm Limited. All rights reserved. |
Sandrine Bailleux | 3cd87d7 | 2018-10-09 11:12:55 +0200 | [diff] [blame] | 3 | * |
| 4 | * SPDX-License-Identifier: BSD-3-Clause |
| 5 | */ |
| 6 | |
| 7 | #include <arch.h> |
| 8 | #include <arch_helpers.h> |
Sandrine Bailleux | 3cd87d7 | 2018-10-09 11:12:55 +0200 | [diff] [blame] | 9 | #include <debug.h> |
Antonio Nino Diaz | 09a00ef | 2019-01-11 13:12:58 +0000 | [diff] [blame] | 10 | #include <drivers/arm/arm_gic.h> |
Sandrine Bailleux | 3cd87d7 | 2018-10-09 11:12:55 +0200 | [diff] [blame] | 11 | #include <errno.h> |
| 12 | #include <irq.h> |
| 13 | #include <mmio.h> |
| 14 | #include <platform.h> |
| 15 | #include <platform_def.h> |
| 16 | #include <power_management.h> |
| 17 | #include <sgi.h> |
| 18 | #include <spinlock.h> |
| 19 | #include <stddef.h> |
Ambroise Vincent | 602b7f5 | 2019-02-11 14:13:43 +0000 | [diff] [blame] | 20 | #include <stdint.h> |
Sandrine Bailleux | 3cd87d7 | 2018-10-09 11:12:55 +0200 | [diff] [blame] | 21 | #include <tftf.h> |
| 22 | #include <timer.h> |
| 23 | |
| 24 | |
| 25 | /* Helper macros */ |
| 26 | #define TIMER_STEP_VALUE (plat_timer_info->timer_step_value) |
| 27 | #define TIMER_IRQ (plat_timer_info->timer_irq) |
| 28 | #define PROGRAM_TIMER(a) plat_timer_info->program(a) |
| 29 | #define INVALID_CORE UINT32_MAX |
| 30 | #define INVALID_TIME UINT64_MAX |
| 31 | #define MAX_TIME_OUT_MS 10000 |
| 32 | |
| 33 | /* |
| 34 | * Pointer containing available timer information for the platform. |
| 35 | */ |
| 36 | static const plat_timer_t *plat_timer_info; |
| 37 | /* |
| 38 | * Interrupt requested time by cores in terms of absolute time. |
| 39 | */ |
| 40 | static volatile unsigned long long interrupt_req_time[PLATFORM_CORE_COUNT]; |
| 41 | /* |
| 42 | * Contains the target core number of the timer interrupt. |
| 43 | */ |
| 44 | static unsigned int current_prog_core = INVALID_CORE; |
| 45 | /* |
| 46 | * Lock to get a consistent view for programming the timer |
| 47 | */ |
| 48 | static spinlock_t timer_lock; |
| 49 | /* |
| 50 | * Number of system ticks per millisec |
| 51 | */ |
| 52 | static unsigned int systicks_per_ms; |
| 53 | |
| 54 | /* |
| 55 | * Stores per CPU timer handler invoked on expiration of the requested timeout. |
| 56 | */ |
| 57 | static irq_handler_t timer_handler[PLATFORM_CORE_COUNT]; |
| 58 | |
| 59 | /* Helper function */ |
| 60 | static inline unsigned long long get_current_time_ms(void) |
| 61 | { |
| 62 | assert(systicks_per_ms); |
Varun Wadekar | 5904da4 | 2020-05-22 10:52:23 -0700 | [diff] [blame^] | 63 | return syscounter_read() / systicks_per_ms; |
Sandrine Bailleux | 3cd87d7 | 2018-10-09 11:12:55 +0200 | [diff] [blame] | 64 | } |
| 65 | |
| 66 | static inline unsigned long long get_current_prog_time(void) |
| 67 | { |
| 68 | return current_prog_core == INVALID_CORE ? |
| 69 | 0 : interrupt_req_time[current_prog_core]; |
| 70 | } |
| 71 | |
| 72 | int tftf_initialise_timer(void) |
| 73 | { |
Sandrine Bailleux | 3cd87d7 | 2018-10-09 11:12:55 +0200 | [diff] [blame] | 74 | /* |
| 75 | * Get platform specific timer information |
| 76 | */ |
Sandrine Bailleux | dfa5ed9 | 2018-12-13 17:08:50 +0100 | [diff] [blame] | 77 | int rc = plat_initialise_timer_ops(&plat_timer_info); |
| 78 | if (rc != 0) { |
Sandrine Bailleux | 3cd87d7 | 2018-10-09 11:12:55 +0200 | [diff] [blame] | 79 | return rc; |
| 80 | } |
| 81 | |
| 82 | /* Systems can't support single tick as a step value */ |
| 83 | assert(TIMER_STEP_VALUE); |
| 84 | |
| 85 | /* Initialise the array to max possible time */ |
Sandrine Bailleux | dfa5ed9 | 2018-12-13 17:08:50 +0100 | [diff] [blame] | 86 | for (unsigned int i = 0; i < PLATFORM_CORE_COUNT; i++) |
Sandrine Bailleux | 3cd87d7 | 2018-10-09 11:12:55 +0200 | [diff] [blame] | 87 | interrupt_req_time[i] = INVALID_TIME; |
| 88 | |
| 89 | tftf_irq_register_handler(TIMER_IRQ, tftf_timer_framework_handler); |
| 90 | arm_gic_set_intr_priority(TIMER_IRQ, GIC_HIGHEST_NS_PRIORITY); |
| 91 | arm_gic_intr_enable(TIMER_IRQ); |
| 92 | |
| 93 | /* Save the systicks per millisecond */ |
| 94 | systicks_per_ms = read_cntfrq_el0() / 1000; |
| 95 | |
| 96 | return 0; |
| 97 | } |
| 98 | |
| 99 | /* |
| 100 | * It returns the core number of next timer request to be serviced or |
| 101 | * -1 if there is no request from any core. The next service request |
| 102 | * is the core whose interrupt needs to be fired first. |
| 103 | */ |
| 104 | static inline unsigned int get_lowest_req_core(void) |
| 105 | { |
| 106 | unsigned long long lowest_timer = INVALID_TIME; |
| 107 | unsigned int lowest_core_req = INVALID_CORE; |
| 108 | unsigned int i; |
| 109 | |
| 110 | /* |
| 111 | * If 2 cores requested same value, give precedence |
| 112 | * to the core with lowest core number |
| 113 | */ |
| 114 | for (i = 0; i < PLATFORM_CORE_COUNT; i++) { |
| 115 | if (interrupt_req_time[i] < lowest_timer) { |
| 116 | lowest_timer = interrupt_req_time[i]; |
| 117 | lowest_core_req = i; |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | return lowest_core_req; |
| 122 | } |
| 123 | |
| 124 | int tftf_program_timer(unsigned long time_out_ms) |
| 125 | { |
| 126 | unsigned int core_pos; |
| 127 | unsigned long long current_time; |
| 128 | u_register_t flags; |
| 129 | int rc = 0; |
| 130 | |
| 131 | /* |
| 132 | * Some timer implementations have a very small max timeouts due to |
| 133 | * this if a request is asked for greater than the max time supported |
| 134 | * by them either it has to be broken down and remembered or use |
| 135 | * some other technique. Since that use case is not intended and |
| 136 | * and to make the timer framework simple, max timeout requests |
| 137 | * accepted by timer implementations can't be greater than |
| 138 | * 10 seconds. Hence, all timer peripherals used in timer framework |
| 139 | * has to support a timeout with interval of at least MAX_TIMEOUT. |
| 140 | */ |
| 141 | if ((time_out_ms > MAX_TIME_OUT_MS) || (time_out_ms == 0)) { |
| 142 | ERROR("%s : Greater than max timeout request\n", __func__); |
| 143 | return -1; |
| 144 | } else if (time_out_ms < TIMER_STEP_VALUE) { |
| 145 | time_out_ms = TIMER_STEP_VALUE; |
| 146 | } |
| 147 | |
| 148 | core_pos = platform_get_core_pos(read_mpidr_el1()); |
| 149 | /* A timer interrupt request is already available for the core */ |
| 150 | assert(interrupt_req_time[core_pos] == INVALID_TIME); |
| 151 | |
| 152 | flags = read_daif(); |
| 153 | disable_irq(); |
| 154 | spin_lock(&timer_lock); |
| 155 | |
| 156 | assert((current_prog_core < PLATFORM_CORE_COUNT) || |
| 157 | (current_prog_core == INVALID_CORE)); |
| 158 | |
| 159 | /* |
| 160 | * Read time after acquiring timer_lock to account for any time taken |
| 161 | * by lock contention. |
| 162 | */ |
| 163 | current_time = get_current_time_ms(); |
| 164 | |
| 165 | /* Update the requested time */ |
| 166 | interrupt_req_time[core_pos] = current_time + time_out_ms; |
| 167 | |
| 168 | VERBOSE("Need timer interrupt at: %lld current_prog_time:%lld\n" |
| 169 | " current time: %lld\n", interrupt_req_time[core_pos], |
| 170 | get_current_prog_time(), |
| 171 | get_current_time_ms()); |
| 172 | |
| 173 | /* |
| 174 | * If the interrupt request time is less than the current programmed |
| 175 | * by timer_step_value or timer is not programmed. Program it with |
| 176 | * requested time and retarget the timer interrupt to the current |
| 177 | * core. |
| 178 | */ |
| 179 | if ((!get_current_prog_time()) || (interrupt_req_time[core_pos] < |
| 180 | (get_current_prog_time() - TIMER_STEP_VALUE))) { |
| 181 | |
| 182 | arm_gic_set_intr_target(TIMER_IRQ, core_pos); |
| 183 | |
| 184 | rc = PROGRAM_TIMER(time_out_ms); |
| 185 | /* We don't expect timer programming to fail */ |
| 186 | if (rc) |
| 187 | ERROR("%s %d: rc = %d\n", __func__, __LINE__, rc); |
| 188 | |
| 189 | current_prog_core = core_pos; |
| 190 | } |
| 191 | |
| 192 | spin_unlock(&timer_lock); |
| 193 | /* Restore DAIF flags */ |
| 194 | write_daif(flags); |
| 195 | isb(); |
| 196 | |
| 197 | return rc; |
| 198 | } |
| 199 | |
| 200 | int tftf_program_timer_and_suspend(unsigned long milli_secs, |
| 201 | unsigned int pwr_state, |
| 202 | int *timer_rc, int *suspend_rc) |
| 203 | { |
| 204 | int rc = 0; |
| 205 | u_register_t flags; |
| 206 | |
| 207 | /* Default to successful return codes */ |
| 208 | int timer_rc_val = 0; |
| 209 | int suspend_rc_val = PSCI_E_SUCCESS; |
| 210 | |
| 211 | /* Preserve DAIF flags. IRQs need to be disabled for this to work. */ |
| 212 | flags = read_daif(); |
| 213 | disable_irq(); |
| 214 | |
| 215 | /* |
| 216 | * Even with IRQs masked, the timer IRQ will wake the CPU up. |
| 217 | * |
| 218 | * If the timer IRQ happens before entering suspend mode (because the |
| 219 | * timer took too long to program, for example) the fact that the IRQ is |
| 220 | * pending will prevent the CPU from entering suspend mode and not being |
| 221 | * able to wake up. |
| 222 | */ |
| 223 | timer_rc_val = tftf_program_timer(milli_secs); |
| 224 | if (timer_rc_val == 0) { |
| 225 | suspend_rc_val = tftf_cpu_suspend(pwr_state); |
| 226 | if (suspend_rc_val != PSCI_E_SUCCESS) { |
| 227 | rc = -1; |
| 228 | INFO("%s %d: suspend_rc = %d\n", __func__, __LINE__, |
| 229 | suspend_rc_val); |
| 230 | } |
| 231 | } else { |
| 232 | rc = -1; |
| 233 | INFO("%s %d: timer_rc = %d\n", __func__, __LINE__, timer_rc_val); |
| 234 | } |
| 235 | |
| 236 | /* Restore previous DAIF flags */ |
| 237 | write_daif(flags); |
| 238 | isb(); |
| 239 | |
| 240 | if (timer_rc) |
| 241 | *timer_rc = timer_rc_val; |
| 242 | if (suspend_rc) |
| 243 | *suspend_rc = suspend_rc_val; |
| 244 | /* |
| 245 | * If IRQs were disabled when calling this function, the timer IRQ |
| 246 | * handler won't be called and the timer interrupt will be pending, but |
| 247 | * that isn't necessarily a problem. |
| 248 | */ |
| 249 | |
| 250 | return rc; |
| 251 | } |
| 252 | |
| 253 | int tftf_program_timer_and_sys_suspend(unsigned long milli_secs, |
| 254 | int *timer_rc, int *suspend_rc) |
| 255 | { |
| 256 | int rc = 0; |
| 257 | u_register_t flags; |
| 258 | |
| 259 | /* Default to successful return codes */ |
| 260 | int timer_rc_val = 0; |
| 261 | int suspend_rc_val = PSCI_E_SUCCESS; |
| 262 | |
| 263 | /* Preserve DAIF flags. IRQs need to be disabled for this to work. */ |
| 264 | flags = read_daif(); |
| 265 | disable_irq(); |
| 266 | |
| 267 | /* |
| 268 | * Even with IRQs masked, the timer IRQ will wake the CPU up. |
| 269 | * |
| 270 | * If the timer IRQ happens before entering suspend mode (because the |
| 271 | * timer took too long to program, for example) the fact that the IRQ is |
| 272 | * pending will prevent the CPU from entering suspend mode and not being |
| 273 | * able to wake up. |
| 274 | */ |
| 275 | timer_rc_val = tftf_program_timer(milli_secs); |
| 276 | if (timer_rc_val == 0) { |
| 277 | suspend_rc_val = tftf_system_suspend(); |
| 278 | if (suspend_rc_val != PSCI_E_SUCCESS) { |
| 279 | rc = -1; |
| 280 | INFO("%s %d: suspend_rc = %d\n", __func__, __LINE__, |
| 281 | suspend_rc_val); |
| 282 | } |
| 283 | } else { |
| 284 | rc = -1; |
| 285 | INFO("%s %d: timer_rc = %d\n", __func__, __LINE__, timer_rc_val); |
| 286 | } |
| 287 | |
| 288 | /* Restore previous DAIF flags */ |
| 289 | write_daif(flags); |
| 290 | isb(); |
| 291 | |
| 292 | /* |
| 293 | * If IRQs were disabled when calling this function, the timer IRQ |
| 294 | * handler won't be called and the timer interrupt will be pending, but |
| 295 | * that isn't necessarily a problem. |
| 296 | */ |
| 297 | if (timer_rc) |
| 298 | *timer_rc = timer_rc_val; |
| 299 | if (suspend_rc) |
| 300 | *suspend_rc = suspend_rc_val; |
| 301 | |
| 302 | return rc; |
| 303 | } |
| 304 | |
| 305 | int tftf_timer_sleep(unsigned long milli_secs) |
| 306 | { |
| 307 | int ret, power_state; |
| 308 | uint32_t stateid; |
| 309 | |
| 310 | ret = tftf_psci_make_composite_state_id(MPIDR_AFFLVL0, |
| 311 | PSTATE_TYPE_STANDBY, &stateid); |
| 312 | if (ret != PSCI_E_SUCCESS) |
| 313 | return -1; |
| 314 | |
| 315 | power_state = tftf_make_psci_pstate(MPIDR_AFFLVL0, PSTATE_TYPE_STANDBY, |
| 316 | stateid); |
| 317 | ret = tftf_program_timer_and_suspend(milli_secs, power_state, |
| 318 | NULL, NULL); |
| 319 | if (ret != 0) |
| 320 | return -1; |
| 321 | |
| 322 | return 0; |
| 323 | } |
| 324 | |
| 325 | int tftf_cancel_timer(void) |
| 326 | { |
| 327 | unsigned int core_pos = platform_get_core_pos(read_mpidr_el1()); |
| 328 | unsigned int next_timer_req_core_pos; |
| 329 | unsigned long long current_time; |
| 330 | u_register_t flags; |
| 331 | int rc = 0; |
| 332 | |
| 333 | /* |
| 334 | * IRQ is disabled so that if a timer is fired after taking a lock, |
| 335 | * it will remain pending and a core does not hit IRQ handler trying |
| 336 | * to acquire an already locked spin_lock causing dead lock. |
| 337 | */ |
| 338 | flags = read_daif(); |
| 339 | disable_irq(); |
| 340 | spin_lock(&timer_lock); |
| 341 | |
| 342 | interrupt_req_time[core_pos] = INVALID_TIME; |
| 343 | |
| 344 | if (core_pos == current_prog_core) { |
| 345 | /* |
| 346 | * Cancel the programmed interrupt at the peripheral. If the |
| 347 | * timer interrupt is level triggered and fired this also |
| 348 | * deactivates the pending interrupt. |
| 349 | */ |
| 350 | rc = plat_timer_info->cancel(); |
| 351 | /* We don't expect cancel timer to fail */ |
| 352 | if (rc) { |
| 353 | ERROR("%s %d: rc = %d\n", __func__, __LINE__, rc); |
| 354 | goto exit; |
| 355 | } |
| 356 | |
| 357 | /* |
| 358 | * For edge triggered interrupts, if an IRQ is fired before |
| 359 | * cancel timer is executed, the signal remains pending. So, |
| 360 | * clear the Timer IRQ if it is already pending. |
| 361 | */ |
| 362 | if (arm_gic_is_intr_pending(TIMER_IRQ)) |
| 363 | arm_gic_intr_clear(TIMER_IRQ); |
| 364 | |
| 365 | /* Get next timer consumer */ |
| 366 | next_timer_req_core_pos = get_lowest_req_core(); |
| 367 | if (next_timer_req_core_pos != INVALID_CORE) { |
| 368 | |
| 369 | /* Retarget to the next_timer_req_core_pos */ |
| 370 | arm_gic_set_intr_target(TIMER_IRQ, next_timer_req_core_pos); |
| 371 | current_prog_core = next_timer_req_core_pos; |
| 372 | |
| 373 | current_time = get_current_time_ms(); |
| 374 | |
| 375 | /* |
| 376 | * If the next timer request is lesser than or in a |
| 377 | * window of TIMER_STEP_VALUE from current time, |
| 378 | * program it to fire after TIMER_STEP_VALUE. |
| 379 | */ |
| 380 | if (interrupt_req_time[next_timer_req_core_pos] > |
| 381 | current_time + TIMER_STEP_VALUE) |
| 382 | rc = PROGRAM_TIMER(interrupt_req_time[next_timer_req_core_pos] - current_time); |
| 383 | else |
| 384 | rc = PROGRAM_TIMER(TIMER_STEP_VALUE); |
| 385 | VERBOSE("Cancel and program new timer for core_pos: " |
| 386 | "%d %lld\n", |
| 387 | next_timer_req_core_pos, |
| 388 | get_current_prog_time()); |
| 389 | /* We don't expect timer programming to fail */ |
| 390 | if (rc) |
| 391 | ERROR("%s %d: rc = %d\n", __func__, __LINE__, rc); |
| 392 | } else { |
| 393 | current_prog_core = INVALID_CORE; |
| 394 | VERBOSE("Cancelling timer : %d\n", core_pos); |
| 395 | } |
| 396 | } |
| 397 | exit: |
| 398 | spin_unlock(&timer_lock); |
| 399 | |
| 400 | /* Restore DAIF flags */ |
| 401 | write_daif(flags); |
| 402 | isb(); |
| 403 | |
| 404 | return rc; |
| 405 | } |
| 406 | |
| 407 | int tftf_timer_framework_handler(void *data) |
| 408 | { |
| 409 | unsigned int handler_core_pos = platform_get_core_pos(read_mpidr_el1()); |
| 410 | unsigned int next_timer_req_core_pos; |
| 411 | unsigned long long current_time; |
| 412 | int rc = 0; |
| 413 | |
| 414 | assert(interrupt_req_time[handler_core_pos] != INVALID_TIME); |
| 415 | spin_lock(&timer_lock); |
| 416 | |
| 417 | current_time = get_current_time_ms(); |
| 418 | /* Check if we interrupt is targeted correctly */ |
| 419 | assert(handler_core_pos == current_prog_core); |
| 420 | |
| 421 | interrupt_req_time[handler_core_pos] = INVALID_TIME; |
| 422 | |
| 423 | /* Execute the driver handler */ |
| 424 | if (plat_timer_info->handler) |
| 425 | plat_timer_info->handler(); |
| 426 | |
| 427 | if (arm_gic_is_intr_pending(TIMER_IRQ)) { |
| 428 | /* |
| 429 | * We might never manage to acquire the printf lock here |
| 430 | * (because we are in ISR context) but we're gonna panic right |
| 431 | * after anyway so it doesn't really matter. |
| 432 | */ |
| 433 | ERROR("Timer IRQ still pending. Fatal error.\n"); |
| 434 | panic(); |
| 435 | } |
| 436 | |
| 437 | /* |
| 438 | * Execute the handler requested by the core, the handlers for the |
| 439 | * other cores will be executed as part of handling IRQ_WAKE_SGI. |
| 440 | */ |
| 441 | if (timer_handler[handler_core_pos]) |
| 442 | timer_handler[handler_core_pos](data); |
| 443 | |
| 444 | /* Send interrupts to all the CPUS in the min time block */ |
| 445 | for (int i = 0; i < PLATFORM_CORE_COUNT; i++) { |
| 446 | if ((interrupt_req_time[i] <= |
| 447 | (current_time + TIMER_STEP_VALUE))) { |
| 448 | interrupt_req_time[i] = INVALID_TIME; |
| 449 | tftf_send_sgi(IRQ_WAKE_SGI, i); |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | /* Get the next lowest requested timer core and program it */ |
| 454 | next_timer_req_core_pos = get_lowest_req_core(); |
| 455 | if (next_timer_req_core_pos != INVALID_CORE) { |
| 456 | /* Check we have not exceeded the time for next core */ |
| 457 | assert(interrupt_req_time[next_timer_req_core_pos] > |
| 458 | current_time); |
| 459 | arm_gic_set_intr_target(TIMER_IRQ, next_timer_req_core_pos); |
| 460 | rc = PROGRAM_TIMER(interrupt_req_time[next_timer_req_core_pos] |
| 461 | - current_time); |
| 462 | } |
| 463 | /* Update current program core to the newer one */ |
| 464 | current_prog_core = next_timer_req_core_pos; |
| 465 | |
| 466 | spin_unlock(&timer_lock); |
| 467 | |
| 468 | return rc; |
| 469 | } |
| 470 | |
| 471 | int tftf_timer_register_handler(irq_handler_t irq_handler) |
| 472 | { |
| 473 | unsigned int core_pos = platform_get_core_pos(read_mpidr_el1()); |
| 474 | int ret; |
| 475 | |
| 476 | /* Validate no handler is registered */ |
| 477 | assert(!timer_handler[core_pos]); |
| 478 | timer_handler[core_pos] = irq_handler; |
| 479 | |
| 480 | /* |
| 481 | * Also register same handler to IRQ_WAKE_SGI, as it can be waken |
| 482 | * by it. |
| 483 | */ |
| 484 | ret = tftf_irq_register_handler(IRQ_WAKE_SGI, irq_handler); |
| 485 | assert(!ret); |
| 486 | |
| 487 | return ret; |
| 488 | } |
| 489 | |
| 490 | int tftf_timer_unregister_handler(void) |
| 491 | { |
| 492 | unsigned int core_pos = platform_get_core_pos(read_mpidr_el1()); |
| 493 | int ret; |
| 494 | |
| 495 | /* |
| 496 | * Unregister the handler for IRQ_WAKE_SGI also |
| 497 | */ |
| 498 | ret = tftf_irq_unregister_handler(IRQ_WAKE_SGI); |
| 499 | assert(!ret); |
| 500 | /* Validate a handler is registered */ |
| 501 | assert(timer_handler[core_pos]); |
| 502 | timer_handler[core_pos] = 0; |
| 503 | |
| 504 | return ret; |
| 505 | } |
| 506 | |
| 507 | unsigned int tftf_get_timer_irq(void) |
| 508 | { |
| 509 | /* |
| 510 | * Check if the timer info is initialised |
| 511 | */ |
| 512 | assert(TIMER_IRQ); |
| 513 | return TIMER_IRQ; |
| 514 | } |
| 515 | |
| 516 | unsigned int tftf_get_timer_step_value(void) |
| 517 | { |
| 518 | assert(TIMER_STEP_VALUE); |
| 519 | |
| 520 | return TIMER_STEP_VALUE; |
| 521 | } |
| 522 | |
| 523 | /* |
| 524 | * There are 4 cases that could happen when a system is resuming from system |
| 525 | * suspend. The cases are: |
| 526 | * 1. The resumed core is the last core to power down and the |
| 527 | * timer interrupt was targeted to it. In this case, target the |
| 528 | * interrupt to our core and set the appropriate priority and enable it. |
| 529 | * |
| 530 | * 2. The resumed core was the last core to power down but the timer interrupt |
| 531 | * is targeted to another core because of timer request grouping within |
| 532 | * TIMER_STEP_VALUE. In this case, re-target the interrupt to our core |
| 533 | * and set the appropriate priority and enable it |
| 534 | * |
| 535 | * 3. The system suspend request was down-graded by firmware and the timer |
| 536 | * interrupt is targeted to another core which woke up first. In this case, |
| 537 | * that core will wake us up and the interrupt_req_time[] corresponding to |
| 538 | * our core will be cleared. In this case, no need to do anything as GIC |
| 539 | * state is preserved. |
| 540 | * |
| 541 | * 4. The system suspend is woken up by another external interrupt other |
| 542 | * than the timer framework interrupt. In this case, just enable the |
| 543 | * timer interrupt and set the correct priority at GICD. |
| 544 | */ |
| 545 | void tftf_timer_gic_state_restore(void) |
| 546 | { |
| 547 | unsigned int core_pos = platform_get_core_pos(read_mpidr_el1()); |
| 548 | spin_lock(&timer_lock); |
| 549 | |
| 550 | arm_gic_set_intr_priority(TIMER_IRQ, GIC_HIGHEST_NS_PRIORITY); |
| 551 | arm_gic_intr_enable(TIMER_IRQ); |
| 552 | |
| 553 | /* Check if the programmed core is the woken up core */ |
| 554 | if (interrupt_req_time[core_pos] == INVALID_TIME) { |
| 555 | INFO("The programmed core is not the one woken up\n"); |
| 556 | } else { |
| 557 | current_prog_core = core_pos; |
| 558 | arm_gic_set_intr_target(TIMER_IRQ, core_pos); |
| 559 | } |
| 560 | |
| 561 | spin_unlock(&timer_lock); |
| 562 | } |
| 563 | |