blob: 8ae5e9eaacff3c2bf4b9ab0cbb59022dfc1b600e [file] [log] [blame]
Douglas Raillard6f625742017-06-28 15:23:03 +01001ARM Trusted Firmware User Guide
2===============================
3
4
5.. section-numbering::
6 :suffix: .
7
8.. contents::
9
10This document describes how to build ARM Trusted Firmware (TF) and run it with a
11tested set of other software components using defined configurations on the Juno
12ARM development platform and ARM Fixed Virtual Platform (FVP) models. It is
13possible to use other software components, configurations and platforms but that
14is outside the scope of this document.
15
16This document assumes that the reader has previous experience running a fully
17bootable Linux software stack on Juno or FVP using the prebuilt binaries and
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +010018filesystems provided by `Linaro`_. Further information may be found in the
19`Linaro instructions`_. It also assumes that the user understands the role of
20the different software components required to boot a Linux system:
Douglas Raillard6f625742017-06-28 15:23:03 +010021
22- Specific firmware images required by the platform (e.g. SCP firmware on Juno)
23- Normal world bootloader (e.g. UEFI or U-Boot)
24- Device tree
25- Linux kernel image
26- Root filesystem
27
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +010028This document also assumes that the user is familiar with the `FVP models`_ and
Douglas Raillard6f625742017-06-28 15:23:03 +010029the different command line options available to launch the model.
30
31This document should be used in conjunction with the `Firmware Design`_.
32
33Host machine requirements
34-------------------------
35
36The minimum recommended machine specification for building the software and
37running the FVP models is a dual-core processor running at 2GHz with 12GB of
38RAM. For best performance, use a machine with a quad-core processor running at
392.6GHz with 16GB of RAM.
40
41The software has been tested on Ubuntu 14.04 LTS (64-bit). Packages used for
42building the software were installed from that distribution unless otherwise
43specified.
44
45The software has also been built on Windows 7 Enterprise SP1, using CMD.EXE,
David Cunado31f2f792017-06-29 12:01:33 +010046Cygwin, and Msys (MinGW) shells, using version 5.3.1 of the GNU toolchain.
Douglas Raillard6f625742017-06-28 15:23:03 +010047
48Tools
49-----
50
51Install the required packages to build Trusted Firmware with the following
52command:
53
54::
55
56 sudo apt-get install build-essential gcc make git libssl-dev
57
David Cunado31f2f792017-06-29 12:01:33 +010058ARM TF has been tested with `Linaro Release 17.04`_.
59
Douglas Raillard6f625742017-06-28 15:23:03 +010060Download and install the AArch32 or AArch64 little-endian GCC cross compiler.
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +010061The `Linaro Release Notes`_ documents which version of the compiler to use for a
62given Linaro Release. Also, these `Linaro instructions`_ provide further
63guidance and a script, which can be used to download Linaro deliverables
64automatically.
Douglas Raillard6f625742017-06-28 15:23:03 +010065
66Optionally, Trusted Firmware can be built using clang or ARM Compiler 6.
67See instructions below on how to switch the default compiler.
68
69In addition, the following optional packages and tools may be needed:
70
71- ``device-tree-compiler`` package if you need to rebuild the Flattened Device
72 Tree (FDT) source files (``.dts`` files) provided with this software.
73
74- For debugging, ARM `Development Studio 5 (DS-5)`_.
75
Antonio Nino Diaz6feb9e82017-05-23 11:49:22 +010076- To create and modify the diagram files included in the documentation, `Dia`_.
77 This tool can be found in most Linux distributions. Inkscape is needed to
78 generate the actual *.png files.
79
Douglas Raillard6f625742017-06-28 15:23:03 +010080Getting the Trusted Firmware source code
81----------------------------------------
82
83Download the Trusted Firmware source code from Github:
84
85::
86
87 git clone https://github.com/ARM-software/arm-trusted-firmware.git
88
89Building the Trusted Firmware
90-----------------------------
91
92- Before building Trusted Firmware, the environment variable ``CROSS_COMPILE``
93 must point to the Linaro cross compiler.
94
95 For AArch64:
96
97 ::
98
99 export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
100
101 For AArch32:
102
103 ::
104
105 export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-linux-gnueabihf-
106
107 It is possible to build Trusted Firmware using clang or ARM Compiler 6.
108 To do so ``CC`` needs to point to the clang or armclang binary. Only the
109 compiler is switched; the assembler and linker need to be provided by
110 the GNU toolchain, thus ``CROSS_COMPILE`` should be set as described above.
111
112 ARM Compiler 6 will be selected when the base name of the path assigned
113 to ``CC`` matches the string 'armclang'.
114
115 For AArch64 using ARM Compiler 6:
116
117 ::
118
119 export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
120 make CC=<path-to-armclang>/bin/armclang PLAT=<platform> all
121
122 Clang will be selected when the base name of the path assigned to ``CC``
123 contains the string 'clang'. This is to allow both clang and clang-X.Y
124 to work.
125
126 For AArch64 using clang:
127
128 ::
129
130 export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
131 make CC=<path-to-clang>/bin/clang PLAT=<platform> all
132
133- Change to the root directory of the Trusted Firmware source tree and build.
134
135 For AArch64:
136
137 ::
138
139 make PLAT=<platform> all
140
141 For AArch32:
142
143 ::
144
145 make PLAT=<platform> ARCH=aarch32 AARCH32_SP=sp_min all
146
147 Notes:
148
149 - If ``PLAT`` is not specified, ``fvp`` is assumed by default. See the
150 `Summary of build options`_ for more information on available build
151 options.
152
153 - (AArch32 only) Currently only ``PLAT=fvp`` is supported.
154
155 - (AArch32 only) ``AARCH32_SP`` is the AArch32 EL3 Runtime Software and it
156 corresponds to the BL32 image. A minimal ``AARCH32_SP``, sp\_min, is
157 provided by ARM Trusted Firmware to demonstrate how PSCI Library can
158 be integrated with an AArch32 EL3 Runtime Software. Some AArch32 EL3
159 Runtime Software may include other runtime services, for example
160 Trusted OS services. A guide to integrate PSCI library with AArch32
161 EL3 Runtime Software can be found `here`_.
162
163 - (AArch64 only) The TSP (Test Secure Payload), corresponding to the BL32
164 image, is not compiled in by default. Refer to the
165 `Building the Test Secure Payload`_ section below.
166
167 - By default this produces a release version of the build. To produce a
168 debug version instead, refer to the "Debugging options" section below.
169
170 - The build process creates products in a ``build`` directory tree, building
171 the objects and binaries for each boot loader stage in separate
172 sub-directories. The following boot loader binary files are created
173 from the corresponding ELF files:
174
175 - ``build/<platform>/<build-type>/bl1.bin``
176 - ``build/<platform>/<build-type>/bl2.bin``
177 - ``build/<platform>/<build-type>/bl31.bin`` (AArch64 only)
178 - ``build/<platform>/<build-type>/bl32.bin`` (mandatory for AArch32)
179
180 where ``<platform>`` is the name of the chosen platform and ``<build-type>``
181 is either ``debug`` or ``release``. The actual number of images might differ
182 depending on the platform.
183
184- Build products for a specific build variant can be removed using:
185
186 ::
187
188 make DEBUG=<D> PLAT=<platform> clean
189
190 ... where ``<D>`` is ``0`` or ``1``, as specified when building.
191
192 The build tree can be removed completely using:
193
194 ::
195
196 make realclean
197
198Summary of build options
199~~~~~~~~~~~~~~~~~~~~~~~~
200
201ARM Trusted Firmware build system supports the following build options. Unless
202mentioned otherwise, these options are expected to be specified at the build
203command line and are not to be modified in any component makefiles. Note that
204the build system doesn't track dependency for build options. Therefore, if any
205of the build options are changed from a previous build, a clean build must be
206performed.
207
208Common build options
209^^^^^^^^^^^^^^^^^^^^
210
211- ``AARCH32_SP`` : Choose the AArch32 Secure Payload component to be built as
212 as the BL32 image when ``ARCH=aarch32``. The value should be the path to the
213 directory containing the SP source, relative to the ``bl32/``; the directory
214 is expected to contain a makefile called ``<aarch32_sp-value>.mk``.
215
216- ``ARCH`` : Choose the target build architecture for ARM Trusted Firmware.
217 It can take either ``aarch64`` or ``aarch32`` as values. By default, it is
218 defined to ``aarch64``.
219
Douglas Raillard6f625742017-06-28 15:23:03 +0100220- ``ARM_ARCH_MAJOR``: The major version of ARM Architecture to target when
221 compiling ARM Trusted Firmware. Its value must be numeric, and defaults to
222 8 . See also, *ARMv8 Architecture Extensions* in `Firmware Design`_.
223
224- ``ARM_ARCH_MINOR``: The minor version of ARM Architecture to target when
225 compiling ARM Trusted Firmware. Its value must be a numeric, and defaults
226 to 0. See also, *ARMv8 Architecture Extensions* in `Firmware Design`_.
227
228- ``ARM_GIC_ARCH``: Choice of ARM GIC architecture version used by the ARM
229 Legacy GIC driver for implementing the platform GIC API. This API is used
230 by the interrupt management framework. Default is 2 (that is, version 2.0).
231 This build option is deprecated.
232
233- ``ARM_PLAT_MT``: This flag determines whether the ARM platform layer has to
Jeenu Viswambharan11ad8f22016-11-15 13:53:57 +0000234 cater for the multi-threading ``MT`` bit when accessing MPIDR. When this flag
235 is set, the functions which deal with MPIDR assume that the ``MT`` bit in
236 MPIDR is set and access the bit-fields in MPIDR accordingly. Default value of
237 this flag is 0. Note that this option is not used on FVP platforms.
Douglas Raillard6f625742017-06-28 15:23:03 +0100238
239- ``BL2``: This is an optional build option which specifies the path to BL2
240 image for the ``fip`` target. In this case, the BL2 in the ARM Trusted
241 Firmware will not be built.
242
243- ``BL2U``: This is an optional build option which specifies the path to
244 BL2U image. In this case, the BL2U in the ARM Trusted Firmware will not
245 be built.
246
247- ``BL31``: This is an optional build option which specifies the path to
248 BL31 image for the ``fip`` target. In this case, the BL31 in the ARM
249 Trusted Firmware will not be built.
250
251- ``BL31_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
252 file that contains the BL31 private key in PEM format. If ``SAVE_KEYS=1``,
253 this file name will be used to save the key.
254
255- ``BL32``: This is an optional build option which specifies the path to
256 BL32 image for the ``fip`` target. In this case, the BL32 in the ARM
257 Trusted Firmware will not be built.
258
Summer Qin71fb3962017-04-20 16:28:39 +0100259- ``BL32_EXTRA1``: This is an optional build option which specifies the path to
260 Trusted OS Extra1 image for the ``fip`` target.
261
262- ``BL32_EXTRA2``: This is an optional build option which specifies the path to
263 Trusted OS Extra2 image for the ``fip`` target.
264
Douglas Raillard6f625742017-06-28 15:23:03 +0100265- ``BL32_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
266 file that contains the BL32 private key in PEM format. If ``SAVE_KEYS=1``,
267 this file name will be used to save the key.
268
269- ``BL33``: Path to BL33 image in the host file system. This is mandatory for
270 ``fip`` target in case the BL2 from ARM Trusted Firmware is used.
271
272- ``BL33_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
273 file that contains the BL33 private key in PEM format. If ``SAVE_KEYS=1``,
274 this file name will be used to save the key.
275
276- ``BUILD_MESSAGE_TIMESTAMP``: String used to identify the time and date of the
277 compilation of each build. It must be set to a C string (including quotes
278 where applicable). Defaults to a string that contains the time and date of
279 the compilation.
280
281- ``BUILD_STRING``: Input string for VERSION\_STRING, which allows the TF build
282 to be uniquely identified. Defaults to the current git commit id.
283
284- ``CFLAGS``: Extra user options appended on the compiler's command line in
285 addition to the options set by the build system.
286
287- ``COLD_BOOT_SINGLE_CPU``: This option indicates whether the platform may
288 release several CPUs out of reset. It can take either 0 (several CPUs may be
289 brought up) or 1 (only one CPU will ever be brought up during cold reset).
290 Default is 0. If the platform always brings up a single CPU, there is no
291 need to distinguish between primary and secondary CPUs and the boot path can
292 be optimised. The ``plat_is_my_cpu_primary()`` and
293 ``plat_secondary_cold_boot_setup()`` platform porting interfaces do not need
294 to be implemented in this case.
295
296- ``CRASH_REPORTING``: A non-zero value enables a console dump of processor
297 register state when an unexpected exception occurs during execution of
298 BL31. This option defaults to the value of ``DEBUG`` - i.e. by default
299 this is only enabled for a debug build of the firmware.
300
301- ``CREATE_KEYS``: This option is used when ``GENERATE_COT=1``. It tells the
302 certificate generation tool to create new keys in case no valid keys are
303 present or specified. Allowed options are '0' or '1'. Default is '1'.
304
305- ``CTX_INCLUDE_AARCH32_REGS`` : Boolean option that, when set to 1, will cause
306 the AArch32 system registers to be included when saving and restoring the
307 CPU context. The option must be set to 0 for AArch64-only platforms (that
308 is on hardware that does not implement AArch32, or at least not at EL1 and
309 higher ELs). Default value is 1.
310
311- ``CTX_INCLUDE_FPREGS``: Boolean option that, when set to 1, will cause the FP
312 registers to be included when saving and restoring the CPU context. Default
313 is 0.
314
315- ``DEBUG``: Chooses between a debug and release build. It can take either 0
316 (release) or 1 (debug) as values. 0 is the default.
317
318- ``EL3_PAYLOAD_BASE``: This option enables booting an EL3 payload instead of
319 the normal boot flow. It must specify the entry point address of the EL3
320 payload. Please refer to the "Booting an EL3 payload" section for more
321 details.
322
323- ``ENABLE_ASSERTIONS``: This option controls whether or not calls to ``assert()``
324 are compiled out. For debug builds, this option defaults to 1, and calls to
325 ``assert()`` are left in place. For release builds, this option defaults to 0
326 and calls to ``assert()`` function are compiled out. This option can be set
327 independently of ``DEBUG``. It can also be used to hide any auxiliary code
328 that is only required for the assertion and does not fit in the assertion
329 itself.
330
331- ``ENABLE_PMF``: Boolean option to enable support for optional Performance
332 Measurement Framework(PMF). Default is 0.
333
334- ``ENABLE_PSCI_STAT``: Boolean option to enable support for optional PSCI
335 functions ``PSCI_STAT_RESIDENCY`` and ``PSCI_STAT_COUNT``. Default is 0.
336 In the absence of an alternate stat collection backend, ``ENABLE_PMF`` must
337 be enabled. If ``ENABLE_PMF`` is set, the residency statistics are tracked in
338 software.
339
340- ``ENABLE_RUNTIME_INSTRUMENTATION``: Boolean option to enable runtime
341 instrumentation which injects timestamp collection points into
342 Trusted Firmware to allow runtime performance to be measured.
343 Currently, only PSCI is instrumented. Enabling this option enables
344 the ``ENABLE_PMF`` build option as well. Default is 0.
345
Jeenu Viswambharanc1232c32017-07-19 13:52:12 +0100346- ``ENABLE_SPE_FOR_LOWER_ELS`` : Boolean option to enable Statistical Profiling
347 extensions. This is an optional architectural feature available only for
348 AArch64 8.2 onwards. This option defaults to 1 but is automatically
349 disabled when the target architecture is AArch32 or AArch64 8.0/8.1.
350
Douglas Raillard6f625742017-06-28 15:23:03 +0100351- ``ENABLE_STACK_PROTECTOR``: String option to enable the stack protection
352 checks in GCC. Allowed values are "all", "strong" and "0" (default).
353 "strong" is the recommended stack protection level if this feature is
354 desired. 0 disables the stack protection. For all values other than 0, the
355 ``plat_get_stack_protector_canary()`` platform hook needs to be implemented.
356 The value is passed as the last component of the option
357 ``-fstack-protector-$ENABLE_STACK_PROTECTOR``.
358
359- ``ERROR_DEPRECATED``: This option decides whether to treat the usage of
360 deprecated platform APIs, helper functions or drivers within Trusted
361 Firmware as error. It can take the value 1 (flag the use of deprecated
362 APIs as error) or 0. The default is 0.
363
Jeenu Viswambharan21b818c2017-09-22 08:32:10 +0100364- ``EL3_EXCEPTION_HANDLING``: When set to ``1``, enable handling of exceptions
365 targeted at EL3. When set ``0`` (default), no exceptions are expected or
366 handled at EL3, and a panic will result. This is supported only for AArch64
367 builds.
368
Douglas Raillard6f625742017-06-28 15:23:03 +0100369- ``FIP_NAME``: This is an optional build option which specifies the FIP
370 filename for the ``fip`` target. Default is ``fip.bin``.
371
372- ``FWU_FIP_NAME``: This is an optional build option which specifies the FWU
373 FIP filename for the ``fwu_fip`` target. Default is ``fwu_fip.bin``.
374
375- ``GENERATE_COT``: Boolean flag used to build and execute the ``cert_create``
376 tool to create certificates as per the Chain of Trust described in
377 `Trusted Board Boot`_. The build system then calls ``fiptool`` to
378 include the certificates in the FIP and FWU\_FIP. Default value is '0'.
379
380 Specify both ``TRUSTED_BOARD_BOOT=1`` and ``GENERATE_COT=1`` to include support
381 for the Trusted Board Boot feature in the BL1 and BL2 images, to generate
382 the corresponding certificates, and to include those certificates in the
383 FIP and FWU\_FIP.
384
385 Note that if ``TRUSTED_BOARD_BOOT=0`` and ``GENERATE_COT=1``, the BL1 and BL2
386 images will not include support for Trusted Board Boot. The FIP will still
387 include the corresponding certificates. This FIP can be used to verify the
388 Chain of Trust on the host machine through other mechanisms.
389
390 Note that if ``TRUSTED_BOARD_BOOT=1`` and ``GENERATE_COT=0``, the BL1 and BL2
391 images will include support for Trusted Board Boot, but the FIP and FWU\_FIP
392 will not include the corresponding certificates, causing a boot failure.
393
Jeenu Viswambharan74dce7f2017-09-22 08:32:09 +0100394- ``GICV2_G0_FOR_EL3``: Unlike GICv3, the GICv2 architecture doesn't have
395 inherent support for specific EL3 type interrupts. Setting this build option
396 to ``1`` assumes GICv2 *Group 0* interrupts are expected to target EL3, both
397 by `platform abstraction layer`__ and `Interrupt Management Framework`__.
398 This allows GICv2 platforms to enable features requiring EL3 interrupt type.
399 This also means that all GICv2 Group 0 interrupts are delivered to EL3, and
400 the Secure Payload interrupts needs to be synchronously handed over to Secure
401 EL1 for handling. The default value of this option is ``0``, which means the
402 Group 0 interrupts are assumed to be handled by Secure EL1.
403
404 .. __: `platform-interrupt-controller-API.rst`
405 .. __: `interrupt-framework-design.rst`
406
Douglas Raillard6f625742017-06-28 15:23:03 +0100407- ``HANDLE_EA_EL3_FIRST``: When defined External Aborts and SError Interrupts
408 will be always trapped in EL3 i.e. in BL31 at runtime.
409
410- ``HW_ASSISTED_COHERENCY``: On most ARM systems to-date, platform-specific
411 software operations are required for CPUs to enter and exit coherency.
412 However, there exists newer systems where CPUs' entry to and exit from
413 coherency is managed in hardware. Such systems require software to only
414 initiate the operations, and the rest is managed in hardware, minimizing
415 active software management. In such systems, this boolean option enables ARM
416 Trusted Firmware to carry out build and run-time optimizations during boot
417 and power management operations. This option defaults to 0 and if it is
418 enabled, then it implies ``WARMBOOT_ENABLE_DCACHE_EARLY`` is also enabled.
419
420- ``JUNO_AARCH32_EL3_RUNTIME``: This build flag enables you to execute EL3
421 runtime software in AArch32 mode, which is required to run AArch32 on Juno.
422 By default this flag is set to '0'. Enabling this flag builds BL1 and BL2 in
423 AArch64 and facilitates the loading of ``SP_MIN`` and BL33 as AArch32 executable
424 images.
425
Soby Mathew20917552017-08-31 11:49:32 +0100426- ``KEY_ALG``: This build flag enables the user to select the algorithm to be
427 used for generating the PKCS keys and subsequent signing of the certificate.
Soby Mathewa8eb2862017-08-31 11:50:29 +0100428 It accepts 3 values viz ``rsa``, ``rsa_1_5``, ``ecdsa``. The ``rsa_1_5`` is
429 the legacy PKCS#1 RSA 1.5 algorithm which is not TBBR compliant and is
430 retained only for compatibility. The default value of this flag is ``rsa``
431 which is the TBBR compliant PKCS#1 RSA 2.1 scheme.
Soby Mathew20917552017-08-31 11:49:32 +0100432
Douglas Raillard6f625742017-06-28 15:23:03 +0100433- ``LDFLAGS``: Extra user options appended to the linkers' command line in
434 addition to the one set by the build system.
435
436- ``LOAD_IMAGE_V2``: Boolean option to enable support for new version (v2) of
437 image loading, which provides more flexibility and scalability around what
438 images are loaded and executed during boot. Default is 0.
439 Note: ``TRUSTED_BOARD_BOOT`` is currently only supported for AArch64 when
440 ``LOAD_IMAGE_V2`` is enabled.
441
442- ``LOG_LEVEL``: Chooses the log level, which controls the amount of console log
443 output compiled into the build. This should be one of the following:
444
445 ::
446
447 0 (LOG_LEVEL_NONE)
448 10 (LOG_LEVEL_NOTICE)
449 20 (LOG_LEVEL_ERROR)
450 30 (LOG_LEVEL_WARNING)
451 40 (LOG_LEVEL_INFO)
452 50 (LOG_LEVEL_VERBOSE)
453
454 All log output up to and including the log level is compiled into the build.
455 The default value is 40 in debug builds and 20 in release builds.
456
457- ``NON_TRUSTED_WORLD_KEY``: This option is used when ``GENERATE_COT=1``. It
458 specifies the file that contains the Non-Trusted World private key in PEM
459 format. If ``SAVE_KEYS=1``, this file name will be used to save the key.
460
461- ``NS_BL2U``: Path to NS\_BL2U image in the host file system. This image is
462 optional. It is only needed if the platform makefile specifies that it
463 is required in order to build the ``fwu_fip`` target.
464
465- ``NS_TIMER_SWITCH``: Enable save and restore for non-secure timer register
466 contents upon world switch. It can take either 0 (don't save and restore) or
467 1 (do save and restore). 0 is the default. An SPD may set this to 1 if it
468 wants the timer registers to be saved and restored.
469
470- ``PL011_GENERIC_UART``: Boolean option to indicate the PL011 driver that
471 the underlying hardware is not a full PL011 UART but a minimally compliant
472 generic UART, which is a subset of the PL011. The driver will not access
473 any register that is not part of the SBSA generic UART specification.
474 Default value is 0 (a full PL011 compliant UART is present).
475
476- ``PLAT``: Choose a platform to build ARM Trusted Firmware for. The chosen
477 platform name must be subdirectory of any depth under ``plat/``, and must
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +0100478 contain a platform makefile named ``platform.mk``. For example to build ARM
479 Trusted Firmware for ARM Juno board select PLAT=juno.
Douglas Raillard6f625742017-06-28 15:23:03 +0100480
481- ``PRELOADED_BL33_BASE``: This option enables booting a preloaded BL33 image
482 instead of the normal boot flow. When defined, it must specify the entry
483 point address for the preloaded BL33 image. This option is incompatible with
484 ``EL3_PAYLOAD_BASE``. If both are defined, ``EL3_PAYLOAD_BASE`` has priority
485 over ``PRELOADED_BL33_BASE``.
486
487- ``PROGRAMMABLE_RESET_ADDRESS``: This option indicates whether the reset
488 vector address can be programmed or is fixed on the platform. It can take
489 either 0 (fixed) or 1 (programmable). Default is 0. If the platform has a
490 programmable reset address, it is expected that a CPU will start executing
491 code directly at the right address, both on a cold and warm reset. In this
492 case, there is no need to identify the entrypoint on boot and the boot path
493 can be optimised. The ``plat_get_my_entrypoint()`` platform porting interface
494 does not need to be implemented in this case.
495
496- ``PSCI_EXTENDED_STATE_ID``: As per PSCI1.0 Specification, there are 2 formats
497 possible for the PSCI power-state parameter viz original and extended
498 State-ID formats. This flag if set to 1, configures the generic PSCI layer
499 to use the extended format. The default value of this flag is 0, which
500 means by default the original power-state format is used by the PSCI
501 implementation. This flag should be specified by the platform makefile
502 and it governs the return value of PSCI\_FEATURES API for CPU\_SUSPEND
503 smc function id. When this option is enabled on ARM platforms, the
504 option ``ARM_RECOM_STATE_ID_ENC`` needs to be set to 1 as well.
505
506- ``RESET_TO_BL31``: Enable BL31 entrypoint as the CPU reset vector instead
507 of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
508 entrypoint) or 1 (CPU reset to BL31 entrypoint).
509 The default value is 0.
510
511- ``RESET_TO_SP_MIN``: SP\_MIN is the minimal AArch32 Secure Payload provided in
512 ARM Trusted Firmware. This flag configures SP\_MIN entrypoint as the CPU
513 reset vector instead of the BL1 entrypoint. It can take the value 0 (CPU
514 reset to BL1 entrypoint) or 1 (CPU reset to SP\_MIN entrypoint). The default
515 value is 0.
516
517- ``ROT_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
518 file that contains the ROT private key in PEM format. If ``SAVE_KEYS=1``, this
519 file name will be used to save the key.
520
521- ``SAVE_KEYS``: This option is used when ``GENERATE_COT=1``. It tells the
522 certificate generation tool to save the keys used to establish the Chain of
523 Trust. Allowed options are '0' or '1'. Default is '0' (do not save).
524
525- ``SCP_BL2``: Path to SCP\_BL2 image in the host file system. This image is optional.
526 If a SCP\_BL2 image is present then this option must be passed for the ``fip``
527 target.
528
529- ``SCP_BL2_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
530 file that contains the SCP\_BL2 private key in PEM format. If ``SAVE_KEYS=1``,
531 this file name will be used to save the key.
532
533- ``SCP_BL2U``: Path to SCP\_BL2U image in the host file system. This image is
534 optional. It is only needed if the platform makefile specifies that it
535 is required in order to build the ``fwu_fip`` target.
536
537- ``SEPARATE_CODE_AND_RODATA``: Whether code and read-only data should be
538 isolated on separate memory pages. This is a trade-off between security and
539 memory usage. See "Isolating code and read-only data on separate memory
540 pages" section in `Firmware Design`_. This flag is disabled by default and
541 affects all BL images.
542
543- ``SPD``: Choose a Secure Payload Dispatcher component to be built into the
544 Trusted Firmware. This build option is only valid if ``ARCH=aarch64``. The
545 value should be the path to the directory containing the SPD source,
546 relative to ``services/spd/``; the directory is expected to
547 contain a makefile called ``<spd-value>.mk``.
548
549- ``SPIN_ON_BL1_EXIT``: This option introduces an infinite loop in BL1. It can
550 take either 0 (no loop) or 1 (add a loop). 0 is the default. This loop stops
551 execution in BL1 just before handing over to BL31. At this point, all
552 firmware images have been loaded in memory, and the MMU and caches are
553 turned off. Refer to the "Debugging options" section for more details.
554
Etienne Carriere71816092017-08-09 15:48:53 +0200555- ``SP_MIN_WITH_SECURE_FIQ``: Boolean flag to indicate the SP_MIN handles
556 secure interrupts (caught through the FIQ line). Platforms can enable
557 this directive if they need to handle such interruption. When enabled,
558 the FIQ are handled in monitor mode and non secure world is not allowed
559 to mask these events. Platforms that enable FIQ handling in SP_MIN shall
560 implement the api ``sp_min_plat_fiq_handler()``. The default value is 0.
561
Douglas Raillard6f625742017-06-28 15:23:03 +0100562- ``TRUSTED_BOARD_BOOT``: Boolean flag to include support for the Trusted Board
563 Boot feature. When set to '1', BL1 and BL2 images include support to load
564 and verify the certificates and images in a FIP, and BL1 includes support
565 for the Firmware Update. The default value is '0'. Generation and inclusion
566 of certificates in the FIP and FWU\_FIP depends upon the value of the
567 ``GENERATE_COT`` option.
568
569 Note: This option depends on ``CREATE_KEYS`` to be enabled. If the keys
570 already exist in disk, they will be overwritten without further notice.
571
572- ``TRUSTED_WORLD_KEY``: This option is used when ``GENERATE_COT=1``. It
573 specifies the file that contains the Trusted World private key in PEM
574 format. If ``SAVE_KEYS=1``, this file name will be used to save the key.
575
576- ``TSP_INIT_ASYNC``: Choose BL32 initialization method as asynchronous or
577 synchronous, (see "Initializing a BL32 Image" section in
578 `Firmware Design`_). It can take the value 0 (BL32 is initialized using
579 synchronous method) or 1 (BL32 is initialized using asynchronous method).
580 Default is 0.
581
582- ``TSP_NS_INTR_ASYNC_PREEMPT``: A non zero value enables the interrupt
583 routing model which routes non-secure interrupts asynchronously from TSP
584 to EL3 causing immediate preemption of TSP. The EL3 is responsible
585 for saving and restoring the TSP context in this routing model. The
586 default routing model (when the value is 0) is to route non-secure
587 interrupts to TSP allowing it to save its context and hand over
588 synchronously to EL3 via an SMC.
589
590- ``USE_COHERENT_MEM``: This flag determines whether to include the coherent
591 memory region in the BL memory map or not (see "Use of Coherent memory in
592 Trusted Firmware" section in `Firmware Design`_). It can take the value 1
593 (Coherent memory region is included) or 0 (Coherent memory region is
594 excluded). Default is 1.
595
596- ``V``: Verbose build. If assigned anything other than 0, the build commands
597 are printed. Default is 0.
598
599- ``VERSION_STRING``: String used in the log output for each TF image. Defaults
600 to a string formed by concatenating the version number, build type and build
601 string.
602
603- ``WARMBOOT_ENABLE_DCACHE_EARLY`` : Boolean option to enable D-cache early on
604 the CPU after warm boot. This is applicable for platforms which do not
605 require interconnect programming to enable cache coherency (eg: single
606 cluster platforms). If this option is enabled, then warm boot path
607 enables D-caches immediately after enabling MMU. This option defaults to 0.
608
Douglas Raillard6f625742017-06-28 15:23:03 +0100609ARM development platform specific build options
610^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
611
612- ``ARM_BL31_IN_DRAM``: Boolean option to select loading of BL31 in TZC secured
613 DRAM. By default, BL31 is in the secure SRAM. Set this flag to 1 to load
614 BL31 in TZC secured DRAM. If TSP is present, then setting this option also
615 sets the TSP location to DRAM and ignores the ``ARM_TSP_RAM_LOCATION`` build
616 flag.
617
618- ``ARM_BOARD_OPTIMISE_MEM``: Boolean option to enable or disable optimisation
619 of the memory reserved for each image. This affects the maximum size of each
620 BL image as well as the number of allocated memory regions and translation
621 tables. By default this flag is 0, which means it uses the default
622 unoptimised values for these macros. ARM development platforms that wish to
623 optimise memory usage need to set this flag to 1 and must override the
624 related macros.
625
626- ``ARM_CONFIG_CNTACR``: boolean option to unlock access to the ``CNTBase<N>``
627 frame registers by setting the ``CNTCTLBase.CNTACR<N>`` register bits. The
628 frame number ``<N>`` is defined by ``PLAT_ARM_NSTIMER_FRAME_ID``, which should
629 match the frame used by the Non-Secure image (normally the Linux kernel).
630 Default is true (access to the frame is allowed).
631
632- ``ARM_DISABLE_TRUSTED_WDOG``: boolean option to disable the Trusted Watchdog.
633 By default, ARM platforms use a watchdog to trigger a system reset in case
634 an error is encountered during the boot process (for example, when an image
635 could not be loaded or authenticated). The watchdog is enabled in the early
636 platform setup hook at BL1 and disabled in the BL1 prepare exit hook. The
637 Trusted Watchdog may be disabled at build time for testing or development
638 purposes.
639
640- ``ARM_RECOM_STATE_ID_ENC``: The PSCI1.0 specification recommends an encoding
641 for the construction of composite state-ID in the power-state parameter.
642 The existing PSCI clients currently do not support this encoding of
643 State-ID yet. Hence this flag is used to configure whether to use the
644 recommended State-ID encoding or not. The default value of this flag is 0,
645 in which case the platform is configured to expect NULL in the State-ID
646 field of power-state parameter.
647
648- ``ARM_ROTPK_LOCATION``: used when ``TRUSTED_BOARD_BOOT=1``. It specifies the
649 location of the ROTPK hash returned by the function ``plat_get_rotpk_info()``
650 for ARM platforms. Depending on the selected option, the proper private key
651 must be specified using the ``ROT_KEY`` option when building the Trusted
652 Firmware. This private key will be used by the certificate generation tool
653 to sign the BL2 and Trusted Key certificates. Available options for
654 ``ARM_ROTPK_LOCATION`` are:
655
656 - ``regs`` : return the ROTPK hash stored in the Trusted root-key storage
657 registers. The private key corresponding to this ROTPK hash is not
658 currently available.
659 - ``devel_rsa`` : return a development public key hash embedded in the BL1
660 and BL2 binaries. This hash has been obtained from the RSA public key
661 ``arm_rotpk_rsa.der``, located in ``plat/arm/board/common/rotpk``. To use
662 this option, ``arm_rotprivk_rsa.pem`` must be specified as ``ROT_KEY`` when
663 creating the certificates.
Qixiang Xu9db9c652017-08-24 15:12:20 +0800664 - ``devel_ecdsa`` : return a development public key hash embedded in the BL1
665 and BL2 binaries. This hash has been obtained from the ECDSA public key
666 ``arm_rotpk_ecdsa.der``, located in ``plat/arm/board/common/rotpk``. To use
667 this option, ``arm_rotprivk_ecdsa.pem`` must be specified as ``ROT_KEY``
668 when creating the certificates.
Douglas Raillard6f625742017-06-28 15:23:03 +0100669
670- ``ARM_TSP_RAM_LOCATION``: location of the TSP binary. Options:
671
Qixiang Xu7ca267b2017-10-13 09:04:12 +0800672 - ``tsram`` : Trusted SRAM (default option when TBB is not enabled)
Douglas Raillard6f625742017-06-28 15:23:03 +0100673 - ``tdram`` : Trusted DRAM (if available)
Qixiang Xu7ca267b2017-10-13 09:04:12 +0800674 - ``dram`` : Secure region in DRAM (default option when TBB is enabled,
675 configured by the TrustZone controller)
Douglas Raillard6f625742017-06-28 15:23:03 +0100676
677- ``ARM_XLAT_TABLES_LIB_V1``: boolean option to compile the Trusted Firmware
678 with version 1 of the translation tables library instead of version 2. It is
679 set to 0 by default, which selects version 2.
680
681- ``ARM_CRYPTOCELL_INTEG`` : bool option to enable Trusted Firmware to invoke
682 ARM® TrustZone® CryptoCell functionality for Trusted Board Boot on capable
683 ARM platforms. If this option is specified, then the path to the CryptoCell
684 SBROM library must be specified via ``CCSBROM_LIB_PATH`` flag.
685
686For a better understanding of these options, the ARM development platform memory
687map is explained in the `Firmware Design`_.
688
689ARM CSS platform specific build options
690^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
691
692- ``CSS_DETECT_PRE_1_7_0_SCP``: Boolean flag to detect SCP version
693 incompatibility. Version 1.7.0 of the SCP firmware made a non-backwards
694 compatible change to the MTL protocol, used for AP/SCP communication.
695 Trusted Firmware no longer supports earlier SCP versions. If this option is
696 set to 1 then Trusted Firmware will detect if an earlier version is in use.
697 Default is 1.
698
699- ``CSS_LOAD_SCP_IMAGES``: Boolean flag, which when set, adds SCP\_BL2 and
700 SCP\_BL2U to the FIP and FWU\_FIP respectively, and enables them to be loaded
701 during boot. Default is 1.
702
Soby Mathew18e279e2017-06-12 12:37:10 +0100703- ``CSS_USE_SCMI_SDS_DRIVER``: Boolean flag which selects SCMI/SDS drivers
704 instead of SCPI/BOM driver for communicating with the SCP during power
705 management operations and for SCP RAM Firmware transfer. If this option
706 is set to 1, then SCMI/SDS drivers will be used. Default is 0.
Douglas Raillard6f625742017-06-28 15:23:03 +0100707
708ARM FVP platform specific build options
709^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
710
711- ``FVP_CLUSTER_COUNT`` : Configures the cluster count to be used to
712 build the topology tree within Trusted Firmware. By default the
713 Trusted Firmware is configured for dual cluster topology and this option
714 can be used to override the default value.
715
716- ``FVP_INTERCONNECT_DRIVER``: Selects the interconnect driver to be built. The
717 default interconnect driver depends on the value of ``FVP_CLUSTER_COUNT`` as
718 explained in the options below:
719
720 - ``FVP_CCI`` : The CCI driver is selected. This is the default
721 if 0 < ``FVP_CLUSTER_COUNT`` <= 2.
722 - ``FVP_CCN`` : The CCN driver is selected. This is the default
723 if ``FVP_CLUSTER_COUNT`` > 2.
724
Jeenu Viswambharan11ad8f22016-11-15 13:53:57 +0000725- ``FVP_MAX_PE_PER_CPU``: Sets the maximum number of PEs implemented on any CPU
726 in the system. This option defaults to 1. Note that the build option
727 ``ARM_PLAT_MT`` doesn't have any effect on FVP platforms.
728
Douglas Raillard6f625742017-06-28 15:23:03 +0100729- ``FVP_USE_GIC_DRIVER`` : Selects the GIC driver to be built. Options:
730
731 - ``FVP_GIC600`` : The GIC600 implementation of GICv3 is selected
732 - ``FVP_GICV2`` : The GICv2 only driver is selected
733 - ``FVP_GICV3`` : The GICv3 only driver is selected (default option)
734 - ``FVP_GICV3_LEGACY``: The Legacy GICv3 driver is selected (deprecated)
735 Note: If Trusted Firmware is compiled with this option on FVPs with
736 GICv3 hardware, then it configures the hardware to run in GICv2
737 emulation mode
738
739- ``FVP_USE_SP804_TIMER`` : Use the SP804 timer instead of the Generic Timer
740 for functions that wait for an arbitrary time length (udelay and mdelay).
741 The default value is 0.
742
743Debugging options
744~~~~~~~~~~~~~~~~~
745
746To compile a debug version and make the build more verbose use
747
748::
749
750 make PLAT=<platform> DEBUG=1 V=1 all
751
752AArch64 GCC uses DWARF version 4 debugging symbols by default. Some tools (for
753example DS-5) might not support this and may need an older version of DWARF
754symbols to be emitted by GCC. This can be achieved by using the
755``-gdwarf-<version>`` flag, with the version being set to 2 or 3. Setting the
756version to 2 is recommended for DS-5 versions older than 5.16.
757
758When debugging logic problems it might also be useful to disable all compiler
759optimizations by using ``-O0``.
760
761NOTE: Using ``-O0`` could cause output images to be larger and base addresses
762might need to be recalculated (see the **Memory layout on ARM development
763platforms** section in the `Firmware Design`_).
764
765Extra debug options can be passed to the build system by setting ``CFLAGS`` or
766``LDFLAGS``:
767
768.. code:: makefile
769
770 CFLAGS='-O0 -gdwarf-2' \
771 make PLAT=<platform> DEBUG=1 V=1 all
772
773Note that using ``-Wl,`` style compilation driver options in ``CFLAGS`` will be
774ignored as the linker is called directly.
775
776It is also possible to introduce an infinite loop to help in debugging the
777post-BL2 phase of the Trusted Firmware. This can be done by rebuilding BL1 with
Douglas Raillard668c5022017-06-28 16:14:55 +0100778the ``SPIN_ON_BL1_EXIT=1`` build flag. Refer to the `Summary of build options`_
Douglas Raillard6f625742017-06-28 15:23:03 +0100779section. In this case, the developer may take control of the target using a
780debugger when indicated by the console output. When using DS-5, the following
781commands can be used:
782
783::
784
785 # Stop target execution
786 interrupt
787
788 #
789 # Prepare your debugging environment, e.g. set breakpoints
790 #
791
792 # Jump over the debug loop
793 set var $AARCH64::$Core::$PC = $AARCH64::$Core::$PC + 4
794
795 # Resume execution
796 continue
797
798Building the Test Secure Payload
799~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
800
801The TSP is coupled with a companion runtime service in the BL31 firmware,
802called the TSPD. Therefore, if you intend to use the TSP, the BL31 image
803must be recompiled as well. For more information on SPs and SPDs, see the
804`Secure-EL1 Payloads and Dispatchers`_ section in the `Firmware Design`_.
805
806First clean the Trusted Firmware build directory to get rid of any previous
807BL31 binary. Then to build the TSP image use:
808
809::
810
811 make PLAT=<platform> SPD=tspd all
812
813An additional boot loader binary file is created in the ``build`` directory:
814
815::
816
817 build/<platform>/<build-type>/bl32.bin
818
819Checking source code style
820~~~~~~~~~~~~~~~~~~~~~~~~~~
821
822When making changes to the source for submission to the project, the source
823must be in compliance with the Linux style guide, and to assist with this check
824the project Makefile contains two targets, which both utilise the
825``checkpatch.pl`` script that ships with the Linux source tree.
826
827To check the entire source tree, you must first download a copy of
828``checkpatch.pl`` (or the full Linux source), set the ``CHECKPATCH`` environment
829variable to point to the script and build the target checkcodebase:
830
831::
832
833 make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkcodebase
834
835To just check the style on the files that differ between your local branch and
836the remote master, use:
837
838::
839
840 make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkpatch
841
842If you wish to check your patch against something other than the remote master,
843set the ``BASE_COMMIT`` variable to your desired branch. By default, ``BASE_COMMIT``
844is set to ``origin/master``.
845
846Building and using the FIP tool
847~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
848
849Firmware Image Package (FIP) is a packaging format used by the Trusted Firmware
850project to package firmware images in a single binary. The number and type of
851images that should be packed in a FIP is platform specific and may include TF
852images and other firmware images required by the platform. For example, most
853platforms require a BL33 image which corresponds to the normal world bootloader
854(e.g. UEFI or U-Boot).
855
856The TF build system provides the make target ``fip`` to create a FIP file for the
857specified platform using the FIP creation tool included in the TF project.
858Examples below show how to build a FIP file for FVP, packaging TF images and a
859BL33 image.
860
861For AArch64:
862
863::
864
865 make PLAT=fvp BL33=<path/to/bl33.bin> fip
866
867For AArch32:
868
869::
870
871 make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=<path/to/bl33.bin> fip
872
873Note that AArch32 support for Normal world boot loader (BL33), like U-boot or
874UEFI, on FVP is not available upstream. Hence custom solutions are required to
875allow Linux boot on FVP. These instructions assume such a custom boot loader
876(BL33) is available.
877
878The resulting FIP may be found in:
879
880::
881
882 build/fvp/<build-type>/fip.bin
883
884For advanced operations on FIP files, it is also possible to independently build
885the tool and create or modify FIPs using this tool. To do this, follow these
886steps:
887
888It is recommended to remove old artifacts before building the tool:
889
890::
891
892 make -C tools/fiptool clean
893
894Build the tool:
895
896::
897
898 make [DEBUG=1] [V=1] fiptool
899
900The tool binary can be located in:
901
902::
903
904 ./tools/fiptool/fiptool
905
906Invoking the tool with ``--help`` will print a help message with all available
907options.
908
909Example 1: create a new Firmware package ``fip.bin`` that contains BL2 and BL31:
910
911::
912
913 ./tools/fiptool/fiptool create \
914 --tb-fw build/<platform>/<build-type>/bl2.bin \
915 --soc-fw build/<platform>/<build-type>/bl31.bin \
916 fip.bin
917
918Example 2: view the contents of an existing Firmware package:
919
920::
921
922 ./tools/fiptool/fiptool info <path-to>/fip.bin
923
924Example 3: update the entries of an existing Firmware package:
925
926::
927
928 # Change the BL2 from Debug to Release version
929 ./tools/fiptool/fiptool update \
930 --tb-fw build/<platform>/release/bl2.bin \
931 build/<platform>/debug/fip.bin
932
933Example 4: unpack all entries from an existing Firmware package:
934
935::
936
937 # Images will be unpacked to the working directory
938 ./tools/fiptool/fiptool unpack <path-to>/fip.bin
939
940Example 5: remove an entry from an existing Firmware package:
941
942::
943
944 ./tools/fiptool/fiptool remove \
945 --tb-fw build/<platform>/debug/fip.bin
946
947Note that if the destination FIP file exists, the create, update and
948remove operations will automatically overwrite it.
949
950The unpack operation will fail if the images already exist at the
951destination. In that case, use -f or --force to continue.
952
953More information about FIP can be found in the `Firmware Design`_ document.
954
955Migrating from fip\_create to fiptool
956^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
957
958The previous version of fiptool was called fip\_create. A compatibility script
959that emulates the basic functionality of the previous fip\_create is provided.
960However, users are strongly encouraged to migrate to fiptool.
961
962- To create a new FIP file, replace "fip\_create" with "fiptool create".
963- To update a FIP file, replace "fip\_create" with "fiptool update".
964- To dump the contents of a FIP file, replace "fip\_create --dump"
965 with "fiptool info".
966
967Building FIP images with support for Trusted Board Boot
968~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
969
970Trusted Board Boot primarily consists of the following two features:
971
972- Image Authentication, described in `Trusted Board Boot`_, and
973- Firmware Update, described in `Firmware Update`_
974
975The following steps should be followed to build FIP and (optionally) FWU\_FIP
976images with support for these features:
977
978#. Fulfill the dependencies of the ``mbedtls`` cryptographic and image parser
979 modules by checking out a recent version of the `mbed TLS Repository`_. It
980 is important to use a version that is compatible with TF and fixes any
981 known security vulnerabilities. See `mbed TLS Security Center`_ for more
982 information. The latest version of TF is tested with tag ``mbedtls-2.4.2``.
983
984 The ``drivers/auth/mbedtls/mbedtls_*.mk`` files contain the list of mbed TLS
985 source files the modules depend upon.
986 ``include/drivers/auth/mbedtls/mbedtls_config.h`` contains the configuration
987 options required to build the mbed TLS sources.
988
989 Note that the mbed TLS library is licensed under the Apache version 2.0
990 license. Using mbed TLS source code will affect the licensing of
991 Trusted Firmware binaries that are built using this library.
992
993#. To build the FIP image, ensure the following command line variables are set
994 while invoking ``make`` to build Trusted Firmware:
995
996 - ``MBEDTLS_DIR=<path of the directory containing mbed TLS sources>``
997 - ``TRUSTED_BOARD_BOOT=1``
998 - ``GENERATE_COT=1``
999
1000 In the case of ARM platforms, the location of the ROTPK hash must also be
1001 specified at build time. Two locations are currently supported (see
1002 ``ARM_ROTPK_LOCATION`` build option):
1003
1004 - ``ARM_ROTPK_LOCATION=regs``: the ROTPK hash is obtained from the Trusted
1005 root-key storage registers present in the platform. On Juno, this
1006 registers are read-only. On FVP Base and Cortex models, the registers
1007 are read-only, but the value can be specified using the command line
1008 option ``bp.trusted_key_storage.public_key`` when launching the model.
1009 On both Juno and FVP models, the default value corresponds to an
1010 ECDSA-SECP256R1 public key hash, whose private part is not currently
1011 available.
1012
1013 - ``ARM_ROTPK_LOCATION=devel_rsa``: use the ROTPK hash that is hardcoded
1014 in the ARM platform port. The private/public RSA key pair may be
1015 found in ``plat/arm/board/common/rotpk``.
1016
Qixiang Xu9db9c652017-08-24 15:12:20 +08001017 - ``ARM_ROTPK_LOCATION=devel_ecdsa``: use the ROTPK hash that is hardcoded
1018 in the ARM platform port. The private/public ECDSA key pair may be
1019 found in ``plat/arm/board/common/rotpk``.
1020
Douglas Raillard6f625742017-06-28 15:23:03 +01001021 Example of command line using RSA development keys:
1022
1023 ::
1024
1025 MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
1026 make PLAT=<platform> TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
1027 ARM_ROTPK_LOCATION=devel_rsa \
1028 ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
1029 BL33=<path-to>/<bl33_image> \
1030 all fip
1031
1032 The result of this build will be the bl1.bin and the fip.bin binaries. This
1033 FIP will include the certificates corresponding to the Chain of Trust
1034 described in the TBBR-client document. These certificates can also be found
1035 in the output build directory.
1036
1037#. The optional FWU\_FIP contains any additional images to be loaded from
1038 Non-Volatile storage during the `Firmware Update`_ process. To build the
1039 FWU\_FIP, any FWU images required by the platform must be specified on the
1040 command line. On ARM development platforms like Juno, these are:
1041
1042 - NS\_BL2U. The AP non-secure Firmware Updater image.
1043 - SCP\_BL2U. The SCP Firmware Update Configuration image.
1044
1045 Example of Juno command line for generating both ``fwu`` and ``fwu_fip``
1046 targets using RSA development:
1047
1048 ::
1049
1050 MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
1051 make PLAT=juno TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
1052 ARM_ROTPK_LOCATION=devel_rsa \
1053 ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
1054 BL33=<path-to>/<bl33_image> \
1055 SCP_BL2=<path-to>/<scp_bl2_image> \
1056 SCP_BL2U=<path-to>/<scp_bl2u_image> \
1057 NS_BL2U=<path-to>/<ns_bl2u_image> \
1058 all fip fwu_fip
1059
1060 Note: The BL2U image will be built by default and added to the FWU\_FIP.
1061 The user may override this by adding ``BL2U=<path-to>/<bl2u_image>``
1062 to the command line above.
1063
1064 Note: Building and installing the non-secure and SCP FWU images (NS\_BL1U,
1065 NS\_BL2U and SCP\_BL2U) is outside the scope of this document.
1066
1067 The result of this build will be bl1.bin, fip.bin and fwu\_fip.bin binaries.
1068 Both the FIP and FWU\_FIP will include the certificates corresponding to the
1069 Chain of Trust described in the TBBR-client document. These certificates
1070 can also be found in the output build directory.
1071
1072Building the Certificate Generation Tool
1073~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1074
1075The ``cert_create`` tool is built as part of the TF build process when the ``fip``
1076make target is specified and TBB is enabled (as described in the previous
1077section), but it can also be built separately with the following command:
1078
1079::
1080
1081 make PLAT=<platform> [DEBUG=1] [V=1] certtool
1082
1083For platforms that do not require their own IDs in certificate files,
1084the generic 'cert\_create' tool can be built with the following command:
1085
1086::
1087
1088 make USE_TBBR_DEFS=1 [DEBUG=1] [V=1] certtool
1089
1090``DEBUG=1`` builds the tool in debug mode. ``V=1`` makes the build process more
1091verbose. The following command should be used to obtain help about the tool:
1092
1093::
1094
1095 ./tools/cert_create/cert_create -h
1096
1097Building a FIP for Juno and FVP
1098-------------------------------
1099
1100This section provides Juno and FVP specific instructions to build Trusted
1101Firmware, obtain the additional required firmware, and pack it all together in
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001102a single FIP binary. It assumes that a `Linaro Release`_ has been installed.
Douglas Raillard6f625742017-06-28 15:23:03 +01001103
David Cunado31f2f792017-06-29 12:01:33 +01001104Note: Pre-built binaries for AArch32 are available from Linaro Release 16.12
1105onwards. Before that release, pre-built binaries are only available for AArch64.
Douglas Raillard6f625742017-06-28 15:23:03 +01001106
1107Note: follow the full instructions for one platform before switching to a
1108different one. Mixing instructions for different platforms may result in
1109corrupted binaries.
1110
1111#. Clean the working directory
1112
1113 ::
1114
1115 make realclean
1116
1117#. Obtain SCP\_BL2 (Juno) and BL33 (all platforms)
1118
1119 Use the fiptool to extract the SCP\_BL2 and BL33 images from the FIP
1120 package included in the Linaro release:
1121
1122 ::
1123
1124 # Build the fiptool
1125 make [DEBUG=1] [V=1] fiptool
1126
1127 # Unpack firmware images from Linaro FIP
1128 ./tools/fiptool/fiptool unpack \
1129 <path/to/linaro/release>/fip.bin
1130
1131 The unpack operation will result in a set of binary images extracted to the
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001132 current working directory. The SCP\_BL2 image corresponds to
1133 ``scp-fw.bin`` and BL33 corresponds to ``nt-fw.bin``.
Douglas Raillard6f625742017-06-28 15:23:03 +01001134
1135 Note: the fiptool will complain if the images to be unpacked already
1136 exist in the current directory. If that is the case, either delete those
1137 files or use the ``--force`` option to overwrite.
1138
1139 Note for AArch32, the instructions below assume that nt-fw.bin is a custom
1140 Normal world boot loader that supports AArch32.
1141
1142#. Build TF images and create a new FIP for FVP
1143
1144 ::
1145
1146 # AArch64
1147 make PLAT=fvp BL33=nt-fw.bin all fip
1148
1149 # AArch32
1150 make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=nt-fw.bin all fip
1151
1152#. Build TF images and create a new FIP for Juno
1153
1154 For AArch64:
1155
1156 Building for AArch64 on Juno simply requires the addition of ``SCP_BL2``
1157 as a build parameter.
1158
1159 ::
1160
1161 make PLAT=juno all fip \
1162 BL33=<path-to-juno-oe-uboot>/SOFTWARE/bl33-uboot.bin \
1163 SCP_BL2=<path-to-juno-busybox-uboot>/SOFTWARE/scp_bl2.bin
1164
1165 For AArch32:
1166
1167 Hardware restrictions on Juno prevent cold reset into AArch32 execution mode,
1168 therefore BL1 and BL2 must be compiled for AArch64, and BL32 is compiled
1169 separately for AArch32.
1170
1171 - Before building BL32, the environment variable ``CROSS_COMPILE`` must point
1172 to the AArch32 Linaro cross compiler.
1173
1174 ::
1175
1176 export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-linux-gnueabihf-
1177
1178 - Build BL32 in AArch32.
1179
1180 ::
1181
1182 make ARCH=aarch32 PLAT=juno AARCH32_SP=sp_min \
1183 RESET_TO_SP_MIN=1 JUNO_AARCH32_EL3_RUNTIME=1 bl32
1184
1185 - Before building BL1 and BL2, the environment variable ``CROSS_COMPILE``
1186 must point to the AArch64 Linaro cross compiler.
1187
1188 ::
1189
1190 export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
1191
1192 - The following parameters should be used to build BL1 and BL2 in AArch64
1193 and point to the BL32 file.
1194
1195 ::
1196
1197 make ARCH=aarch64 PLAT=juno LOAD_IMAGE_V2=1 JUNO_AARCH32_EL3_RUNTIME=1 \
1198 BL33=<path-to-juno32-oe-uboot>/SOFTWARE/bl33-uboot.bin \
1199 SCP_BL2=<path-to-juno32-oe-uboot>/SOFTWARE/scp_bl2.bin SPD=tspd \
1200 BL32=<path-to-bl32>/bl32.bin all fip
1201
1202The resulting BL1 and FIP images may be found in:
1203
1204::
1205
1206 # Juno
1207 ./build/juno/release/bl1.bin
1208 ./build/juno/release/fip.bin
1209
1210 # FVP
1211 ./build/fvp/release/bl1.bin
1212 ./build/fvp/release/fip.bin
1213
Roberto Vargase29ee462017-10-17 10:19:00 +01001214
1215Booting Firmware Update images
1216-------------------------------------
1217
1218When Firmware Update (FWU) is enabled there are at least 2 new images
1219that have to be loaded, the Non-Secure FWU ROM (NS-BL1U), and the
1220FWU FIP.
1221
1222Juno
1223~~~~
1224
1225The new images must be programmed in flash memory by adding
1226an entry in the ``SITE1/HBI0262x/images.txt`` configuration file
1227on the Juno SD card (where ``x`` depends on the revision of the Juno board).
1228Refer to the `Juno Getting Started Guide`_, section 2.3 "Flash memory
1229programming" for more information. User should ensure these do not
1230overlap with any other entries in the file.
1231
1232::
1233
1234 NOR10UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
1235 NOR10ADDRESS: 0x00400000 ;Image Flash Address [ns_bl2u_base_address]
1236 NOR10FILE: \SOFTWARE\fwu_fip.bin ;Image File Name
1237 NOR10LOAD: 00000000 ;Image Load Address
1238 NOR10ENTRY: 00000000 ;Image Entry Point
1239
1240 NOR11UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
1241 NOR11ADDRESS: 0x03EB8000 ;Image Flash Address [ns_bl1u_base_address]
1242 NOR11FILE: \SOFTWARE\ns_bl1u.bin ;Image File Name
1243 NOR11LOAD: 00000000 ;Image Load Address
1244
1245The address ns_bl1u_base_address is the value of NS_BL1U_BASE - 0x8000000.
1246In the same way, the address ns_bl2u_base_address is the value of
1247NS_BL2U_BASE - 0x8000000.
1248
1249FVP
1250~~~
1251
1252The additional fip images must be loaded with:
1253
1254::
1255
1256 --data cluster0.cpu0="<path_to>/ns_bl1u.bin"@0x0beb8000 [ns_bl1u_base_address]
1257 --data cluster0.cpu0="<path_to>/fwu_fip.bin"@0x08400000 [ns_bl2u_base_address]
1258
1259The address ns_bl1u_base_address is the value of NS_BL1U_BASE.
1260In the same way, the address ns_bl2u_base_address is the value of
1261NS_BL2U_BASE.
1262
1263
Douglas Raillard6f625742017-06-28 15:23:03 +01001264EL3 payloads alternative boot flow
1265----------------------------------
1266
1267On a pre-production system, the ability to execute arbitrary, bare-metal code at
1268the highest exception level is required. It allows full, direct access to the
1269hardware, for example to run silicon soak tests.
1270
1271Although it is possible to implement some baremetal secure firmware from
1272scratch, this is a complex task on some platforms, depending on the level of
1273configuration required to put the system in the expected state.
1274
1275Rather than booting a baremetal application, a possible compromise is to boot
1276``EL3 payloads`` through the Trusted Firmware instead. This is implemented as an
1277alternative boot flow, where a modified BL2 boots an EL3 payload, instead of
1278loading the other BL images and passing control to BL31. It reduces the
1279complexity of developing EL3 baremetal code by:
1280
1281- putting the system into a known architectural state;
1282- taking care of platform secure world initialization;
1283- loading the SCP\_BL2 image if required by the platform.
1284
1285When booting an EL3 payload on ARM standard platforms, the configuration of the
1286TrustZone controller is simplified such that only region 0 is enabled and is
1287configured to permit secure access only. This gives full access to the whole
1288DRAM to the EL3 payload.
1289
1290The system is left in the same state as when entering BL31 in the default boot
1291flow. In particular:
1292
1293- Running in EL3;
1294- Current state is AArch64;
1295- Little-endian data access;
1296- All exceptions disabled;
1297- MMU disabled;
1298- Caches disabled.
1299
1300Booting an EL3 payload
1301~~~~~~~~~~~~~~~~~~~~~~
1302
1303The EL3 payload image is a standalone image and is not part of the FIP. It is
1304not loaded by the Trusted Firmware. Therefore, there are 2 possible scenarios:
1305
1306- The EL3 payload may reside in non-volatile memory (NVM) and execute in
1307 place. In this case, booting it is just a matter of specifying the right
1308 address in NVM through ``EL3_PAYLOAD_BASE`` when building the TF.
1309
1310- The EL3 payload needs to be loaded in volatile memory (e.g. DRAM) at
1311 run-time.
1312
1313To help in the latter scenario, the ``SPIN_ON_BL1_EXIT=1`` build option can be
1314used. The infinite loop that it introduces in BL1 stops execution at the right
1315moment for a debugger to take control of the target and load the payload (for
1316example, over JTAG).
1317
1318It is expected that this loading method will work in most cases, as a debugger
1319connection is usually available in a pre-production system. The user is free to
1320use any other platform-specific mechanism to load the EL3 payload, though.
1321
1322Booting an EL3 payload on FVP
1323^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1324
1325The EL3 payloads boot flow requires the CPU's mailbox to be cleared at reset for
1326the secondary CPUs holding pen to work properly. Unfortunately, its reset value
1327is undefined on the FVP platform and the FVP platform code doesn't clear it.
1328Therefore, one must modify the way the model is normally invoked in order to
1329clear the mailbox at start-up.
1330
1331One way to do that is to create an 8-byte file containing all zero bytes using
1332the following command:
1333
1334::
1335
1336 dd if=/dev/zero of=mailbox.dat bs=1 count=8
1337
1338and pre-load it into the FVP memory at the mailbox address (i.e. ``0x04000000``)
1339using the following model parameters:
1340
1341::
1342
1343 --data cluster0.cpu0=mailbox.dat@0x04000000 [Base FVPs]
1344 --data=mailbox.dat@0x04000000 [Foundation FVP]
1345
1346To provide the model with the EL3 payload image, the following methods may be
1347used:
1348
1349#. If the EL3 payload is able to execute in place, it may be programmed into
1350 flash memory. On Base Cortex and AEM FVPs, the following model parameter
1351 loads it at the base address of the NOR FLASH1 (the NOR FLASH0 is already
1352 used for the FIP):
1353
1354 ::
1355
1356 -C bp.flashloader1.fname="/path/to/el3-payload"
1357
1358 On Foundation FVP, there is no flash loader component and the EL3 payload
1359 may be programmed anywhere in flash using method 3 below.
1360
1361#. When using the ``SPIN_ON_BL1_EXIT=1`` loading method, the following DS-5
1362 command may be used to load the EL3 payload ELF image over JTAG:
1363
1364 ::
1365
1366 load /path/to/el3-payload.elf
1367
1368#. The EL3 payload may be pre-loaded in volatile memory using the following
1369 model parameters:
1370
1371 ::
1372
1373 --data cluster0.cpu0="/path/to/el3-payload"@address [Base FVPs]
1374 --data="/path/to/el3-payload"@address [Foundation FVP]
1375
1376 The address provided to the FVP must match the ``EL3_PAYLOAD_BASE`` address
1377 used when building the Trusted Firmware.
1378
1379Booting an EL3 payload on Juno
1380^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1381
1382If the EL3 payload is able to execute in place, it may be programmed in flash
1383memory by adding an entry in the ``SITE1/HBI0262x/images.txt`` configuration file
1384on the Juno SD card (where ``x`` depends on the revision of the Juno board).
1385Refer to the `Juno Getting Started Guide`_, section 2.3 "Flash memory
1386programming" for more information.
1387
1388Alternatively, the same DS-5 command mentioned in the FVP section above can
1389be used to load the EL3 payload's ELF file over JTAG on Juno.
1390
1391Preloaded BL33 alternative boot flow
1392------------------------------------
1393
1394Some platforms have the ability to preload BL33 into memory instead of relying
1395on Trusted Firmware to load it. This may simplify packaging of the normal world
1396code and improve performance in a development environment. When secure world
1397cold boot is complete, Trusted Firmware simply jumps to a BL33 base address
1398provided at build time.
1399
1400For this option to be used, the ``PRELOADED_BL33_BASE`` build option has to be
1401used when compiling the Trusted Firmware. For example, the following command
1402will create a FIP without a BL33 and prepare to jump to a BL33 image loaded at
1403address 0x80000000:
1404
1405::
1406
1407 make PRELOADED_BL33_BASE=0x80000000 PLAT=fvp all fip
1408
1409Boot of a preloaded bootwrapped kernel image on Base FVP
1410~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1411
1412The following example uses the AArch64 boot wrapper. This simplifies normal
1413world booting while also making use of TF features. It can be obtained from its
1414repository with:
1415
1416::
1417
1418 git clone git://git.kernel.org/pub/scm/linux/kernel/git/mark/boot-wrapper-aarch64.git
1419
1420After compiling it, an ELF file is generated. It can be loaded with the
1421following command:
1422
1423::
1424
1425 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1426 -C bp.secureflashloader.fname=bl1.bin \
1427 -C bp.flashloader0.fname=fip.bin \
1428 -a cluster0.cpu0=<bootwrapped-kernel.elf> \
1429 --start cluster0.cpu0=0x0
1430
1431The ``-a cluster0.cpu0=<bootwrapped-kernel.elf>`` option loads the ELF file. It
1432also sets the PC register to the ELF entry point address, which is not the
1433desired behaviour, so the ``--start cluster0.cpu0=0x0`` option forces the PC back
1434to 0x0 (the BL1 entry point address) on CPU #0. The ``PRELOADED_BL33_BASE`` define
1435used when compiling the FIP must match the ELF entry point.
1436
1437Boot of a preloaded bootwrapped kernel image on Juno
1438~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1439
1440The procedure to obtain and compile the boot wrapper is very similar to the case
1441of the FVP. The execution must be stopped at the end of bl2\_main(), and the
1442loading method explained above in the EL3 payload boot flow section may be used
1443to load the ELF file over JTAG on Juno.
1444
1445Running the software on FVP
1446---------------------------
1447
1448The latest version of the AArch64 build of ARM Trusted Firmware has been tested
1449on the following ARM FVPs (64-bit host machine only).
1450
Eleanor Bonnici99f38f52017-10-04 15:03:33 +01001451NOTE: Unless otherwise stated, the model version is Version 11.1 Build 11.1.22.
David Cunado64d50c72017-06-27 17:31:12 +01001452
1453- ``Foundation_Platform``
Eleanor Bonnici99f38f52017-10-04 15:03:33 +01001454- ``FVP_Base_AEMv8A-AEMv8A`` (Version 8.7, Build 0.8.8702)
David Cunado64d50c72017-06-27 17:31:12 +01001455- ``FVP_Base_Cortex-A35x4``
1456- ``FVP_Base_Cortex-A53x4``
1457- ``FVP_Base_Cortex-A57x4-A53x4``
1458- ``FVP_Base_Cortex-A57x4``
1459- ``FVP_Base_Cortex-A72x4-A53x4``
1460- ``FVP_Base_Cortex-A72x4``
1461- ``FVP_Base_Cortex-A73x4-A53x4``
1462- ``FVP_Base_Cortex-A73x4``
Douglas Raillard6f625742017-06-28 15:23:03 +01001463
1464The latest version of the AArch32 build of ARM Trusted Firmware has been tested
1465on the following ARM FVPs (64-bit host machine only).
1466
Eleanor Bonnici99f38f52017-10-04 15:03:33 +01001467- ``FVP_Base_AEMv8A-AEMv8A`` (Version 8.7, Build 0.8.8702)
David Cunado64d50c72017-06-27 17:31:12 +01001468- ``FVP_Base_Cortex-A32x4``
Douglas Raillard6f625742017-06-28 15:23:03 +01001469
1470NOTE: The build numbers quoted above are those reported by launching the FVP
1471with the ``--version`` parameter.
1472
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001473NOTE: Linaro provides a ramdisk image in prebuilt FVP configurations and full
1474file systems that can be downloaded separately. To run an FVP with a virtio
1475file system image an additional FVP configuration option
1476``-C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>`` can be
1477used.
1478
Douglas Raillard6f625742017-06-28 15:23:03 +01001479NOTE: The software will not work on Version 1.0 of the Foundation FVP.
1480The commands below would report an ``unhandled argument`` error in this case.
1481
1482NOTE: FVPs can be launched with ``--cadi-server`` option such that a
1483CADI-compliant debugger (for example, ARM DS-5) can connect to and control its
1484execution.
1485
Eleanor Bonnici99f38f52017-10-04 15:03:33 +01001486NOTE: Since FVP model Version 11.0 Build 11.0.34 and Version 8.5 Build 0.8.5202
David Cunado279fedc2017-07-31 12:24:51 +01001487the internal synchronisation timings changed compared to older versions of the
1488models. The models can be launched with ``-Q 100`` option if they are required
1489to match the run time characteristics of the older versions.
1490
Douglas Raillard6f625742017-06-28 15:23:03 +01001491The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be
1492downloaded for free from `ARM's website`_.
1493
David Cunado64d50c72017-06-27 17:31:12 +01001494The Cortex-A models listed above are also available to download from
1495`ARM's website`_.
1496
Douglas Raillard6f625742017-06-28 15:23:03 +01001497Please refer to the FVP documentation for a detailed description of the model
1498parameter options. A brief description of the important ones that affect the ARM
1499Trusted Firmware and normal world software behavior is provided below.
1500
Douglas Raillard6f625742017-06-28 15:23:03 +01001501Obtaining the Flattened Device Trees
1502~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1503
1504Depending on the FVP configuration and Linux configuration used, different
1505FDT files are required. FDTs for the Foundation and Base FVPs can be found in
1506the Trusted Firmware source directory under ``fdts/``. The Foundation FVP has a
1507subset of the Base FVP components. For example, the Foundation FVP lacks CLCD
1508and MMC support, and has only one CPU cluster.
1509
1510Note: It is not recommended to use the FDTs built along the kernel because not
1511all FDTs are available from there.
1512
1513- ``fvp-base-gicv2-psci.dtb``
1514
1515 For use with both AEMv8 and Cortex-A57-A53 Base FVPs with
1516 Base memory map configuration.
1517
1518- ``fvp-base-gicv2-psci-aarch32.dtb``
1519
1520 For use with AEMv8 and Cortex-A32 Base FVPs running Linux in AArch32 state
1521 with Base memory map configuration.
1522
1523- ``fvp-base-gicv3-psci.dtb``
1524
1525 (Default) For use with both AEMv8 and Cortex-A57-A53 Base FVPs with Base
1526 memory map configuration and Linux GICv3 support.
1527
1528- ``fvp-base-gicv3-psci-aarch32.dtb``
1529
1530 For use with AEMv8 and Cortex-A32 Base FVPs running Linux in AArch32 state
1531 with Base memory map configuration and Linux GICv3 support.
1532
1533- ``fvp-foundation-gicv2-psci.dtb``
1534
1535 For use with Foundation FVP with Base memory map configuration.
1536
1537- ``fvp-foundation-gicv3-psci.dtb``
1538
1539 (Default) For use with Foundation FVP with Base memory map configuration
1540 and Linux GICv3 support.
1541
1542Running on the Foundation FVP with reset to BL1 entrypoint
1543~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1544
1545The following ``Foundation_Platform`` parameters should be used to boot Linux with
15464 CPUs using the AArch64 build of ARM Trusted Firmware.
1547
1548::
1549
1550 <path-to>/Foundation_Platform \
1551 --cores=4 \
1552 --secure-memory \
1553 --visualization \
1554 --gicv3 \
1555 --data="<path-to>/<bl1-binary>"@0x0 \
1556 --data="<path-to>/<FIP-binary>"@0x08000000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001557 --data="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001558 --data="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001559 --data="<path-to>/<ramdisk-binary>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001560
1561Notes:
1562
1563- BL1 is loaded at the start of the Trusted ROM.
1564- The Firmware Image Package is loaded at the start of NOR FLASH0.
1565- The Linux kernel image and device tree are loaded in DRAM.
1566- The default use-case for the Foundation FVP is to use the ``--gicv3`` option
1567 and enable the GICv3 device in the model. Note that without this option,
1568 the Foundation FVP defaults to legacy (Versatile Express) memory map which
1569 is not supported by ARM Trusted Firmware.
1570
1571Running on the AEMv8 Base FVP with reset to BL1 entrypoint
1572~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1573
1574The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
1575with 8 CPUs using the AArch64 build of ARM Trusted Firmware.
1576
1577::
1578
1579 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1580 -C pctl.startup=0.0.0.0 \
1581 -C bp.secure_memory=1 \
1582 -C bp.tzc_400.diagnostics=1 \
1583 -C cluster0.NUM_CORES=4 \
1584 -C cluster1.NUM_CORES=4 \
1585 -C cache_state_modelled=1 \
1586 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
1587 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001588 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001589 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001590 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001591
1592Running on the AEMv8 Base FVP (AArch32) with reset to BL1 entrypoint
1593~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1594
1595The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
1596with 8 CPUs using the AArch32 build of ARM Trusted Firmware.
1597
1598::
1599
1600 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1601 -C pctl.startup=0.0.0.0 \
1602 -C bp.secure_memory=1 \
1603 -C bp.tzc_400.diagnostics=1 \
1604 -C cluster0.NUM_CORES=4 \
1605 -C cluster1.NUM_CORES=4 \
1606 -C cache_state_modelled=1 \
1607 -C cluster0.cpu0.CONFIG64=0 \
1608 -C cluster0.cpu1.CONFIG64=0 \
1609 -C cluster0.cpu2.CONFIG64=0 \
1610 -C cluster0.cpu3.CONFIG64=0 \
1611 -C cluster1.cpu0.CONFIG64=0 \
1612 -C cluster1.cpu1.CONFIG64=0 \
1613 -C cluster1.cpu2.CONFIG64=0 \
1614 -C cluster1.cpu3.CONFIG64=0 \
1615 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
1616 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001617 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001618 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001619 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001620
1621Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint
1622~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1623
1624The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
1625boot Linux with 8 CPUs using the AArch64 build of ARM Trusted Firmware.
1626
1627::
1628
1629 <path-to>/FVP_Base_Cortex-A57x4-A53x4 \
1630 -C pctl.startup=0.0.0.0 \
1631 -C bp.secure_memory=1 \
1632 -C bp.tzc_400.diagnostics=1 \
1633 -C cache_state_modelled=1 \
1634 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
1635 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001636 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001637 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001638 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001639
1640Running on the Cortex-A32 Base FVP (AArch32) with reset to BL1 entrypoint
1641~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1642
1643The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
1644boot Linux with 4 CPUs using the AArch32 build of ARM Trusted Firmware.
1645
1646::
1647
1648 <path-to>/FVP_Base_Cortex-A32x4 \
1649 -C pctl.startup=0.0.0.0 \
1650 -C bp.secure_memory=1 \
1651 -C bp.tzc_400.diagnostics=1 \
1652 -C cache_state_modelled=1 \
1653 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
1654 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001655 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001656 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001657 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001658
1659Running on the AEMv8 Base FVP with reset to BL31 entrypoint
1660~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1661
1662The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
1663with 8 CPUs using the AArch64 build of ARM Trusted Firmware.
1664
1665::
1666
1667 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1668 -C pctl.startup=0.0.0.0 \
1669 -C bp.secure_memory=1 \
1670 -C bp.tzc_400.diagnostics=1 \
1671 -C cluster0.NUM_CORES=4 \
1672 -C cluster1.NUM_CORES=4 \
1673 -C cache_state_modelled=1 \
Qixiang Xufd5763e2017-08-31 11:45:32 +08001674 -C cluster0.cpu0.RVBAR=0x04020000 \
1675 -C cluster0.cpu1.RVBAR=0x04020000 \
1676 -C cluster0.cpu2.RVBAR=0x04020000 \
1677 -C cluster0.cpu3.RVBAR=0x04020000 \
1678 -C cluster1.cpu0.RVBAR=0x04020000 \
1679 -C cluster1.cpu1.RVBAR=0x04020000 \
1680 -C cluster1.cpu2.RVBAR=0x04020000 \
1681 -C cluster1.cpu3.RVBAR=0x04020000 \
1682 --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04020000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001683 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
1684 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001685 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001686 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001687 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001688
1689Notes:
1690
1691- Since a FIP is not loaded when using BL31 as reset entrypoint, the
1692 ``--data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary>``
1693 parameter is needed to load the individual bootloader images in memory.
1694 BL32 image is only needed if BL31 has been built to expect a Secure-EL1
1695 Payload.
1696
1697- The ``-C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31>`` parameter, where
1698 X and Y are the cluster and CPU numbers respectively, is used to set the
1699 reset vector for each core.
1700
1701- Changing the default value of ``ARM_TSP_RAM_LOCATION`` will also require
1702 changing the value of
1703 ``--data="<path-to><bl32-binary>"@<base-address-of-bl32>`` to the new value of
1704 ``BL32_BASE``.
1705
1706Running on the AEMv8 Base FVP (AArch32) with reset to SP\_MIN entrypoint
1707~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1708
1709The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
1710with 8 CPUs using the AArch32 build of ARM Trusted Firmware.
1711
1712::
1713
1714 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1715 -C pctl.startup=0.0.0.0 \
1716 -C bp.secure_memory=1 \
1717 -C bp.tzc_400.diagnostics=1 \
1718 -C cluster0.NUM_CORES=4 \
1719 -C cluster1.NUM_CORES=4 \
1720 -C cache_state_modelled=1 \
1721 -C cluster0.cpu0.CONFIG64=0 \
1722 -C cluster0.cpu1.CONFIG64=0 \
1723 -C cluster0.cpu2.CONFIG64=0 \
1724 -C cluster0.cpu3.CONFIG64=0 \
1725 -C cluster1.cpu0.CONFIG64=0 \
1726 -C cluster1.cpu1.CONFIG64=0 \
1727 -C cluster1.cpu2.CONFIG64=0 \
1728 -C cluster1.cpu3.CONFIG64=0 \
1729 -C cluster0.cpu0.RVBAR=0x04001000 \
1730 -C cluster0.cpu1.RVBAR=0x04001000 \
1731 -C cluster0.cpu2.RVBAR=0x04001000 \
1732 -C cluster0.cpu3.RVBAR=0x04001000 \
1733 -C cluster1.cpu0.RVBAR=0x04001000 \
1734 -C cluster1.cpu1.RVBAR=0x04001000 \
1735 -C cluster1.cpu2.RVBAR=0x04001000 \
1736 -C cluster1.cpu3.RVBAR=0x04001000 \
1737 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
1738 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001739 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001740 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001741 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001742
1743Note: The load address of ``<bl32-binary>`` depends on the value ``BL32_BASE``.
1744It should match the address programmed into the RVBAR register as well.
1745
1746Running on the Cortex-A57-A53 Base FVP with reset to BL31 entrypoint
1747~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1748
1749The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
1750boot Linux with 8 CPUs using the AArch64 build of ARM Trusted Firmware.
1751
1752::
1753
1754 <path-to>/FVP_Base_Cortex-A57x4-A53x4 \
1755 -C pctl.startup=0.0.0.0 \
1756 -C bp.secure_memory=1 \
1757 -C bp.tzc_400.diagnostics=1 \
1758 -C cache_state_modelled=1 \
Qixiang Xufd5763e2017-08-31 11:45:32 +08001759 -C cluster0.cpu0.RVBARADDR=0x04020000 \
1760 -C cluster0.cpu1.RVBARADDR=0x04020000 \
1761 -C cluster0.cpu2.RVBARADDR=0x04020000 \
1762 -C cluster0.cpu3.RVBARADDR=0x04020000 \
1763 -C cluster1.cpu0.RVBARADDR=0x04020000 \
1764 -C cluster1.cpu1.RVBARADDR=0x04020000 \
1765 -C cluster1.cpu2.RVBARADDR=0x04020000 \
1766 -C cluster1.cpu3.RVBARADDR=0x04020000 \
1767 --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04020000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001768 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
1769 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001770 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001771 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001772 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001773
1774Running on the Cortex-A32 Base FVP (AArch32) with reset to SP\_MIN entrypoint
1775~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1776
1777The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
1778boot Linux with 4 CPUs using the AArch32 build of ARM Trusted Firmware.
1779
1780::
1781
1782 <path-to>/FVP_Base_Cortex-A32x4 \
1783 -C pctl.startup=0.0.0.0 \
1784 -C bp.secure_memory=1 \
1785 -C bp.tzc_400.diagnostics=1 \
1786 -C cache_state_modelled=1 \
1787 -C cluster0.cpu0.RVBARADDR=0x04001000 \
1788 -C cluster0.cpu1.RVBARADDR=0x04001000 \
1789 -C cluster0.cpu2.RVBARADDR=0x04001000 \
1790 -C cluster0.cpu3.RVBARADDR=0x04001000 \
1791 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
1792 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001793 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001794 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001795 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001796
1797Running the software on Juno
1798----------------------------
1799
David Cunado31f2f792017-06-29 12:01:33 +01001800This version of the ARM Trusted Firmware has been tested on variants r0, r1 and
1801r2 of Juno.
Douglas Raillard6f625742017-06-28 15:23:03 +01001802
1803To execute the software stack on Juno, the version of the Juno board recovery
1804image indicated in the `Linaro Release Notes`_ must be installed. If you have an
1805earlier version installed or are unsure which version is installed, please
1806re-install the recovery image by following the
1807`Instructions for using Linaro's deliverables on Juno`_.
1808
1809Preparing Trusted Firmware images
1810~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1811
1812After building Trusted Firmware, the files ``bl1.bin`` and ``fip.bin`` need copying
1813to the ``SOFTWARE/`` directory of the Juno SD card.
1814
1815Other Juno software information
1816~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1817
1818Please visit the `ARM Platforms Portal`_ to get support and obtain any other Juno
1819software information. Please also refer to the `Juno Getting Started Guide`_ to
1820get more detailed information about the Juno ARM development platform and how to
1821configure it.
1822
1823Testing SYSTEM SUSPEND on Juno
1824~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1825
1826The SYSTEM SUSPEND is a PSCI API which can be used to implement system suspend
1827to RAM. For more details refer to section 5.16 of `PSCI`_. To test system suspend
1828on Juno, at the linux shell prompt, issue the following command:
1829
1830::
1831
1832 echo +10 > /sys/class/rtc/rtc0/wakealarm
1833 echo -n mem > /sys/power/state
1834
1835The Juno board should suspend to RAM and then wakeup after 10 seconds due to
1836wakeup interrupt from RTC.
1837
1838--------------
1839
1840*Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.*
1841
David Cunado31f2f792017-06-29 12:01:33 +01001842.. _Linaro: `Linaro Release Notes`_
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001843.. _Linaro Release: `Linaro Release Notes`_
Douglas Raillard6f625742017-06-28 15:23:03 +01001844.. _Linaro Release Notes: https://community.arm.com/tools/dev-platforms/b/documents/posts/linaro-release-notes-deprecated
David Cunado31f2f792017-06-29 12:01:33 +01001845.. _Linaro Release 17.04: https://community.arm.com/tools/dev-platforms/b/documents/posts/linaro-release-notes-deprecated#LinaroRelease17.04
Douglas Raillard6f625742017-06-28 15:23:03 +01001846.. _Linaro instructions: https://community.arm.com/dev-platforms/b/documents/posts/instructions-for-using-the-linaro-software-deliverables
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001847.. _Instructions for using Linaro's deliverables on Juno: https://community.arm.com/dev-platforms/b/documents/posts/using-linaros-deliverables-on-juno
1848.. _ARM Platforms Portal: https://community.arm.com/dev-platforms/
Douglas Raillard6f625742017-06-28 15:23:03 +01001849.. _Development Studio 5 (DS-5): http://www.arm.com/products/tools/software-tools/ds-5/index.php
Antonio Nino Diaz6feb9e82017-05-23 11:49:22 +01001850.. _Dia: https://wiki.gnome.org/Apps/Dia/Download
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001851.. _here: psci-lib-integration-guide.rst
Douglas Raillard6f625742017-06-28 15:23:03 +01001852.. _Trusted Board Boot: trusted-board-boot.rst
1853.. _Secure-EL1 Payloads and Dispatchers: firmware-design.rst#user-content-secure-el1-payloads-and-dispatchers
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001854.. _Firmware Update: firmware-update.rst
1855.. _Firmware Design: firmware-design.rst
Douglas Raillard6f625742017-06-28 15:23:03 +01001856.. _mbed TLS Repository: https://github.com/ARMmbed/mbedtls.git
1857.. _mbed TLS Security Center: https://tls.mbed.org/security
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001858.. _ARM's website: `FVP models`_
1859.. _FVP models: https://developer.arm.com/products/system-design/fixed-virtual-platforms
Douglas Raillard6f625742017-06-28 15:23:03 +01001860.. _Juno Getting Started Guide: http://infocenter.arm.com/help/topic/com.arm.doc.dui0928e/DUI0928E_juno_arm_development_platform_gsg.pdf
David Cunado31f2f792017-06-29 12:01:33 +01001861.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf