| /*============================================================================== |
| Copyright (c) 2016-2018, The Linux Foundation. |
| Copyright (c) 2018-2020, Laurence Lundblade. |
| All rights reserved. |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are |
| met: |
| * Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| * Redistributions in binary form must reproduce the above |
| copyright notice, this list of conditions and the following |
| disclaimer in the documentation and/or other materials provided |
| with the distribution. |
| * Neither the name of The Linux Foundation nor the names of its |
| contributors, nor the name "Laurence Lundblade" may be used to |
| endorse or promote products derived from this software without |
| specific prior written permission. |
| |
| THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED |
| WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT |
| ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS |
| BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
| BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE |
| OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN |
| IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| =============================================================================*/ |
| |
| |
| #include "qcbor/qcbor_decode.h" |
| #include "ieee754.h" |
| |
| |
| /* |
| This casts away the const-ness of a pointer, usually so it can be |
| freed or realloced. |
| */ |
| #define UNCONST_POINTER(ptr) ((void *)(ptr)) |
| |
| |
| |
| /*=========================================================================== |
| DecodeNesting -- Functions for tracking array/map nesting when decoding |
| |
| See qcbor/qcbor_decode.h for definition of the object |
| used here: QCBORDecodeNesting |
| ===========================================================================*/ |
| |
| |
| |
| /* |
| The main mode of decoding is a pre-order travesal of the tree of leaves (numbers, strings...) |
| formed by intermediate nodes (arrays and maps). The cursor for the traversal |
| is the byte offset in the encoded input and a leaf counter for definite |
| length maps and arrays. Indefinite length maps and arrays are handled |
| by look ahead for the break. |
| |
| The view presented to the caller has tags, labels and the chunks of |
| indefinite length strings aggregated into one decorated data item. |
| |
| The caller understands the nesting level in pre-order traversal by |
| the fact that a data item that is a map or array is presented to |
| the caller when it is first encountered in the pre-order traversal and that all data items are presented with its nesting level |
| and the nesting level of the next item. |
| |
| The caller traverse maps and arrays in a special mode that often more convenient |
| that tracking by nesting level. When an array or map is expected or encountered |
| the EnterMap or EnteryArray can be called. |
| |
| When entering a map or array like this, the cursor points to the first |
| item in the map or array. When exiting, it points to the item after |
| the map or array, regardless of whether the items in the map or array were |
| all traversed. |
| |
| When in a map or array, the cursor functions as normal, but traversal |
| cannot go past the end of the map or array that was entered. If this |
| is attempted the QCBOR_ERR_NO_MORE_ITEMS error is returned. To |
| go past the end of the map or array ExitMap() or ExitArray() must |
| be called. It can be called any time regardless of the position |
| of the cursor. |
| |
| When a map is entered, a special function allows fetching data items |
| by label. This call will traversal the whole map looking for the |
| labeled item. The whole map is traversed so as to detect duplicates. |
| This type of fetching items does not affect the normal traversal |
| cursor. |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| When a data item is presented to the caller, the nesting level of the data |
| item is presented along with the nesting level of the item that would be |
| next consumed. |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| */ |
| |
| inline static bool |
| // TODO: test Map as array better? |
| IsMapOrArray(uint8_t uDataType) |
| { |
| return uDataType == QCBOR_TYPE_MAP || |
| uDataType == QCBOR_TYPE_ARRAY || |
| uDataType == QCBOR_TYPE_MAP_AS_ARRAY; |
| } |
| |
| inline static bool |
| DecodeNesting_IsAtTop(const QCBORDecodeNesting *pNesting) |
| { |
| if(pNesting->pCurrent == &(pNesting->pMapsAndArrays[0])) { |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| // Determine if at the end of a map or array while in map mode |
| inline static bool |
| DecodeNesting_AtEnd(const QCBORDecodeNesting *pNesting) |
| { |
| if(pNesting->pCurrentMap && pNesting->pCurrentMap->uMapMode) { |
| if(pNesting->pCurrentMap->uCount == 0) { |
| // TODO: won't work for indefinite length |
| // In map mode and consumed all items, so it is the end |
| return true; |
| } else { |
| // In map mode, all items not consumed, so it is NOT the end |
| return false; |
| } |
| } else { |
| // Not in map mode. The end is determined in other ways. |
| return false; |
| } |
| } |
| |
| |
| inline static int |
| DecodeNesting_IsIndefiniteLength(const QCBORDecodeNesting *pNesting) |
| { |
| return pNesting->pCurrent->uCount == UINT16_MAX; |
| } |
| |
| inline static int |
| DecodeNesting_InMapMode(const QCBORDecodeNesting *pNesting) |
| { |
| return (bool)pNesting->pCurrentMap->uMapMode; |
| } |
| |
| inline static uint8_t |
| DecodeNesting_GetLevel(QCBORDecodeNesting *pNesting) |
| { |
| // Check in DecodeNesting_Descend and never having |
| // QCBOR_MAX_ARRAY_NESTING > 255 gaurantees cast is safe |
| return (uint8_t)(pNesting->pCurrent - &(pNesting->pMapsAndArrays[0])); |
| } |
| |
| inline static uint8_t |
| DecodeNesting_GetMapModeLevel(QCBORDecodeNesting *pNesting) |
| { |
| // Check in DecodeNesting_Descend and never having |
| // QCBOR_MAX_ARRAY_NESTING > 255 gaurantees cast is safe |
| return (uint8_t)(pNesting->pCurrentMap - &(pNesting->pMapsAndArrays[0])); |
| } |
| |
| inline static int |
| DecodeNesting_TypeIsMap(const QCBORDecodeNesting *pNesting) |
| { |
| if(DecodeNesting_IsAtTop(pNesting)) { |
| return 0; |
| } |
| |
| return CBOR_MAJOR_TYPE_MAP == pNesting->pCurrent->uMajorType; |
| } |
| |
| // Process a break. This will either ascend the nesting or error out |
| inline static QCBORError |
| DecodeNesting_BreakAscend(QCBORDecodeNesting *pNesting) |
| { |
| // breaks must always occur when there is nesting |
| if(DecodeNesting_IsAtTop(pNesting)) { |
| return QCBOR_ERR_BAD_BREAK; |
| } |
| |
| // breaks can only occur when the map/array is indefinite length |
| if(!DecodeNesting_IsIndefiniteLength(pNesting)) { |
| return QCBOR_ERR_BAD_BREAK; |
| } |
| |
| // if all OK, the break reduces the level of nesting |
| pNesting->pCurrent--; |
| |
| return QCBOR_SUCCESS; |
| } |
| |
| // Called on every single item except breaks including decode of a map/array |
| /* Decrements the map/array counter if possible. If decrement |
| closed out a map or array, then level up in nesting and decrement |
| again, until, the top is reached or the end of a map mode is reached |
| */ |
| inline static void |
| DecodeNesting_DecrementCount(QCBORDecodeNesting *pNesting) |
| { |
| while(!DecodeNesting_IsAtTop(pNesting)) { |
| // Not at the top level, so there is decrementing to be done. |
| |
| if(!DecodeNesting_IsIndefiniteLength(pNesting)) { |
| // Decrement the current nesting level if it is not indefinite. |
| pNesting->pCurrent->uCount--; |
| } |
| |
| if(pNesting->pCurrent->uCount != 0) { |
| // Did not close out an array or map, so nothing further |
| break; |
| } |
| |
| if(pNesting->pCurrent->uMapMode) { |
| // In map mode the level-up must be done explicitly |
| break; |
| } |
| |
| // Closed out an array or map so level up |
| pNesting->pCurrent--; |
| /*if(pNesting->pCurrent->uMapMode) { |
| // Bring the current map level along if new level is a map |
| // TODO: must search up until a mapmode level is found. |
| pNesting->pCurrentMap = pNesting->pCurrent; |
| } */ |
| |
| // Continue with loop to see if closing out this doesn't close out more |
| } |
| } |
| |
| inline static void |
| DecodeNesting_EnterMapMode(QCBORDecodeNesting *pNesting, size_t uOffset) |
| { |
| pNesting->pCurrentMap = pNesting->pCurrent; |
| pNesting->pCurrentMap->uMapMode = 1; |
| // Cast to uint32_t is safe because QCBOR onl works on data < UINT32_MAX |
| pNesting->pCurrentMap->uOffset = (uint32_t)uOffset; |
| } |
| |
| inline static void |
| DecodeNesting_Exit(QCBORDecodeNesting *pNesting) |
| { |
| pNesting->pCurrentMap->uMapMode = 0; |
| pNesting->pCurrent = pNesting->pCurrentMap - 1; // TODO error check |
| |
| DecodeNesting_DecrementCount(pNesting); |
| |
| while(1) { |
| pNesting->pCurrentMap--; |
| if(pNesting->pCurrentMap->uMapMode) { |
| break; |
| } |
| if(pNesting->pCurrentMap == &(pNesting->pMapsAndArrays[0])) { |
| break; |
| } |
| } |
| } |
| |
| // Called on every map/array |
| inline static QCBORError |
| DecodeNesting_Descend(QCBORDecodeNesting *pNesting, QCBORItem *pItem) |
| { |
| QCBORError nReturn = QCBOR_SUCCESS; |
| |
| if(pItem->val.uCount == 0) { |
| // Nothing to do for empty definite lenth arrays. They are just are |
| // effectively the same as an item that is not a map or array |
| goto Done; |
| // Empty indefinite length maps and arrays are handled elsewhere |
| } |
| |
| // Error out if arrays is too long to handle |
| if(pItem->val.uCount != UINT16_MAX && pItem->val.uCount > QCBOR_MAX_ITEMS_IN_ARRAY) { |
| nReturn = QCBOR_ERR_ARRAY_TOO_LONG; |
| goto Done; |
| } |
| |
| // Error out if nesting is too deep |
| if(pNesting->pCurrent >= &(pNesting->pMapsAndArrays[QCBOR_MAX_ARRAY_NESTING])) { |
| nReturn = QCBOR_ERR_ARRAY_NESTING_TOO_DEEP; |
| goto Done; |
| } |
| |
| // The actual descend |
| pNesting->pCurrent++; |
| |
| // Record a few details for this nesting level |
| pNesting->pCurrent->uMajorType = pItem->uDataType; |
| pNesting->pCurrent->uCount = pItem->val.uCount; |
| pNesting->pCurrent->uSaveCount = pItem->val.uCount; |
| pNesting->pCurrent->uMapMode = 0; |
| |
| Done: |
| return nReturn;; |
| } |
| |
| inline static void |
| DecodeNesting_Init(QCBORDecodeNesting *pNesting) |
| { |
| pNesting->pCurrent = &(pNesting->pMapsAndArrays[0]); |
| } |
| |
| |
| static void DecodeNesting_PrepareForMapSearch(QCBORDecodeNesting *pNesting, QCBORDecodeNesting *pSave) |
| { |
| *pSave = *pNesting; |
| pNesting->pCurrent = pNesting->pCurrentMap; |
| |
| if(pNesting->pCurrent->uCount != UINT16_MAX) { |
| pNesting->pCurrent->uCount = pNesting->pCurrent->uSaveCount; |
| } |
| } |
| |
| static void DecodeNesting_RestoreFromMapSearch(QCBORDecodeNesting *pNesting, QCBORDecodeNesting *pSave) |
| { |
| *pNesting = *pSave; |
| } |
| |
| |
| |
| /* |
| This list of built-in tags. Only add tags here that are |
| clearly established and useful. Once a tag is added here |
| it can't be taken out as that would break backwards compatibility. |
| There are only 48 slots available forever. |
| */ |
| static const uint16_t spBuiltInTagMap[] = { |
| CBOR_TAG_DATE_STRING, // See TAG_MAPPER_FIRST_SIX |
| CBOR_TAG_DATE_EPOCH, // See TAG_MAPPER_FIRST_SIX |
| CBOR_TAG_POS_BIGNUM, // See TAG_MAPPER_FIRST_SIX |
| CBOR_TAG_NEG_BIGNUM, // See TAG_MAPPER_FIRST_SIX |
| CBOR_TAG_DECIMAL_FRACTION, // See TAG_MAPPER_FIRST_SIX |
| CBOR_TAG_BIGFLOAT, // See TAG_MAPPER_FIRST_SIX |
| CBOR_TAG_COSE_ENCRYPTO, |
| CBOR_TAG_COSE_MAC0, |
| CBOR_TAG_COSE_SIGN1, |
| CBOR_TAG_ENC_AS_B64URL, |
| CBOR_TAG_ENC_AS_B64, |
| CBOR_TAG_ENC_AS_B16, |
| CBOR_TAG_CBOR, |
| CBOR_TAG_URI, |
| CBOR_TAG_B64URL, |
| CBOR_TAG_B64, |
| CBOR_TAG_REGEX, |
| CBOR_TAG_MIME, |
| CBOR_TAG_BIN_UUID, |
| CBOR_TAG_CWT, |
| CBOR_TAG_ENCRYPT, |
| CBOR_TAG_MAC, |
| CBOR_TAG_SIGN, |
| CBOR_TAG_GEO_COORD, |
| CBOR_TAG_CBOR_MAGIC |
| }; |
| |
| // This is used in a bit of cleverness in GetNext_TaggedItem() to |
| // keep code size down and switch for the internal processing of |
| // these types. This will break if the first six items in |
| // spBuiltInTagMap don't have values 0,1,2,3,4,5. That is the |
| // mapping is 0 to 0, 1 to 1, 2 to 2 and 3 to 3.... |
| #define QCBOR_TAGFLAG_DATE_STRING (0x01LL << CBOR_TAG_DATE_STRING) |
| #define QCBOR_TAGFLAG_DATE_EPOCH (0x01LL << CBOR_TAG_DATE_EPOCH) |
| #define QCBOR_TAGFLAG_POS_BIGNUM (0x01LL << CBOR_TAG_POS_BIGNUM) |
| #define QCBOR_TAGFLAG_NEG_BIGNUM (0x01LL << CBOR_TAG_NEG_BIGNUM) |
| #define QCBOR_TAGFLAG_DECIMAL_FRACTION (0x01LL << CBOR_TAG_DECIMAL_FRACTION) |
| #define QCBOR_TAGFLAG_BIGFLOAT (0x01LL << CBOR_TAG_BIGFLOAT) |
| |
| #define TAG_MAPPER_FIRST_SIX (QCBOR_TAGFLAG_DATE_STRING |\ |
| QCBOR_TAGFLAG_DATE_EPOCH |\ |
| QCBOR_TAGFLAG_POS_BIGNUM |\ |
| QCBOR_TAGFLAG_NEG_BIGNUM |\ |
| QCBOR_TAGFLAG_DECIMAL_FRACTION |\ |
| QCBOR_TAGFLAG_BIGFLOAT) |
| |
| #define TAG_MAPPER_FIRST_FOUR (QCBOR_TAGFLAG_DATE_STRING |\ |
| QCBOR_TAGFLAG_DATE_EPOCH |\ |
| QCBOR_TAGFLAG_POS_BIGNUM |\ |
| QCBOR_TAGFLAG_NEG_BIGNUM) |
| |
| #define TAG_MAPPER_TOTAL_TAG_BITS 64 // Number of bits in a uint64_t |
| #define TAG_MAPPER_CUSTOM_TAGS_BASE_INDEX (TAG_MAPPER_TOTAL_TAG_BITS - QCBOR_MAX_CUSTOM_TAGS) // 48 |
| #define TAG_MAPPER_MAX_SIZE_BUILT_IN_TAGS (TAG_MAPPER_TOTAL_TAG_BITS - QCBOR_MAX_CUSTOM_TAGS ) // 48 |
| |
| static inline int TagMapper_LookupBuiltIn(uint64_t uTag) |
| { |
| if(sizeof(spBuiltInTagMap)/sizeof(uint16_t) > TAG_MAPPER_MAX_SIZE_BUILT_IN_TAGS) { |
| /* |
| This is a cross-check to make sure the above array doesn't |
| accidentally get made too big. In normal conditions the above |
| test should optimize out as all the values are known at compile |
| time. |
| */ |
| return -1; |
| } |
| |
| if(uTag > UINT16_MAX) { |
| // This tag map works only on 16-bit tags |
| return -1; |
| } |
| |
| for(int nTagBitIndex = 0; nTagBitIndex < (int)(sizeof(spBuiltInTagMap)/sizeof(uint16_t)); nTagBitIndex++) { |
| if(spBuiltInTagMap[nTagBitIndex] == uTag) { |
| return nTagBitIndex; |
| } |
| } |
| return -1; // Indicates no match |
| } |
| |
| static inline int TagMapper_LookupCallerConfigured(const QCBORTagListIn *pCallerConfiguredTagMap, uint64_t uTag) |
| { |
| for(int nTagBitIndex = 0; nTagBitIndex < pCallerConfiguredTagMap->uNumTags; nTagBitIndex++) { |
| if(pCallerConfiguredTagMap->puTags[nTagBitIndex] == uTag) { |
| return nTagBitIndex + TAG_MAPPER_CUSTOM_TAGS_BASE_INDEX; |
| } |
| } |
| |
| return -1; // Indicates no match |
| } |
| |
| /* |
| Find the tag bit index for a given tag value, or error out |
| |
| This and the above functions could probably be optimized and made |
| clearer and neater. |
| */ |
| static QCBORError |
| TagMapper_Lookup(const QCBORTagListIn *pCallerConfiguredTagMap, |
| uint64_t uTag, |
| uint8_t *puTagBitIndex) |
| { |
| int nTagBitIndex = TagMapper_LookupBuiltIn(uTag); |
| if(nTagBitIndex >= 0) { |
| // Cast is safe because TagMapper_LookupBuiltIn never returns > 47 |
| *puTagBitIndex = (uint8_t)nTagBitIndex; |
| return QCBOR_SUCCESS; |
| } |
| |
| if(pCallerConfiguredTagMap) { |
| if(pCallerConfiguredTagMap->uNumTags > QCBOR_MAX_CUSTOM_TAGS) { |
| return QCBOR_ERR_TOO_MANY_TAGS; |
| } |
| nTagBitIndex = TagMapper_LookupCallerConfigured(pCallerConfiguredTagMap, uTag); |
| if(nTagBitIndex >= 0) { |
| // Cast is safe because TagMapper_LookupBuiltIn never returns > 63 |
| |
| *puTagBitIndex = (uint8_t)nTagBitIndex; |
| return QCBOR_SUCCESS; |
| } |
| } |
| |
| return QCBOR_ERR_BAD_OPT_TAG; |
| } |
| |
| |
| |
| /*=========================================================================== |
| QCBORStringAllocate -- STRING ALLOCATOR INVOCATION |
| |
| The following four functions are pretty wrappers for invocation of |
| the string allocator supplied by the caller. |
| |
| ===========================================================================*/ |
| |
| static inline void |
| StringAllocator_Free(const QCORInternalAllocator *pMe, void *pMem) |
| { |
| (pMe->pfAllocator)(pMe->pAllocateCxt, pMem, 0); |
| } |
| |
| // StringAllocator_Reallocate called with pMem NULL is |
| // equal to StringAllocator_Allocate() |
| static inline UsefulBuf |
| StringAllocator_Reallocate(const QCORInternalAllocator *pMe, |
| void *pMem, |
| size_t uSize) |
| { |
| return (pMe->pfAllocator)(pMe->pAllocateCxt, pMem, uSize); |
| } |
| |
| static inline UsefulBuf |
| StringAllocator_Allocate(const QCORInternalAllocator *pMe, size_t uSize) |
| { |
| return (pMe->pfAllocator)(pMe->pAllocateCxt, NULL, uSize); |
| } |
| |
| static inline void |
| StringAllocator_Destruct(const QCORInternalAllocator *pMe) |
| { |
| if(pMe->pfAllocator) { |
| (pMe->pfAllocator)(pMe->pAllocateCxt, NULL, 0); |
| } |
| } |
| |
| |
| |
| /*=========================================================================== |
| QCBORDecode -- The main implementation of CBOR decoding |
| |
| See qcbor/qcbor_decode.h for definition of the object |
| used here: QCBORDecodeContext |
| ===========================================================================*/ |
| /* |
| Public function, see header file |
| */ |
| void QCBORDecode_Init(QCBORDecodeContext *me, |
| UsefulBufC EncodedCBOR, |
| QCBORDecodeMode nDecodeMode) |
| { |
| memset(me, 0, sizeof(QCBORDecodeContext)); |
| UsefulInputBuf_Init(&(me->InBuf), EncodedCBOR); |
| // Don't bother with error check on decode mode. If a bad value is |
| // passed it will just act as if the default normal mode of 0 was set. |
| me->uDecodeMode = (uint8_t)nDecodeMode; |
| DecodeNesting_Init(&(me->nesting)); |
| } |
| |
| |
| /* |
| Public function, see header file |
| */ |
| void QCBORDecode_SetUpAllocator(QCBORDecodeContext *pMe, |
| QCBORStringAllocate pfAllocateFunction, |
| void *pAllocateContext, |
| bool bAllStrings) |
| { |
| pMe->StringAllocator.pfAllocator = pfAllocateFunction; |
| pMe->StringAllocator.pAllocateCxt = pAllocateContext; |
| pMe->bStringAllocateAll = bAllStrings; |
| } |
| |
| |
| /* |
| Public function, see header file |
| */ |
| void QCBORDecode_SetCallerConfiguredTagList(QCBORDecodeContext *me, |
| const QCBORTagListIn *pTagList) |
| { |
| me->pCallerConfiguredTagList = pTagList; |
| } |
| |
| |
| /* |
| This decodes the fundamental part of a CBOR data item, the type and |
| number |
| |
| This is the Counterpart to InsertEncodedTypeAndNumber(). |
| |
| This does the network->host byte order conversion. The conversion |
| here also results in the conversion for floats in addition to that |
| for lengths, tags and integer values. |
| |
| This returns: |
| pnMajorType -- the major type for the item |
| |
| puArgument -- the "number" which is used a the value for integers, |
| tags and floats and length for strings and arrays |
| |
| pnAdditionalInfo -- Pass this along to know what kind of float or |
| if length is indefinite |
| |
| The int type is preferred to uint8_t for some variables as this |
| avoids integer promotions, can reduce code size and makes |
| static analyzers happier. |
| */ |
| inline static QCBORError DecodeTypeAndNumber(UsefulInputBuf *pUInBuf, |
| int *pnMajorType, |
| uint64_t *puArgument, |
| int *pnAdditionalInfo) |
| { |
| QCBORError nReturn; |
| |
| // Get the initial byte that every CBOR data item has |
| const int nInitialByte = (int)UsefulInputBuf_GetByte(pUInBuf); |
| |
| // Break down the initial byte |
| const int nTmpMajorType = nInitialByte >> 5; |
| const int nAdditionalInfo = nInitialByte & 0x1f; |
| |
| // Where the number or argument accumulates |
| uint64_t uArgument; |
| |
| if(nAdditionalInfo >= LEN_IS_ONE_BYTE && nAdditionalInfo <= LEN_IS_EIGHT_BYTES) { |
| // Need to get 1,2,4 or 8 additional argument bytes Map |
| // LEN_IS_ONE_BYTE.. LEN_IS_EIGHT_BYTES to actual length |
| static const uint8_t aIterate[] = {1,2,4,8}; |
| |
| // Loop getting all the bytes in the argument |
| uArgument = 0; |
| for(int i = aIterate[nAdditionalInfo - LEN_IS_ONE_BYTE]; i; i--) { |
| // This shift and add gives the endian conversion |
| uArgument = (uArgument << 8) + UsefulInputBuf_GetByte(pUInBuf); |
| } |
| } else if(nAdditionalInfo >= ADDINFO_RESERVED1 && nAdditionalInfo <= ADDINFO_RESERVED3) { |
| // The reserved and thus-far unused additional info values |
| nReturn = QCBOR_ERR_UNSUPPORTED; |
| goto Done; |
| } else { |
| // Less than 24, additional info is argument or 31, an indefinite length |
| // No more bytes to get |
| uArgument = (uint64_t)nAdditionalInfo; |
| } |
| |
| if(UsefulInputBuf_GetError(pUInBuf)) { |
| nReturn = QCBOR_ERR_HIT_END; |
| goto Done; |
| } |
| |
| // All successful if we got here. |
| nReturn = QCBOR_SUCCESS; |
| *pnMajorType = nTmpMajorType; |
| *puArgument = uArgument; |
| *pnAdditionalInfo = nAdditionalInfo; |
| |
| Done: |
| return nReturn; |
| } |
| |
| |
| /* |
| CBOR doesn't explicitly specify two's compliment for integers but all |
| CPUs use it these days and the test vectors in the RFC are so. All |
| integers in the CBOR structure are positive and the major type |
| indicates positive or negative. CBOR can express positive integers |
| up to 2^x - 1 where x is the number of bits and negative integers |
| down to 2^x. Note that negative numbers can be one more away from |
| zero than positive. Stdint, as far as I can tell, uses two's |
| compliment to represent negative integers. |
| |
| See http://www.unix.org/whitepapers/64bit.html for reasons int isn't |
| used carefully here, and in particular why it isn't used in the interface. |
| Also see |
| https://stackoverflow.com/questions/17489857/why-is-int-typically-32-bit-on-64-bit-compilers |
| |
| Int is used for values that need less than 16-bits and would be subject |
| to integer promotion and complaining by static analyzers. |
| */ |
| inline static QCBORError |
| DecodeInteger(int nMajorType, uint64_t uNumber, QCBORItem *pDecodedItem) |
| { |
| QCBORError nReturn = QCBOR_SUCCESS; |
| |
| if(nMajorType == CBOR_MAJOR_TYPE_POSITIVE_INT) { |
| if (uNumber <= INT64_MAX) { |
| pDecodedItem->val.int64 = (int64_t)uNumber; |
| pDecodedItem->uDataType = QCBOR_TYPE_INT64; |
| |
| } else { |
| pDecodedItem->val.uint64 = uNumber; |
| pDecodedItem->uDataType = QCBOR_TYPE_UINT64; |
| |
| } |
| } else { |
| if(uNumber <= INT64_MAX) { |
| // CBOR's representation of negative numbers lines up with the |
| // two-compliment representation. A negative integer has one |
| // more in range than a positive integer. INT64_MIN is |
| // equal to (-INT64_MAX) - 1. |
| pDecodedItem->val.int64 = (-(int64_t)uNumber) - 1; |
| pDecodedItem->uDataType = QCBOR_TYPE_INT64; |
| |
| } else { |
| // C can't represent a negative integer in this range |
| // so it is an error. |
| nReturn = QCBOR_ERR_INT_OVERFLOW; |
| } |
| } |
| |
| return nReturn; |
| } |
| |
| // Make sure #define value line up as DecodeSimple counts on this. |
| #if QCBOR_TYPE_FALSE != CBOR_SIMPLEV_FALSE |
| #error QCBOR_TYPE_FALSE macro value wrong |
| #endif |
| |
| #if QCBOR_TYPE_TRUE != CBOR_SIMPLEV_TRUE |
| #error QCBOR_TYPE_TRUE macro value wrong |
| #endif |
| |
| #if QCBOR_TYPE_NULL != CBOR_SIMPLEV_NULL |
| #error QCBOR_TYPE_NULL macro value wrong |
| #endif |
| |
| #if QCBOR_TYPE_UNDEF != CBOR_SIMPLEV_UNDEF |
| #error QCBOR_TYPE_UNDEF macro value wrong |
| #endif |
| |
| #if QCBOR_TYPE_BREAK != CBOR_SIMPLE_BREAK |
| #error QCBOR_TYPE_BREAK macro value wrong |
| #endif |
| |
| #if QCBOR_TYPE_DOUBLE != DOUBLE_PREC_FLOAT |
| #error QCBOR_TYPE_DOUBLE macro value wrong |
| #endif |
| |
| #if QCBOR_TYPE_FLOAT != SINGLE_PREC_FLOAT |
| #error QCBOR_TYPE_FLOAT macro value wrong |
| #endif |
| |
| /* |
| Decode true, false, floats, break... |
| */ |
| inline static QCBORError |
| DecodeSimple(int nAdditionalInfo, uint64_t uNumber, QCBORItem *pDecodedItem) |
| { |
| QCBORError nReturn = QCBOR_SUCCESS; |
| |
| // uAdditionalInfo is 5 bits from the initial byte compile time checks |
| // above make sure uAdditionalInfo values line up with uDataType values. |
| // DecodeTypeAndNumber never returns a major type > 1f so cast is safe |
| pDecodedItem->uDataType = (uint8_t)nAdditionalInfo; |
| |
| switch(nAdditionalInfo) { |
| // No check for ADDINFO_RESERVED1 - ADDINFO_RESERVED3 as they are |
| // caught before this is called. |
| |
| case HALF_PREC_FLOAT: |
| pDecodedItem->val.dfnum = IEEE754_HalfToDouble((uint16_t)uNumber); |
| pDecodedItem->uDataType = QCBOR_TYPE_DOUBLE; |
| break; |
| case SINGLE_PREC_FLOAT: |
| pDecodedItem->val.dfnum = (double)UsefulBufUtil_CopyUint32ToFloat((uint32_t)uNumber); |
| pDecodedItem->uDataType = QCBOR_TYPE_DOUBLE; |
| break; |
| case DOUBLE_PREC_FLOAT: |
| pDecodedItem->val.dfnum = UsefulBufUtil_CopyUint64ToDouble(uNumber); |
| pDecodedItem->uDataType = QCBOR_TYPE_DOUBLE; |
| break; |
| |
| case CBOR_SIMPLEV_FALSE: // 20 |
| case CBOR_SIMPLEV_TRUE: // 21 |
| case CBOR_SIMPLEV_NULL: // 22 |
| case CBOR_SIMPLEV_UNDEF: // 23 |
| case CBOR_SIMPLE_BREAK: // 31 |
| break; // nothing to do |
| |
| case CBOR_SIMPLEV_ONEBYTE: // 24 |
| if(uNumber <= CBOR_SIMPLE_BREAK) { |
| // This takes out f8 00 ... f8 1f which should be encoded as e0 … f7 |
| nReturn = QCBOR_ERR_BAD_TYPE_7; |
| goto Done; |
| } |
| /* FALLTHROUGH */ |
| // fall through intentionally |
| |
| default: // 0-19 |
| pDecodedItem->uDataType = QCBOR_TYPE_UKNOWN_SIMPLE; |
| /* |
| DecodeTypeAndNumber will make uNumber equal to |
| uAdditionalInfo when uAdditionalInfo is < 24 This cast is |
| safe because the 2, 4 and 8 byte lengths of uNumber are in |
| the double/float cases above |
| */ |
| pDecodedItem->val.uSimple = (uint8_t)uNumber; |
| break; |
| } |
| |
| Done: |
| return nReturn; |
| } |
| |
| |
| /* |
| Decode text and byte strings. Call the string allocator if asked to. |
| */ |
| inline static QCBORError DecodeBytes(const QCORInternalAllocator *pAllocator, |
| int nMajorType, |
| uint64_t uStrLen, |
| UsefulInputBuf *pUInBuf, |
| QCBORItem *pDecodedItem) |
| { |
| QCBORError nReturn = QCBOR_SUCCESS; |
| |
| // CBOR lengths can be 64 bits, but size_t is not 64 bits on all CPUs. |
| // This check makes the casts to size_t below safe. |
| |
| // 4 bytes less than the largest sizeof() so this can be tested by |
| // putting a SIZE_MAX length in the CBOR test input (no one will |
| // care the limit on strings is 4 bytes shorter). |
| if(uStrLen > SIZE_MAX-4) { |
| nReturn = QCBOR_ERR_STRING_TOO_LONG; |
| goto Done; |
| } |
| |
| const UsefulBufC Bytes = UsefulInputBuf_GetUsefulBuf(pUInBuf, (size_t)uStrLen); |
| if(UsefulBuf_IsNULLC(Bytes)) { |
| // Failed to get the bytes for this string item |
| nReturn = QCBOR_ERR_HIT_END; |
| goto Done; |
| } |
| |
| if(pAllocator) { |
| // We are asked to use string allocator to make a copy |
| UsefulBuf NewMem = StringAllocator_Allocate(pAllocator, (size_t)uStrLen); |
| if(UsefulBuf_IsNULL(NewMem)) { |
| nReturn = QCBOR_ERR_STRING_ALLOCATE; |
| goto Done; |
| } |
| pDecodedItem->val.string = UsefulBuf_Copy(NewMem, Bytes); |
| pDecodedItem->uDataAlloc = 1; |
| } else { |
| // Normal case with no string allocator |
| pDecodedItem->val.string = Bytes; |
| } |
| const bool bIsBstr = (nMajorType == CBOR_MAJOR_TYPE_BYTE_STRING); |
| // Cast because ternary operator causes promotion to integer |
| pDecodedItem->uDataType = (uint8_t)(bIsBstr ? QCBOR_TYPE_BYTE_STRING |
| : QCBOR_TYPE_TEXT_STRING); |
| |
| Done: |
| return nReturn; |
| } |
| |
| |
| |
| |
| |
| |
| |
| // Make sure the constants align as this is assumed by |
| // the GetAnItem() implementation |
| #if QCBOR_TYPE_ARRAY != CBOR_MAJOR_TYPE_ARRAY |
| #error QCBOR_TYPE_ARRAY value not lined up with major type |
| #endif |
| #if QCBOR_TYPE_MAP != CBOR_MAJOR_TYPE_MAP |
| #error QCBOR_TYPE_MAP value not lined up with major type |
| #endif |
| |
| /* |
| This gets a single data item and decodes it including preceding |
| optional tagging. This does not deal with arrays and maps and nesting |
| except to decode the data item introducing them. Arrays and maps are |
| handled at the next level up in GetNext(). |
| |
| Errors detected here include: an array that is too long to decode, |
| hit end of buffer unexpectedly, a few forms of invalid encoded CBOR |
| */ |
| static QCBORError GetNext_Item(UsefulInputBuf *pUInBuf, |
| QCBORItem *pDecodedItem, |
| const QCORInternalAllocator *pAllocator) |
| { |
| QCBORError nReturn; |
| |
| /* |
| Get the major type and the number. Number could be length of more |
| bytes or the value depending on the major type nAdditionalInfo is |
| an encoding of the length of the uNumber and is needed to decode |
| floats and doubles |
| */ |
| int nMajorType; |
| uint64_t uNumber; |
| int nAdditionalInfo; |
| |
| memset(pDecodedItem, 0, sizeof(QCBORItem)); |
| |
| nReturn = DecodeTypeAndNumber(pUInBuf, &nMajorType, &uNumber, &nAdditionalInfo); |
| |
| // Error out here if we got into trouble on the type and number. The |
| // code after this will not work if the type and number is not good. |
| if(nReturn) { |
| goto Done; |
| } |
| |
| // At this point the major type and the value are valid. We've got |
| // the type and the number that starts every CBOR data item. |
| switch (nMajorType) { |
| case CBOR_MAJOR_TYPE_POSITIVE_INT: // Major type 0 |
| case CBOR_MAJOR_TYPE_NEGATIVE_INT: // Major type 1 |
| if(nAdditionalInfo == LEN_IS_INDEFINITE) { |
| nReturn = QCBOR_ERR_BAD_INT; |
| } else { |
| nReturn = DecodeInteger(nMajorType, uNumber, pDecodedItem); |
| } |
| break; |
| |
| case CBOR_MAJOR_TYPE_BYTE_STRING: // Major type 2 |
| case CBOR_MAJOR_TYPE_TEXT_STRING: // Major type 3 |
| if(nAdditionalInfo == LEN_IS_INDEFINITE) { |
| const bool bIsBstr = (nMajorType == CBOR_MAJOR_TYPE_BYTE_STRING); |
| pDecodedItem->uDataType = (uint8_t)(bIsBstr ? QCBOR_TYPE_BYTE_STRING |
| : QCBOR_TYPE_TEXT_STRING); |
| pDecodedItem->val.string = (UsefulBufC){NULL, SIZE_MAX}; |
| } else { |
| nReturn = DecodeBytes(pAllocator, nMajorType, uNumber, pUInBuf, pDecodedItem); |
| } |
| break; |
| |
| case CBOR_MAJOR_TYPE_ARRAY: // Major type 4 |
| case CBOR_MAJOR_TYPE_MAP: // Major type 5 |
| // Record the number of items in the array or map |
| if(uNumber > QCBOR_MAX_ITEMS_IN_ARRAY) { |
| nReturn = QCBOR_ERR_ARRAY_TOO_LONG; |
| goto Done; |
| } |
| if(nAdditionalInfo == LEN_IS_INDEFINITE) { |
| pDecodedItem->val.uCount = UINT16_MAX; // Indicate indefinite length |
| } else { |
| // type conversion OK because of check above |
| pDecodedItem->val.uCount = (uint16_t)uNumber; |
| } |
| // C preproc #if above makes sure constants for major types align |
| // DecodeTypeAndNumber never returns a major type > 7 so cast is safe |
| pDecodedItem->uDataType = (uint8_t)nMajorType; |
| break; |
| |
| case CBOR_MAJOR_TYPE_OPTIONAL: // Major type 6, optional prepended tags |
| if(nAdditionalInfo == LEN_IS_INDEFINITE) { |
| nReturn = QCBOR_ERR_BAD_INT; |
| } else { |
| pDecodedItem->val.uTagV = uNumber; |
| pDecodedItem->uDataType = QCBOR_TYPE_OPTTAG; |
| } |
| break; |
| |
| case CBOR_MAJOR_TYPE_SIMPLE: |
| // Major type 7, float, double, true, false, null... |
| nReturn = DecodeSimple(nAdditionalInfo, uNumber, pDecodedItem); |
| break; |
| |
| default: |
| // Never happens because DecodeTypeAndNumber() should never return > 7 |
| nReturn = QCBOR_ERR_UNSUPPORTED; |
| break; |
| } |
| |
| Done: |
| return nReturn; |
| } |
| |
| |
| |
| /* |
| This layer deals with indefinite length strings. It pulls all the |
| individual chunk items together into one QCBORItem using the string |
| allocator. |
| |
| Code Reviewers: THIS FUNCTION DOES A LITTLE POINTER MATH |
| */ |
| static inline QCBORError |
| GetNext_FullItem(QCBORDecodeContext *me, QCBORItem *pDecodedItem) |
| { |
| // Stack usage; int/ptr 2 UsefulBuf 2 QCBORItem -- 96 |
| |
| // Get pointer to string allocator. First use is to pass it to |
| // GetNext_Item() when option is set to allocate for *every* string. |
| // Second use here is to allocate space to coallese indefinite |
| // length string items into one. |
| const QCORInternalAllocator *pAllocator = me->StringAllocator.pfAllocator ? |
| &(me->StringAllocator) : |
| NULL; |
| |
| QCBORError nReturn; |
| nReturn = GetNext_Item(&(me->InBuf), |
| pDecodedItem, |
| me->bStringAllocateAll ? pAllocator: NULL); |
| if(nReturn) { |
| goto Done; |
| } |
| |
| // To reduce code size by removing support for indefinite length strings, the |
| // code in this function from here down can be eliminated. Run tests, except |
| // indefinite length string tests, to be sure all is OK if this is removed. |
| |
| // Only do indefinite length processing on strings |
| const uint8_t uStringType = pDecodedItem->uDataType; |
| if(uStringType!= QCBOR_TYPE_BYTE_STRING && uStringType != QCBOR_TYPE_TEXT_STRING) { |
| goto Done; // no need to do any work here on non-string types |
| } |
| |
| // Is this a string with an indefinite length? |
| if(pDecodedItem->val.string.len != SIZE_MAX) { |
| goto Done; // length is not indefinite, so no work to do here |
| } |
| |
| // Can't do indefinite length strings without a string allocator |
| if(pAllocator == NULL) { |
| nReturn = QCBOR_ERR_NO_STRING_ALLOCATOR; |
| goto Done; |
| } |
| |
| // Loop getting chunk of indefinite string |
| UsefulBufC FullString = NULLUsefulBufC; |
| |
| for(;;) { |
| // Get item for next chunk |
| QCBORItem StringChunkItem; |
| // NULL string allocator passed here. Do not need to allocate |
| // chunks even if bStringAllocateAll is set. |
| nReturn = GetNext_Item(&(me->InBuf), &StringChunkItem, NULL); |
| if(nReturn) { |
| break; // Error getting the next chunk |
| } |
| |
| // See if it is a marker at end of indefinite length string |
| if(StringChunkItem.uDataType == QCBOR_TYPE_BREAK) { |
| // String is complete |
| pDecodedItem->val.string = FullString; |
| pDecodedItem->uDataAlloc = 1; |
| break; |
| } |
| |
| // Match data type of chunk to type at beginning. |
| // Also catches error of other non-string types that don't belong. |
| // Also catches indefinite length strings inside indefinite length strings |
| if(StringChunkItem.uDataType != uStringType || |
| StringChunkItem.val.string.len == SIZE_MAX) { |
| nReturn = QCBOR_ERR_INDEFINITE_STRING_CHUNK; |
| break; |
| } |
| |
| // Alloc new buffer or expand previously allocated buffer so it can fit |
| // The first time throurgh FullString.ptr is NULL and this is |
| // equivalent to StringAllocator_Allocate() |
| UsefulBuf NewMem = StringAllocator_Reallocate(pAllocator, |
| UNCONST_POINTER(FullString.ptr), |
| FullString.len + StringChunkItem.val.string.len); |
| |
| if(UsefulBuf_IsNULL(NewMem)) { |
| // Allocation of memory for the string failed |
| nReturn = QCBOR_ERR_STRING_ALLOCATE; |
| break; |
| } |
| |
| // Copy new string chunk at the end of string so far. |
| FullString = UsefulBuf_CopyOffset(NewMem, FullString.len, StringChunkItem.val.string); |
| } |
| |
| if(nReturn != QCBOR_SUCCESS && !UsefulBuf_IsNULLC(FullString)) { |
| // Getting the item failed, clean up the allocated memory |
| StringAllocator_Free(pAllocator, UNCONST_POINTER(FullString.ptr)); |
| } |
| |
| Done: |
| return nReturn; |
| } |
| |
| |
| /* |
| Gets all optional tag data items preceding a data item that is not an |
| optional tag and records them as bits in the tag map. |
| */ |
| static QCBORError |
| GetNext_TaggedItem(QCBORDecodeContext *me, |
| QCBORItem *pDecodedItem, |
| QCBORTagListOut *pTags) |
| { |
| // Stack usage: int/ptr: 3 -- 24 |
| QCBORError nReturn; |
| uint64_t uTagBits = 0; |
| if(pTags) { |
| pTags->uNumUsed = 0; |
| } |
| |
| // Loop fetching items until the item fetched is not a tag |
| for(;;) { |
| nReturn = GetNext_FullItem(me, pDecodedItem); |
| if(nReturn) { |
| goto Done; // Error out of the loop |
| } |
| |
| if(pDecodedItem->uDataType != QCBOR_TYPE_OPTTAG) { |
| // Successful exit from loop; maybe got some tags, maybe not |
| pDecodedItem->uTagBits = uTagBits; |
| break; |
| } |
| |
| uint8_t uTagBitIndex; |
| // Tag was mapped, tag was not mapped, error with tag list |
| switch(TagMapper_Lookup(me->pCallerConfiguredTagList, pDecodedItem->val.uTagV, &uTagBitIndex)) { |
| |
| case QCBOR_SUCCESS: |
| // Successfully mapped the tag |
| uTagBits |= 0x01ULL << uTagBitIndex; |
| break; |
| |
| case QCBOR_ERR_BAD_OPT_TAG: |
| // Tag is not recognized. Do nothing |
| break; |
| |
| default: |
| // Error Condition |
| goto Done; |
| } |
| |
| if(pTags) { |
| // Caller wants all tags recorded in the provided buffer |
| if(pTags->uNumUsed >= pTags->uNumAllocated) { |
| nReturn = QCBOR_ERR_TOO_MANY_TAGS; |
| goto Done; |
| } |
| pTags->puTags[pTags->uNumUsed] = pDecodedItem->val.uTagV; |
| pTags->uNumUsed++; |
| } |
| } |
| |
| Done: |
| return nReturn; |
| } |
| |
| |
| /* |
| This layer takes care of map entries. It combines the label and data |
| items into one QCBORItem. |
| */ |
| static inline QCBORError |
| GetNext_MapEntry(QCBORDecodeContext *me, |
| QCBORItem *pDecodedItem, |
| QCBORTagListOut *pTags) |
| { |
| // Stack use: int/ptr 1, QCBORItem -- 56 |
| QCBORError nReturn = GetNext_TaggedItem(me, pDecodedItem, pTags); |
| if(nReturn) |
| goto Done; |
| |
| if(pDecodedItem->uDataType == QCBOR_TYPE_BREAK) { |
| // Break can't be a map entry |
| goto Done; |
| } |
| |
| if(me->uDecodeMode != QCBOR_DECODE_MODE_MAP_AS_ARRAY) { |
| // In a map and caller wants maps decoded, not treated as arrays |
| |
| if(DecodeNesting_TypeIsMap(&(me->nesting))) { |
| // If in a map and the right decoding mode, get the label |
| |
| // Save label in pDecodedItem and get the next which will |
| // be the real data |
| QCBORItem LabelItem = *pDecodedItem; |
| nReturn = GetNext_TaggedItem(me, pDecodedItem, pTags); |
| if(nReturn) |
| goto Done; |
| |
| pDecodedItem->uLabelAlloc = LabelItem.uDataAlloc; |
| |
| if(LabelItem.uDataType == QCBOR_TYPE_TEXT_STRING) { |
| // strings are always good labels |
| pDecodedItem->label.string = LabelItem.val.string; |
| pDecodedItem->uLabelType = QCBOR_TYPE_TEXT_STRING; |
| } else if (QCBOR_DECODE_MODE_MAP_STRINGS_ONLY == me->uDecodeMode) { |
| // It's not a string and we only want strings |
| nReturn = QCBOR_ERR_MAP_LABEL_TYPE; |
| goto Done; |
| } else if(LabelItem.uDataType == QCBOR_TYPE_INT64) { |
| pDecodedItem->label.int64 = LabelItem.val.int64; |
| pDecodedItem->uLabelType = QCBOR_TYPE_INT64; |
| } else if(LabelItem.uDataType == QCBOR_TYPE_UINT64) { |
| pDecodedItem->label.uint64 = LabelItem.val.uint64; |
| pDecodedItem->uLabelType = QCBOR_TYPE_UINT64; |
| } else if(LabelItem.uDataType == QCBOR_TYPE_BYTE_STRING) { |
| pDecodedItem->label.string = LabelItem.val.string; |
| pDecodedItem->uLabelAlloc = LabelItem.uDataAlloc; |
| pDecodedItem->uLabelType = QCBOR_TYPE_BYTE_STRING; |
| } else { |
| // label is not an int or a string. It is an arrray |
| // or a float or such and this implementation doesn't handle that. |
| // Also, tags on labels are ignored. |
| nReturn = QCBOR_ERR_MAP_LABEL_TYPE; |
| goto Done; |
| } |
| } |
| } else { |
| if(pDecodedItem->uDataType == QCBOR_TYPE_MAP) { |
| if(pDecodedItem->val.uCount > QCBOR_MAX_ITEMS_IN_ARRAY/2) { |
| nReturn = QCBOR_ERR_ARRAY_TOO_LONG; |
| goto Done; |
| } |
| // Decoding a map as an array |
| pDecodedItem->uDataType = QCBOR_TYPE_MAP_AS_ARRAY; |
| // Cast is safe because of check against QCBOR_MAX_ITEMS_IN_ARRAY/2 |
| // Cast is needed because of integer promotion |
| pDecodedItem->val.uCount = (uint16_t)(pDecodedItem->val.uCount * 2); |
| } |
| } |
| |
| Done: |
| return nReturn; |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| TODO: correct this comment |
| */ |
| QCBORError QCBORDecode_GetNextMapOrArray(QCBORDecodeContext *me, |
| QCBORItem *pDecodedItem, |
| QCBORTagListOut *pTags) |
| { |
| // Stack ptr/int: 2, QCBORItem : 64 |
| |
| QCBORError nReturn; |
| |
| /* For a pre-order traversal a non-error end occurs when there |
| are no more bytes to consume and the nesting level is at the top. |
| If it's not at the top, then the CBOR is not well formed. This error |
| is caught elsewhere. |
| |
| This handles the end of CBOR sequences as well as non-sequences. */ |
| if(UsefulInputBuf_BytesUnconsumed(&(me->InBuf)) == 0 && DecodeNesting_IsAtTop(&(me->nesting))) { |
| nReturn = QCBOR_ERR_NO_MORE_ITEMS; |
| goto Done; |
| } |
| |
| /* It is also an end of the input when in map mode and the cursor |
| is at the end of the map */ |
| |
| |
| // This is to handle map and array mode |
| if(DecodeNesting_AtEnd(&(me->nesting))) { |
| // if(UsefulInputBuf_Tell(&(me->InBuf)) != 0 && DecodeNesting_AtEnd(&(me->nesting))) { |
| nReturn = QCBOR_ERR_NO_MORE_ITEMS; |
| goto Done; |
| } |
| |
| nReturn = GetNext_MapEntry(me, pDecodedItem, pTags); |
| if(nReturn) { |
| goto Done; |
| } |
| |
| // Breaks ending arrays/maps are always processed at the end of this function. |
| // They should never show up here. |
| if(pDecodedItem->uDataType == QCBOR_TYPE_BREAK) { |
| nReturn = QCBOR_ERR_BAD_BREAK; |
| goto Done; |
| } |
| |
| // Record the nesting level for this data item before processing any of |
| // decrementing and descending. |
| pDecodedItem->uNestingLevel = DecodeNesting_GetLevel(&(me->nesting)); |
| |
| // Process the item just received for descent or decrement, and |
| // ascend if decrements are enough to close out a definite length array/map |
| if(IsMapOrArray(pDecodedItem->uDataType)) { |
| // If the new item is array or map, the nesting level descends |
| nReturn = DecodeNesting_Descend(&(me->nesting), pDecodedItem); |
| // Maps and arrays do count in as items in the map/array that encloses |
| // them so a decrement needs to be done for them too, but that is done |
| // only when all the items in them have been processed, not when they |
| // are opened with the exception of an empty map or array. |
| if(pDecodedItem->val.uCount == 0) { |
| DecodeNesting_DecrementCount(&(me->nesting)); |
| } |
| } else { |
| // Decrement the count of items in the enclosing map/array |
| // If the count in the enclosing map/array goes to zero, that |
| // triggers a decrement in the map/array above that and |
| // an ascend in nesting level. |
| DecodeNesting_DecrementCount(&(me->nesting)); |
| } |
| if(nReturn) { |
| goto Done; |
| } |
| |
| // For indefinite length maps/arrays, looking at any and |
| // all breaks that might terminate them. The equivalent |
| // for definite length maps/arrays happens in |
| // DecodeNesting_DecrementCount(). |
| if(!DecodeNesting_IsAtTop(&(me->nesting)) && DecodeNesting_IsIndefiniteLength(&(me->nesting))) { |
| while(UsefulInputBuf_BytesUnconsumed(&(me->InBuf))) { |
| // Peek forward one item to see if it is a break. |
| QCBORItem Peek; |
| size_t uPeek = UsefulInputBuf_Tell(&(me->InBuf)); |
| nReturn = GetNext_Item(&(me->InBuf), &Peek, NULL); |
| if(nReturn) { |
| goto Done; |
| } |
| if(Peek.uDataType != QCBOR_TYPE_BREAK) { |
| // It is not a break, rewind so it can be processed normally. |
| UsefulInputBuf_Seek(&(me->InBuf), uPeek); |
| break; |
| } |
| // It is a break. Ascend one nesting level. |
| // The break is consumed. |
| nReturn = DecodeNesting_BreakAscend(&(me->nesting)); |
| if(nReturn) { |
| // break occured outside of an indefinite length array/map |
| goto Done; |
| } |
| } |
| } |
| |
| // Tell the caller what level is next. This tells them what maps/arrays |
| // were closed out and makes it possible for them to reconstruct |
| // the tree with just the information returned by GetNext |
| // TODO: pull this into DecodeNesting_GetLevel |
| if(me->nesting.pCurrent->uMapMode && me->nesting.pCurrent->uCount == 0) { |
| // At end of a map / array in map mode, so next nest is 0 to |
| // indicate this end. |
| pDecodedItem->uNextNestLevel = 0; |
| } else { |
| pDecodedItem->uNextNestLevel = DecodeNesting_GetLevel(&(me->nesting)); |
| } |
| |
| Done: |
| if(nReturn != QCBOR_SUCCESS) { |
| // Make sure uDataType and uLabelType are QCBOR_TYPE_NONE |
| memset(pDecodedItem, 0, sizeof(QCBORItem)); |
| } |
| return nReturn; |
| } |
| |
| |
| /* |
| Mostly just assign the right data type for the date string. |
| */ |
| inline static QCBORError DecodeDateString(QCBORItem *pDecodedItem) |
| { |
| // Stack Use: UsefulBuf 1 16 |
| if(pDecodedItem->uDataType != QCBOR_TYPE_TEXT_STRING) { |
| return QCBOR_ERR_BAD_OPT_TAG; |
| } |
| |
| const UsefulBufC Temp = pDecodedItem->val.string; |
| pDecodedItem->val.dateString = Temp; |
| pDecodedItem->uDataType = QCBOR_TYPE_DATE_STRING; |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| /* |
| Mostly just assign the right data type for the bignum. |
| */ |
| inline static QCBORError DecodeBigNum(QCBORItem *pDecodedItem) |
| { |
| // Stack Use: UsefulBuf 1 -- 16 |
| if(pDecodedItem->uDataType != QCBOR_TYPE_BYTE_STRING) { |
| return QCBOR_ERR_BAD_OPT_TAG; |
| } |
| const UsefulBufC Temp = pDecodedItem->val.string; |
| pDecodedItem->val.bigNum = Temp; |
| const bool bIsPosBigNum = (bool)(pDecodedItem->uTagBits & QCBOR_TAGFLAG_POS_BIGNUM); |
| pDecodedItem->uDataType = (uint8_t)(bIsPosBigNum ? QCBOR_TYPE_POSBIGNUM |
| : QCBOR_TYPE_NEGBIGNUM); |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| /* |
| The epoch formatted date. Turns lots of different forms of encoding |
| date into uniform one |
| */ |
| static QCBORError DecodeDateEpoch(QCBORItem *pDecodedItem) |
| { |
| // Stack usage: 1 |
| QCBORError nReturn = QCBOR_SUCCESS; |
| |
| pDecodedItem->val.epochDate.fSecondsFraction = 0; |
| |
| switch (pDecodedItem->uDataType) { |
| |
| case QCBOR_TYPE_INT64: |
| pDecodedItem->val.epochDate.nSeconds = pDecodedItem->val.int64; |
| break; |
| |
| case QCBOR_TYPE_UINT64: |
| if(pDecodedItem->val.uint64 > INT64_MAX) { |
| nReturn = QCBOR_ERR_DATE_OVERFLOW; |
| goto Done; |
| } |
| pDecodedItem->val.epochDate.nSeconds = (int64_t)pDecodedItem->val.uint64; |
| break; |
| |
| case QCBOR_TYPE_DOUBLE: |
| { |
| // This comparison needs to be done as a float before |
| // conversion to an int64_t to be able to detect doubles |
| // that are too large to fit into an int64_t. A double |
| // has 52 bits of preceision. An int64_t has 63. Casting |
| // INT64_MAX to a double actually causes a round up which |
| // is bad and wrong for the comparison because it will |
| // allow conversion of doubles that can't fit into a |
| // uint64_t. To remedy this INT64_MAX - 0x7ff is used as |
| // the cutoff point as if that rounds up in conversion to |
| // double it will still be less than INT64_MAX. 0x7ff is |
| // picked because it has 11 bits set. |
| // |
| // INT64_MAX seconds is on the order of 10 billion years, |
| // and the earth is less than 5 billion years old, so for |
| // most uses this conversion error won't occur even though |
| // doubles can go much larger. |
| // |
| // Without the 0x7ff there is a ~30 minute range of time |
| // values 10 billion years in the past and in the future |
| // where this this code would go wrong. |
| const double d = pDecodedItem->val.dfnum; |
| if(d > (double)(INT64_MAX - 0x7ff)) { |
| nReturn = QCBOR_ERR_DATE_OVERFLOW; |
| goto Done; |
| } |
| pDecodedItem->val.epochDate.nSeconds = (int64_t)d; |
| pDecodedItem->val.epochDate.fSecondsFraction = d - (double)pDecodedItem->val.epochDate.nSeconds; |
| } |
| break; |
| |
| default: |
| nReturn = QCBOR_ERR_BAD_OPT_TAG; |
| goto Done; |
| } |
| pDecodedItem->uDataType = QCBOR_TYPE_DATE_EPOCH; |
| |
| Done: |
| return nReturn; |
| } |
| |
| |
| #ifndef QCBOR_CONFIG_DISABLE_EXP_AND_MANTISSA |
| /* |
| Decode decimal fractions and big floats. |
| |
| When called pDecodedItem must be the array that is tagged as a big |
| float or decimal fraction, the array that has the two members, the |
| exponent and mantissa. |
| |
| This will fetch and decode the exponent and mantissa and put the |
| result back into pDecodedItem. |
| */ |
| inline static QCBORError |
| QCBORDecode_MantissaAndExponent(QCBORDecodeContext *me, QCBORItem *pDecodedItem) |
| { |
| QCBORError nReturn; |
| |
| // --- Make sure it is an array; track nesting level of members --- |
| if(pDecodedItem->uDataType != QCBOR_TYPE_ARRAY) { |
| nReturn = QCBOR_ERR_BAD_EXP_AND_MANTISSA; |
| goto Done; |
| } |
| |
| // A check for pDecodedItem->val.uCount == 2 would work for |
| // definite length arrays, but not for indefnite. Instead remember |
| // the nesting level the two integers must be at, which is one |
| // deeper than that of the array. |
| const int nNestLevel = pDecodedItem->uNestingLevel + 1; |
| |
| // --- Is it a decimal fraction or a bigfloat? --- |
| const bool bIsTaggedDecimalFraction = QCBORDecode_IsTagged(me, pDecodedItem, CBOR_TAG_DECIMAL_FRACTION); |
| pDecodedItem->uDataType = bIsTaggedDecimalFraction ? QCBOR_TYPE_DECIMAL_FRACTION : QCBOR_TYPE_BIGFLOAT; |
| |
| // --- Get the exponent --- |
| QCBORItem exponentItem; |
| nReturn = QCBORDecode_GetNextMapOrArray(me, &exponentItem, NULL); |
| if(nReturn != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| if(exponentItem.uNestingLevel != nNestLevel) { |
| // Array is empty or a map/array encountered when expecting an int |
| nReturn = QCBOR_ERR_BAD_EXP_AND_MANTISSA; |
| goto Done; |
| } |
| if(exponentItem.uDataType == QCBOR_TYPE_INT64) { |
| // Data arriving as an unsigned int < INT64_MAX has been converted |
| // to QCBOR_TYPE_INT64 and thus handled here. This is also means |
| // that the only data arriving here of type QCBOR_TYPE_UINT64 data |
| // will be too large for this to handle and thus an error that will |
| // get handled in the next else. |
| pDecodedItem->val.expAndMantissa.nExponent = exponentItem.val.int64; |
| } else { |
| // Wrong type of exponent or a QCBOR_TYPE_UINT64 > INT64_MAX |
| nReturn = QCBOR_ERR_BAD_EXP_AND_MANTISSA; |
| goto Done; |
| } |
| |
| // --- Get the mantissa --- |
| QCBORItem mantissaItem; |
| nReturn = QCBORDecode_GetNextWithTags(me, &mantissaItem, NULL); |
| if(nReturn != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| if(mantissaItem.uNestingLevel != nNestLevel) { |
| // Mantissa missing or map/array encountered when expecting number |
| nReturn = QCBOR_ERR_BAD_EXP_AND_MANTISSA; |
| goto Done; |
| } |
| if(mantissaItem.uDataType == QCBOR_TYPE_INT64) { |
| // Data arriving as an unsigned int < INT64_MAX has been converted |
| // to QCBOR_TYPE_INT64 and thus handled here. This is also means |
| // that the only data arriving here of type QCBOR_TYPE_UINT64 data |
| // will be too large for this to handle and thus an error that |
| // will get handled in an else below. |
| pDecodedItem->val.expAndMantissa.Mantissa.nInt = mantissaItem.val.int64; |
| } else if(mantissaItem.uDataType == QCBOR_TYPE_POSBIGNUM || mantissaItem.uDataType == QCBOR_TYPE_NEGBIGNUM) { |
| // Got a good big num mantissa |
| pDecodedItem->val.expAndMantissa.Mantissa.bigNum = mantissaItem.val.bigNum; |
| // Depends on numbering of QCBOR_TYPE_XXX |
| pDecodedItem->uDataType = (uint8_t)(pDecodedItem->uDataType + |
| mantissaItem.uDataType - QCBOR_TYPE_POSBIGNUM + |
| 1); |
| } else { |
| // Wrong type of mantissa or a QCBOR_TYPE_UINT64 > INT64_MAX |
| nReturn = QCBOR_ERR_BAD_EXP_AND_MANTISSA; |
| goto Done; |
| } |
| |
| // --- Check that array only has the two numbers --- |
| if(mantissaItem.uNextNestLevel == nNestLevel) { |
| // Extra items in the decimal fraction / big num |
| nReturn = QCBOR_ERR_BAD_EXP_AND_MANTISSA; |
| goto Done; |
| } |
| |
| Done: |
| |
| return nReturn; |
| } |
| #endif /* QCBOR_CONFIG_DISABLE_EXP_AND_MANTISSA */ |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| QCBORError |
| QCBORDecode_GetNextWithTags(QCBORDecodeContext *me, |
| QCBORItem *pDecodedItem, |
| QCBORTagListOut *pTags) |
| { |
| QCBORError nReturn; |
| |
| nReturn = QCBORDecode_GetNextMapOrArray(me, pDecodedItem, pTags); |
| if(nReturn != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| |
| #ifndef QCBOR_CONFIG_DISABLE_EXP_AND_MANTISSA |
| #define TAG_MAPPER_FIRST_XXX TAG_MAPPER_FIRST_SIX |
| #else |
| #define TAG_MAPPER_FIRST_XXX TAG_MAPPER_FIRST_FOUR |
| #endif |
| |
| // Only pay attention to tags this code knows how to decode. |
| switch(pDecodedItem->uTagBits & TAG_MAPPER_FIRST_XXX) { |
| case 0: |
| // No tags at all or none we know about. Nothing to do. |
| // This is the pass-through path of this function |
| // that will mostly be taken when decoding any item. |
| break; |
| |
| case QCBOR_TAGFLAG_DATE_STRING: |
| nReturn = DecodeDateString(pDecodedItem); |
| break; |
| |
| case QCBOR_TAGFLAG_DATE_EPOCH: |
| nReturn = DecodeDateEpoch(pDecodedItem); |
| break; |
| |
| case QCBOR_TAGFLAG_POS_BIGNUM: |
| case QCBOR_TAGFLAG_NEG_BIGNUM: |
| nReturn = DecodeBigNum(pDecodedItem); |
| break; |
| |
| #ifndef QCBOR_CONFIG_DISABLE_EXP_AND_MANTISSA |
| case QCBOR_TAGFLAG_DECIMAL_FRACTION: |
| case QCBOR_TAGFLAG_BIGFLOAT: |
| // For aggregate tagged types, what goes into pTags is only collected |
| // from the surrounding data item, not the contents, so pTags is not |
| // passed on here. |
| |
| nReturn = QCBORDecode_MantissaAndExponent(me, pDecodedItem); |
| break; |
| #endif /* QCBOR_CONFIG_DISABLE_EXP_AND_MANTISSA */ |
| |
| default: |
| // Encountering some mixed-up CBOR like something that |
| // is tagged as both a string and integer date. |
| nReturn = QCBOR_ERR_BAD_OPT_TAG; |
| } |
| |
| Done: |
| if(nReturn != QCBOR_SUCCESS) { |
| pDecodedItem->uDataType = QCBOR_TYPE_NONE; |
| pDecodedItem->uLabelType = QCBOR_TYPE_NONE; |
| } |
| return nReturn; |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| QCBORError QCBORDecode_GetNext(QCBORDecodeContext *me, QCBORItem *pDecodedItem) |
| { |
| return QCBORDecode_GetNextWithTags(me, pDecodedItem, NULL); |
| } |
| |
| |
| /* |
| Decoding items is done in 5 layered functions, one calling the |
| next one down. If a layer has no work to do for a particular item |
| it returns quickly. |
| |
| - QCBORDecode_GetNext, GetNextWithTags -- The top layer processes |
| tagged data items, turning them into the local C representation. |
| For the most simple it is just associating a QCBOR_TYPE with the data. For |
| the complex ones that an aggregate of data items, there is some further |
| decoding and a little bit of recursion. |
| |
| - QCBORDecode_GetNextMapOrArray - This manages the beginnings and |
| ends of maps and arrays. It tracks descending into and ascending |
| out of maps/arrays. It processes all breaks that terminate |
| indefinite length maps and arrays. |
| |
| - GetNext_MapEntry -- This handles the combining of two |
| items, the label and the data, that make up a map entry. |
| It only does work on maps. It combines the label and data |
| items into one labeled item. |
| |
| - GetNext_TaggedItem -- This decodes type 6 tagging. It turns the |
| tags into bit flags associated with the data item. No actual decoding |
| of the contents of the tagged item is performed here. |
| |
| - GetNext_FullItem -- This assembles the sub-items that make up |
| an indefinte length string into one string item. It uses the |
| string allocater to create contiguous space for the item. It |
| processes all breaks that are part of indefinite length strings. |
| |
| - GetNext_Item -- This decodes the atomic data items in CBOR. Each |
| atomic data item has a "major type", an integer "argument" and optionally |
| some content. For text and byte strings, the content is the bytes |
| that make up the string. These are the smallest data items that are |
| considered to be well-formed. The content may also be other data items in |
| the case of aggregate types. They are not handled in this layer. |
| |
| Roughly this takes 300 bytes of stack for vars. Need to |
| evaluate this more carefully and correctly. |
| |
| */ |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| int QCBORDecode_IsTagged(QCBORDecodeContext *me, |
| const QCBORItem *pItem, |
| uint64_t uTag) |
| { |
| const QCBORTagListIn *pCallerConfiguredTagMap = me->pCallerConfiguredTagList; |
| |
| uint8_t uTagBitIndex; |
| // Do not care about errors in pCallerConfiguredTagMap here. They are |
| // caught during GetNext() before this is called. |
| if(TagMapper_Lookup(pCallerConfiguredTagMap, uTag, &uTagBitIndex)) { |
| return 0; |
| } |
| |
| const uint64_t uTagBit = 0x01ULL << uTagBitIndex; |
| return (uTagBit & pItem->uTagBits) != 0; |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| QCBORError QCBORDecode_Finish(QCBORDecodeContext *me) |
| { |
| QCBORError nReturn = QCBOR_SUCCESS; |
| |
| // Error out if all the maps/arrays are not closed out |
| if(!DecodeNesting_IsAtTop(&(me->nesting))) { |
| nReturn = QCBOR_ERR_ARRAY_OR_MAP_STILL_OPEN; |
| goto Done; |
| } |
| |
| // Error out if not all the bytes are consumed |
| if(UsefulInputBuf_BytesUnconsumed(&(me->InBuf))) { |
| nReturn = QCBOR_ERR_EXTRA_BYTES; |
| } |
| |
| Done: |
| // Call the destructor for the string allocator if there is one. |
| // Always called, even if there are errors; always have to clean up |
| StringAllocator_Destruct(&(me->StringAllocator)); |
| |
| return nReturn; |
| } |
| |
| |
| |
| /* |
| |
| Decoder errors handled in this file |
| |
| - Hit end of input before it was expected while decoding type and |
| number QCBOR_ERR_HIT_END |
| |
| - negative integer that is too large for C QCBOR_ERR_INT_OVERFLOW |
| |
| - Hit end of input while decoding a text or byte string |
| QCBOR_ERR_HIT_END |
| |
| - Encountered conflicting tags -- e.g., an item is tagged both a date |
| string and an epoch date QCBOR_ERR_UNSUPPORTED |
| |
| - Encontered an array or mapp that has too many items |
| QCBOR_ERR_ARRAY_TOO_LONG |
| |
| - Encountered array/map nesting that is too deep |
| QCBOR_ERR_ARRAY_NESTING_TOO_DEEP |
| |
| - An epoch date > INT64_MAX or < INT64_MIN was encountered |
| QCBOR_ERR_DATE_OVERFLOW |
| |
| - The type of a map label is not a string or int |
| QCBOR_ERR_MAP_LABEL_TYPE |
| |
| - Hit end with arrays or maps still open -- QCBOR_ERR_EXTRA_BYTES |
| |
| */ |
| |
| |
| |
| |
| /* =========================================================================== |
| MemPool -- BUILT-IN SIMPLE STRING ALLOCATOR |
| |
| This implements a simple sting allocator for indefinite length |
| strings that can be enabled by calling QCBORDecode_SetMemPool(). It |
| implements the function type QCBORStringAllocate and allows easy |
| use of it. |
| |
| This particular allocator is built-in for convenience. The caller |
| can implement their own. All of this following code will get |
| dead-stripped if QCBORDecode_SetMemPool() is not called. |
| |
| This is a very primitive memory allocator. It does not track |
| individual allocations, only a high-water mark. A free or |
| reallocation must be of the last chunk allocated. |
| |
| The size of the pool and offset to free memory are packed into the |
| first 8 bytes of the memory pool so we don't have to keep them in |
| the decode context. Since the address of the pool may not be |
| aligned, they have to be packed and unpacked as if they were |
| serialized data of the wire or such. |
| |
| The sizes packed in are uint32_t to be the same on all CPU types |
| and simplify the code. |
| ========================================================================== */ |
| |
| |
| static inline int |
| MemPool_Unpack(const void *pMem, uint32_t *puPoolSize, uint32_t *puFreeOffset) |
| { |
| // Use of UsefulInputBuf is overkill, but it is convenient. |
| UsefulInputBuf UIB; |
| |
| // Just assume the size here. It was checked during SetUp so |
| // the assumption is safe. |
| UsefulInputBuf_Init(&UIB, (UsefulBufC){pMem, QCBOR_DECODE_MIN_MEM_POOL_SIZE}); |
| *puPoolSize = UsefulInputBuf_GetUint32(&UIB); |
| *puFreeOffset = UsefulInputBuf_GetUint32(&UIB); |
| return UsefulInputBuf_GetError(&UIB); |
| } |
| |
| |
| static inline int |
| MemPool_Pack(UsefulBuf Pool, uint32_t uFreeOffset) |
| { |
| // Use of UsefulOutBuf is overkill, but convenient. The |
| // length check performed here is useful. |
| UsefulOutBuf UOB; |
| |
| UsefulOutBuf_Init(&UOB, Pool); |
| UsefulOutBuf_AppendUint32(&UOB, (uint32_t)Pool.len); // size of pool |
| UsefulOutBuf_AppendUint32(&UOB, uFreeOffset); // first free position |
| return UsefulOutBuf_GetError(&UOB); |
| } |
| |
| |
| /* |
| Internal function for an allocation, reallocation free and destuct. |
| |
| Having only one function rather than one each per mode saves space in |
| QCBORDecodeContext. |
| |
| Code Reviewers: THIS FUNCTION DOES POINTER MATH |
| */ |
| static UsefulBuf |
| MemPool_Function(void *pPool, void *pMem, size_t uNewSize) |
| { |
| UsefulBuf ReturnValue = NULLUsefulBuf; |
| |
| uint32_t uPoolSize; |
| uint32_t uFreeOffset; |
| |
| if(uNewSize > UINT32_MAX) { |
| // This allocator is only good up to 4GB. This check should |
| // optimize out if sizeof(size_t) == sizeof(uint32_t) |
| goto Done; |
| } |
| const uint32_t uNewSize32 = (uint32_t)uNewSize; |
| |
| if(MemPool_Unpack(pPool, &uPoolSize, &uFreeOffset)) { |
| goto Done; |
| } |
| |
| if(uNewSize) { |
| if(pMem) { |
| // REALLOCATION MODE |
| // Calculate pointer to the end of the memory pool. It is |
| // assumed that pPool + uPoolSize won't wrap around by |
| // assuming the caller won't pass a pool buffer in that is |
| // not in legitimate memory space. |
| const void *pPoolEnd = (uint8_t *)pPool + uPoolSize; |
| |
| // Check that the pointer for reallocation is in the range of the |
| // pool. This also makes sure that pointer math further down |
| // doesn't wrap under or over. |
| if(pMem >= pPool && pMem < pPoolEnd) { |
| // Offset to start of chunk for reallocation. This won't |
| // wrap under because of check that pMem >= pPool. Cast |
| // is safe because the pool is always less than UINT32_MAX |
| // because of check in QCBORDecode_SetMemPool(). |
| const uint32_t uMemOffset = (uint32_t)((uint8_t *)pMem - (uint8_t *)pPool); |
| |
| // Check to see if the allocation will fit. uPoolSize - |
| // uMemOffset will not wrap under because of check that |
| // pMem is in the range of the uPoolSize by check above. |
| if(uNewSize <= uPoolSize - uMemOffset) { |
| ReturnValue.ptr = pMem; |
| ReturnValue.len = uNewSize; |
| |
| // Addition won't wrap around over because uNewSize was |
| // checked to be sure it is less than the pool size. |
| uFreeOffset = uMemOffset + uNewSize32; |
| } |
| } |
| } else { |
| // ALLOCATION MODE |
| // uPoolSize - uFreeOffset will not underflow because this |
| // pool implementation makes sure uFreeOffset is always |
| // smaller than uPoolSize through this check here and |
| // reallocation case. |
| if(uNewSize <= uPoolSize - uFreeOffset) { |
| ReturnValue.len = uNewSize; |
| ReturnValue.ptr = (uint8_t *)pPool + uFreeOffset; |
| uFreeOffset += (uint32_t)uNewSize; |
| } |
| } |
| } else { |
| if(pMem) { |
| // FREE MODE |
| // Cast is safe because of limit on pool size in |
| // QCBORDecode_SetMemPool() |
| uFreeOffset = (uint32_t)((uint8_t *)pMem - (uint8_t *)pPool); |
| } else { |
| // DESTRUCT MODE |
| // Nothing to do for this allocator |
| } |
| } |
| |
| UsefulBuf Pool = {pPool, uPoolSize}; |
| MemPool_Pack(Pool, uFreeOffset); |
| |
| Done: |
| return ReturnValue; |
| } |
| |
| |
| /* |
| Public function, see header qcbor/qcbor_decode.h file |
| */ |
| QCBORError QCBORDecode_SetMemPool(QCBORDecodeContext *pMe, |
| UsefulBuf Pool, |
| bool bAllStrings) |
| { |
| // The pool size and free mem offset are packed into the beginning |
| // of the pool memory. This compile time check make sure the |
| // constant in the header is correct. This check should optimize |
| // down to nothing. |
| if(QCBOR_DECODE_MIN_MEM_POOL_SIZE < 2 * sizeof(uint32_t)) { |
| return QCBOR_ERR_BUFFER_TOO_SMALL; |
| } |
| |
| // The pool size and free offset packed in to the beginning of pool |
| // memory are only 32-bits. This check will optimize out on 32-bit |
| // machines. |
| if(Pool.len > UINT32_MAX) { |
| return QCBOR_ERR_BUFFER_TOO_LARGE; |
| } |
| |
| // This checks that the pool buffer given is big enough. |
| if(MemPool_Pack(Pool, QCBOR_DECODE_MIN_MEM_POOL_SIZE)) { |
| return QCBOR_ERR_BUFFER_TOO_SMALL; |
| } |
| |
| pMe->StringAllocator.pfAllocator = MemPool_Function; |
| pMe->StringAllocator.pAllocateCxt = Pool.ptr; |
| pMe->bStringAllocateAll = bAllStrings; |
| |
| return QCBOR_SUCCESS; |
| } |
| |
| #include <stdio.h> |
| void printdecode(QCBORDecodeContext *pMe, const char *szName) |
| { |
| printf("---%s--%d--%d--\nLevel Count Type Offset SaveCount MapMode\n", |
| szName, |
| (uint32_t)pMe->InBuf.cursor, |
| (uint32_t)pMe->InBuf.UB.len); |
| for(int i = 0; i < QCBOR_MAX_ARRAY_NESTING; i++) { |
| if(&(pMe->nesting.pMapsAndArrays[i]) > pMe->nesting.pCurrent) { |
| break; |
| } |
| printf("%2s %2d %5d %s %6u %2d %d\n", |
| pMe->nesting.pCurrentMap == &(pMe->nesting.pMapsAndArrays[i]) ? "->": " ", |
| i, |
| pMe->nesting.pMapsAndArrays[i].uCount, |
| pMe->nesting.pMapsAndArrays[i].uMajorType == QCBOR_TYPE_MAP ? " map" : |
| (pMe->nesting.pMapsAndArrays[i].uMajorType == QCBOR_TYPE_ARRAY ? "array" : |
| (pMe->nesting.pMapsAndArrays[i].uMajorType == QCBOR_TYPE_NONE ? " none" : "?????")), |
| pMe->nesting.pMapsAndArrays[i].uOffset, |
| pMe->nesting.pMapsAndArrays[i].uSaveCount, |
| pMe->nesting.pMapsAndArrays[i].uMapMode |
| ); |
| |
| } |
| printf("\n"); |
| } |
| |
| |
| /* |
| * |
| */ |
| static inline QCBORError |
| ConsumeItem(QCBORDecodeContext *pMe, |
| const QCBORItem *pItemToConsume, |
| uint_fast8_t *puNextNestLevel) |
| { |
| QCBORError nReturn; |
| QCBORItem Item; |
| |
| printdecode(pMe, "ConsumeItem"); |
| |
| if(IsMapOrArray(pItemToConsume->uDataType)) { |
| /* There is only real work to do for maps and arrays */ |
| |
| /* This works for definite and indefinite length |
| * maps and arrays by using the nesting level |
| */ |
| do { |
| nReturn = QCBORDecode_GetNext(pMe, &Item); |
| if(nReturn != QCBOR_SUCCESS) { |
| goto Done; |
| } |
| } while(Item.uNextNestLevel >= pItemToConsume->uNextNestLevel); |
| |
| if(puNextNestLevel != NULL) { |
| *puNextNestLevel = Item.uNextNestLevel; |
| } |
| nReturn = QCBOR_SUCCESS; |
| |
| } else { |
| /* item_to_consume is not a map or array */ |
| if(puNextNestLevel != NULL) { |
| /* Just pass the nesting level through */ |
| *puNextNestLevel = pItemToConsume->uNextNestLevel; |
| } |
| nReturn = QCBOR_SUCCESS; |
| } |
| |
| Done: |
| return nReturn; |
| } |
| |
| |
| /* Return true if the labels in Item1 and Item2 are the same. |
| Works only for integer and string labels. Returns false |
| for any other type. */ |
| static inline bool |
| MatchLabel(QCBORItem Item1, QCBORItem Item2) |
| { |
| if(Item1.uLabelType == QCBOR_TYPE_INT64) { |
| if(Item2.uLabelType == QCBOR_TYPE_INT64 && Item1.label.int64 == Item2.label.int64) { |
| return true; |
| } |
| } else if(Item1.uLabelType == QCBOR_TYPE_TEXT_STRING) { |
| if(Item2.uLabelType == QCBOR_TYPE_TEXT_STRING && !UsefulBuf_Compare(Item1.label.string, Item2.label.string)) { |
| return true; |
| } |
| } else if(Item1.uLabelType == QCBOR_TYPE_BYTE_STRING) { |
| if(Item2.uLabelType == QCBOR_TYPE_BYTE_STRING && !UsefulBuf_Compare(Item1.label.string, Item2.label.string)) { |
| return true; |
| } |
| } else if(Item1.uLabelType == QCBOR_TYPE_UINT64) { |
| if(Item2.uLabelType == QCBOR_TYPE_UINT64 && Item1.label.uint64 == Item2.label.uint64) { |
| return true; |
| } |
| } |
| |
| /* Other label types are never matched */ |
| return false; |
| } |
| |
| static inline bool |
| MatchType(QCBORItem Item1, QCBORItem Item2) |
| { |
| if(Item1.uDataType == Item2.uDataType) { |
| return true; |
| } else if(Item1.uLabelType == QCBOR_TYPE_ANY) { |
| return true; |
| } else if(Item2.uLabelType == QCBOR_TYPE_ANY) { |
| return true; |
| } |
| return false; |
| } |
| |
| |
| /* |
| On input pItemArray contains a list of labels and data types |
| of items to be found. |
| |
| On output the fully retrieved items are filled in with |
| values and such. The label was matched, so it never changes. |
| |
| If an item was not found, its data type is set to none. |
| |
| */ |
| static QCBORError |
| MapSearch(QCBORDecodeContext *pMe, QCBORItem *pItemArray, size_t *puOffset, size_t *puEndOffset) |
| { |
| QCBORError nReturn; |
| |
| // TODO: what if pre-order cursor is not at the same level as map? This should be OK. |
| if(!DecodeNesting_InMapMode(&(pMe->nesting))) { |
| return QCBOR_ERR_NOT_ENTERED; |
| } |
| |
| QCBORDecodeNesting SaveNesting; |
| DecodeNesting_PrepareForMapSearch(&(pMe->nesting), &SaveNesting); |
| |
| UsefulInputBuf_Seek(&(pMe->InBuf), pMe->nesting.pCurrent->uOffset); |
| |
| /* Loop over all the items in the map. They could be |
| * deeply nested and this should handle both definite |
| * and indefinite length maps and arrays, so this |
| * adds some complexity. */ |
| const uint8_t uMapNestLevel = DecodeNesting_GetMapModeLevel(&(pMe->nesting)); |
| |
| uint_fast8_t uNextNestLevel; |
| |
| uint64_t uFound = 0; |
| |
| do { |
| /* Remember offset because sometims we have to return it */ |
| const size_t uOffset = UsefulInputBuf_Tell(&(pMe->InBuf)); |
| |
| /* Get the item */ |
| QCBORItem Item; |
| nReturn = QCBORDecode_GetNext(pMe, &Item); |
| if(nReturn != QCBOR_SUCCESS) { |
| /* Got non-well-formed CBOR */ |
| goto Done; |
| } |
| |
| /* See if item has one of the labels that are of interest */ |
| int i; |
| QCBORItem *pIterator; |
| for(pIterator = pItemArray, i = 0; pIterator->uLabelType != 0; pIterator++, i++) { |
| if(MatchLabel(Item, *pIterator)) { |
| // A label match has been found |
| if(uFound & (0x01ULL << i)) { |
| nReturn = QCBOR_ERR_DUPLICATE_LABEL; |
| goto Done; |
| } |
| if(!MatchType(Item, *pIterator)) { |
| nReturn = QCBOR_ERR_UNEXPECTED_TYPE; |
| goto Done; |
| } |
| |
| /* Successful match. Return the item. */ |
| *pIterator = Item; |
| uFound |= 0x01ULL << i; |
| if(puOffset) { |
| *puOffset = uOffset; |
| } |
| } |
| } |
| |
| /* Consume the item whether matched or not. This |
| does th work of traversing maps and array and |
| everything in them. In this loop only the |
| items at the current nesting level are examined |
| to match the labels. */ |
| nReturn = ConsumeItem(pMe, &Item, &uNextNestLevel); |
| if(nReturn) { |
| goto Done; |
| } |
| |
| } while (uNextNestLevel >= uMapNestLevel); |
| |
| |
| nReturn = QCBOR_SUCCESS; |
| |
| const size_t uEndOffset = UsefulInputBuf_Tell(&(pMe->InBuf)); |
| // Cast OK because encoded CBOR is limited to UINT32_MAX |
| pMe->uMapEndOffset = (uint32_t)uEndOffset; |
| // TODO: is zero *puOffset OK? |
| if(puEndOffset) { |
| *puEndOffset = uEndOffset; |
| } |
| |
| /* For all items not found, set the data type to QCBOR_TYPE_NONE */ |
| int i; |
| QCBORItem *pIterator; |
| for(pIterator = pItemArray, i = 0; pIterator->uLabelType != 0; pIterator++, i++) { |
| if(!(uFound & (0x01ULL << i))) { |
| pIterator->uDataType = QCBOR_TYPE_NONE; |
| } |
| } |
| |
| Done: |
| DecodeNesting_RestoreFromMapSearch(&(pMe->nesting), &SaveNesting); |
| |
| return nReturn; |
| } |
| |
| |
| void QCBORDecode_ExitMap(QCBORDecodeContext *pMe) |
| { |
| size_t uEndOffset; |
| |
| /* |
| if(pMe->uMapEndOffset) { |
| uEndOffset = pMe->uMapEndOffset; |
| // It is only valid once. |
| pMe->uMapEndOffset = 0; |
| } else { */ |
| QCBORItem Dummy; |
| |
| Dummy.uLabelType = QCBOR_TYPE_NONE; |
| |
| QCBORError nReturn = MapSearch(pMe, &Dummy, NULL, &uEndOffset); |
| |
| (void)nReturn; // TODO: |
| // } |
| |
| printdecode(pMe, "start exit"); |
| UsefulInputBuf_Seek(&(pMe->InBuf), uEndOffset); |
| |
| DecodeNesting_Exit(&(pMe->nesting)); |
| printdecode(pMe, "end exit"); |
| |
| } |
| |
| |
| QCBORError QCBORDecode_GetItemInMap(QCBORDecodeContext *pMe, |
| int64_t nLabel, |
| uint8_t uQcborType, |
| QCBORItem *pItem) |
| { |
| QCBORItem One[2]; |
| |
| One[0].uLabelType = QCBOR_TYPE_INT64; |
| One[0].label.int64 = nLabel; |
| One[0].uDataType = uQcborType; |
| One[1].uLabelType = QCBOR_TYPE_NONE; // Indicates end of array |
| |
| QCBORError nReturn = MapSearch(pMe, One, NULL, NULL); |
| if(nReturn) { |
| return nReturn; |
| } |
| |
| if(One[0].uDataType == QCBOR_TYPE_NONE) { |
| return QCBOR_ERR_NOT_FOUND; |
| } |
| |
| *pItem = One[0]; |
| |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| QCBORError QCBORDecode_GetItemInMapSZ(QCBORDecodeContext *pMe, |
| const char *szLabel, |
| uint8_t uQcborType, |
| QCBORItem *pItem) |
| { |
| QCBORItem One[2]; |
| |
| One[0].uLabelType = QCBOR_TYPE_TEXT_STRING; |
| One[0].label.string = UsefulBuf_FromSZ(szLabel); |
| One[0].uDataType = uQcborType; |
| One[1].uLabelType = QCBOR_TYPE_NONE; // Indicates end of array |
| |
| QCBORError nReturn = MapSearch(pMe, One, NULL, NULL); |
| if(nReturn) { |
| return nReturn; |
| } |
| |
| if(One[0].uDataType == QCBOR_TYPE_NONE) { |
| return QCBOR_ERR_NOT_FOUND; |
| } |
| |
| *pItem = One[0]; |
| |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| |
| |
| static int FinishEnter(QCBORDecodeContext *pMe, size_t uOffset) |
| { |
| /* Need to get the current pre-order nesting level and cursor to be |
| at the first item in the map/array just entered. |
| |
| Also need to current map nesting level and start cursor to |
| be at the right place. |
| |
| The UsefulInBuf offset could be anywhere, so no assumption is |
| made about it. |
| |
| No assumption is made about the pre-order nesting level either. |
| |
| However the map mode nesting level is assumed to be one above |
| the map level that is being entered. |
| */ |
| /* Seek to the data item that is the map or array */ |
| UsefulInputBuf_Seek(&(pMe->InBuf), uOffset); |
| pMe->nesting.pCurrent = pMe->nesting.pCurrentMap; // TODO: part of DecodeNesting |
| |
| // TODO: check error? |
| QCBORDecode_EnterMapMode(pMe, QCBOR_TYPE_MAP); |
| |
| printdecode(pMe, "Entered Map in Map"); |
| |
| return 0; |
| } |
| |
| |
| QCBORError QCBORDecode_EnterMapInMapN(QCBORDecodeContext *pMe, int64_t nLabel) |
| { |
| /* Use GetItemsInMap to find the map by label, including the |
| byte offset of it. */ |
| QCBORItem One[2]; |
| One[0].uLabelType = QCBOR_TYPE_INT64; |
| One[0].label.int64 = nLabel; |
| One[0].uDataType = QCBOR_TYPE_MAP; |
| One[1].uLabelType = QCBOR_TYPE_NONE; |
| |
| size_t uOffset; |
| QCBORError nReturn = MapSearch(pMe, One, &uOffset, NULL); |
| if(nReturn) { |
| return nReturn; |
| } |
| |
| /* The map to enter was found, now finish of entering it. */ |
| FinishEnter(pMe, uOffset); |
| |
| // TODO: error code? |
| return 0; |
| } |
| |
| |
| QCBORError QCBORDecode_EnterMapFromMapSZ(QCBORDecodeContext *pMe, const char *szLabel) |
| { |
| QCBORItem One[2]; |
| |
| One[0].uLabelType = QCBOR_TYPE_TEXT_STRING; |
| One[0].label.string = UsefulBuf_FromSZ(szLabel); |
| One[0].uDataType = QCBOR_TYPE_MAP; |
| One[1].uLabelType = QCBOR_TYPE_NONE; |
| |
| size_t uOffset; |
| |
| QCBORError nReturn = MapSearch(pMe, One, &uOffset, NULL); |
| |
| if(nReturn) { |
| return nReturn; |
| } |
| |
| FinishEnter(pMe, uOffset); |
| |
| return 0; |
| } |
| |
| |
| QCBORError QCBORDecode_EnterArrayFromMapN(QCBORDecodeContext *pMe, int64_t nLabel) |
| { |
| QCBORItem One[2]; |
| |
| One[0].uLabelType = QCBOR_TYPE_INT64; |
| One[0].label.int64 = nLabel; |
| One[0].uDataType = QCBOR_TYPE_ARRAY; |
| One[1].uLabelType = QCBOR_TYPE_NONE; |
| |
| size_t uOffset; |
| |
| QCBORError nReturn = MapSearch(pMe, One, &uOffset, NULL); |
| |
| if(nReturn != QCBOR_SUCCESS) { |
| return nReturn; |
| } |
| |
| FinishEnter(pMe, uOffset); |
| |
| return 0; |
| } |
| |
| |
| QCBORError QCBORDecode_EnterArrayFromMapSZ(QCBORDecodeContext *pMe, const char *szLabel) |
| { |
| QCBORItem One[2]; |
| |
| One[0].uLabelType = QCBOR_TYPE_TEXT_STRING; |
| One[0].label.string = UsefulBuf_FromSZ(szLabel); |
| One[0].uDataType = QCBOR_TYPE_ARRAY; |
| One[1].uLabelType = QCBOR_TYPE_NONE; |
| |
| size_t uOffset; |
| |
| QCBORError nReturn = MapSearch(pMe, One, &uOffset, NULL); |
| |
| if(nReturn != QCBOR_SUCCESS) { |
| return nReturn; |
| } |
| |
| FinishEnter(pMe, uOffset); |
| |
| return 0; |
| } |
| |
| |
| |
| |
| |
| /* Next item must be map or this generates an error */ |
| QCBORError QCBORDecode_EnterMapMode(QCBORDecodeContext *pMe, uint8_t uType) |
| { |
| QCBORItem Item; |
| QCBORError nReturn; |
| |
| /* Get the data item that is the map that is being searched */ |
| nReturn = QCBORDecode_GetNext(pMe, &Item); |
| if(nReturn != QCBOR_SUCCESS) { |
| return nReturn; |
| } |
| if(Item.uDataType != uType) { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| |
| DecodeNesting_EnterMapMode(&(pMe->nesting), UsefulInputBuf_Tell(&(pMe->InBuf))); |
| |
| printdecode(pMe, "EnterMapDone"); |
| |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| |
| QCBORError QCBORDecode_GetItemsInMap(QCBORDecodeContext *pCtx, QCBORItem *pItemList) |
| { |
| return MapSearch(pCtx, pItemList, NULL, NULL); |
| } |
| |
| |
| |
| |
| |
| void QCBORDecode_RewindMap(QCBORDecodeContext *pMe) |
| { |
| // TODO: check for map mode |
| pMe->nesting.pCurrent->uCount = pMe->nesting.pCurrent->uSaveCount; |
| UsefulInputBuf_Seek(&(pMe->InBuf), pMe->nesting.pCurrent->uOffset); |
| } |
| |
| |
| QCBORError QCBORDecode_EnterArray(QCBORDecodeContext *pMe) |
| { |
| QCBORItem Item; |
| QCBORError nReturn; |
| |
| /* Get the data item that is the map that is being searched */ |
| nReturn = QCBORDecode_GetNext(pMe, &Item); |
| if(nReturn != QCBOR_SUCCESS) { |
| return nReturn; |
| } |
| if(Item.uDataType != QCBOR_TYPE_ARRAY) { |
| return QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| |
| printdecode(pMe, "EnterArray"); |
| |
| DecodeNesting_EnterMapMode(&(pMe->nesting), UsefulInputBuf_Tell(&(pMe->InBuf))); |
| |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| void QCBORDecode_ExitArray(QCBORDecodeContext *pMe) |
| { |
| // TODO: make sure we have entered an array |
| // TODO: combine with code for map? It is the same so far. |
| size_t uEndOffset; |
| |
| /* if(pMe->uMapEndOffset) { |
| uEndOffset = pMe->uMapEndOffset; |
| // It is only valid once. |
| pMe->uMapEndOffset = 0; |
| } else {*/ |
| QCBORItem Dummy; |
| |
| Dummy.uLabelType = QCBOR_TYPE_NONE; |
| |
| QCBORError nReturn = MapSearch(pMe, &Dummy, NULL, &uEndOffset); |
| |
| (void)nReturn; // TODO: |
| //} |
| |
| printdecode(pMe, "start exit"); |
| UsefulInputBuf_Seek(&(pMe->InBuf), uEndOffset); |
| |
| DecodeNesting_Exit(&(pMe->nesting)); |
| printdecode(pMe, "end exit"); |
| } |
| |
| |
| void QCBORDecode_GetIntInMapSZ(QCBORDecodeContext *pMe, const char *szLabel, int64_t *pInt) |
| { |
| // TODO: error handling |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapSZ(pMe,szLabel, QCBOR_TYPE_INT64, &Item); |
| *pInt = Item.val.int64; |
| } |
| |
| void QCBORDecode_GetBstrInMapN(QCBORDecodeContext *pMe, int64_t nLabel, UsefulBufC *pBstr) |
| { |
| // TODO: error handling |
| QCBORItem Item; |
| QCBORDecode_GetItemInMap(pMe, nLabel, QCBOR_TYPE_BYTE_STRING, &Item); |
| *pBstr = Item.val.string; |
| } |
| |
| void QCBORDecode_GetBstrInMapSZ(QCBORDecodeContext *pMe, const char *szLabel, UsefulBufC *pBstr) |
| { |
| // TODO: error handling |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapSZ(pMe, szLabel, QCBOR_TYPE_BYTE_STRING, &Item); |
| *pBstr = Item.val.string; |
| } |
| |
| void QCBORDecode_GetDateStringInMapSZ(QCBORDecodeContext *pMe, const char *szLabel, UsefulBufC *pBstr) |
| { |
| // TODO: error handling |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapSZ(pMe, szLabel, QCBOR_TYPE_DATE_STRING, &Item); |
| *pBstr = Item.val.string; |
| } |
| |
| void QCBORDecode_GetTextInMapSZ(QCBORDecodeContext *pMe, const char *szLabel, UsefulBufC *pBstr) |
| { |
| // TODO: error handling |
| QCBORItem Item; |
| QCBORDecode_GetItemInMapSZ(pMe, szLabel, QCBOR_TYPE_TEXT_STRING, &Item); |
| *pBstr = Item.val.string; |
| } |
| |
| |
| void QCBORDecode_GetBool(QCBORDecodeContext *pMe, bool *pValue) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| // Already in error state, do nothing |
| return; |
| } |
| |
| QCBORError nError; |
| QCBORItem Item; |
| |
| nError = QCBORDecode_GetNext(pMe, &Item); |
| if(nError != QCBOR_SUCCESS) { |
| pMe->uLastError = (uint8_t)nError; |
| return; |
| } |
| |
| switch(Item.uDataType) { |
| case QCBOR_TYPE_TRUE: |
| *pValue = true; |
| break; |
| |
| case QCBOR_TYPE_FALSE: |
| *pValue = false; |
| break; |
| |
| default: |
| pMe->uLastError = QCBOR_ERR_UNEXPECTED_TYPE; |
| break; |
| } |
| } |
| |
| #if 0 |
| // TODO: fix this |
| /* Types of text strings |
| * Plain, b64, b64url, URI, regex, MIME Text |
| * One function for each with options to expect plain? |
| * One function for all so you can say what you want? |
| * |
| * A label is expected if pLabel is not NULL. |
| */ |
| void QCBORDecode_GetTextFoo(QCBORDecodeContext *pMe, QCBORLabel *pLabel, UsefulBufC *pValue) |
| { |
| QCBORItem Item; |
| QCBORError nError; |
| |
| nError = QCBORDecode_GetNext(pMe, &Item); |
| if(nError) { |
| pMe->uLastError = nError; |
| return; |
| } |
| |
| if(pLabel != NULL) { |
| if(Item.uLabelType == QCBOR_TYPE_NONE) { |
| pMe->uLastError = 9; // TODO: error code |
| return; |
| } else { |
| // TODO: what about label allocation? |
| pLabel->uLabelType = Item.uLabelType; |
| pLabel->label.xx = Item.label.int64; // TOOD: figure out assignment |
| } |
| } |
| |
| switch(Item.uDataType) { |
| case QCBOR_TYPE_TEXT_STRING: |
| *pValue = Item.val.string; |
| break; |
| |
| default: |
| pMe->uLastError = QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| } |
| #endif |
| |
| |
| /* |
| Options for MIME data, CBOR, positive big num, negative big num ?? |
| */ |
| void QCBORDecode_GetStringInternal(QCBORDecodeContext *pMe, UsefulBufC *pValue, uint8_t uType) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| // Already in error state, do nothing |
| return; |
| } |
| |
| QCBORError nError; |
| QCBORItem Item; |
| |
| nError = QCBORDecode_GetNext(pMe, &Item); |
| if(nError != QCBOR_SUCCESS) { |
| pMe->uLastError = (uint8_t)nError; |
| return; |
| } |
| |
| if(Item.uDataType == uType) { |
| *pValue = Item.val.string; |
| } else { |
| pMe->uLastError = QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| } |
| |
| void QCBORDecode_GetBytes(QCBORDecodeContext *pMe, UsefulBufC *pValue) |
| { |
| QCBORDecode_GetStringInternal(pMe, pValue, QCBOR_TYPE_BYTE_STRING); |
| } |
| |
| |
| void QCBORDecode_GetText(QCBORDecodeContext *pMe, UsefulBufC *pValue) |
| { |
| QCBORDecode_GetStringInternal(pMe, pValue, QCBOR_TYPE_TEXT_STRING); |
| } |
| |
| |
| void QCBORDecode_GetPosBignum(QCBORDecodeContext *pMe, UsefulBufC *pValue) |
| { |
| // TODO: do these have to be tagged? |
| // Probably should allow tagged or untagged, but not wrong-tagged |
| QCBORDecode_GetStringInternal(pMe, pValue, QCBOR_TYPE_POSBIGNUM); |
| } |
| |
| void QCBORDecode_GetNegBignum(QCBORDecodeContext *pMe, UsefulBufC *pValue) |
| { |
| QCBORDecode_GetStringInternal(pMe, pValue, QCBOR_TYPE_NEGBIGNUM); |
| } |
| |
| |
| |
| |
| typedef QCBORError (*fExponentiator)(uint64_t uMantissa, int64_t nExponent, uint64_t *puResult); |
| |
| |
| // The main exponentiator that works on only positive numbers |
| static QCBORError Exponentitate10UU(uint64_t uMantissa, int64_t nExponent, uint64_t *puResult) |
| { |
| uint64_t uResult; |
| |
| uResult = uMantissa; |
| |
| /* This loop will run a maximum of 19 times because |
| * UINT64_MAX < 10 ^^ 19. More than that will cause |
| * exit with the overflow error |
| */ |
| while(nExponent > 0) { |
| if(uResult > UINT64_MAX / 10) { |
| return QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; // Error overflow |
| } |
| uResult = uResult * 10; |
| nExponent--; |
| } |
| |
| while(nExponent < 0 ) { |
| if(uResult == 0) { |
| return QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; // Underflow error |
| } |
| uResult = uResult / 10; |
| nExponent--; |
| } |
| |
| *puResult = uResult; |
| |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| /* Convert a decimal fraction to an int64_t without using |
| floating point or math libraries. Most decimal fractions |
| will not fit in an int64_t and this will error out with |
| under or overflow |
| */ |
| static QCBORError Exponentitate2UU(uint64_t nMantissa, int64_t nExponent, uint64_t *pnResult) |
| { |
| uint64_t nResult; |
| |
| nResult = nMantissa; |
| |
| /* This loop will run a maximum of 64 times because |
| * INT64_MAX < 2^31. More than that will cause |
| * exist with the overflow error |
| */ |
| while(nExponent > 0) { |
| if(nResult > UINT64_MAX >> 1) { |
| return QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; // Error overflow |
| } |
| nResult = nResult << 1; |
| nExponent--; |
| } |
| |
| while(nExponent < 0 ) { |
| if(nResult == 0) { |
| return QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; // Underflow error |
| } |
| nResult = nResult >> 1; |
| nExponent--; |
| } |
| |
| *pnResult = nResult; |
| |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| static inline QCBORError ExponentiateNN(int64_t nMantissa, int64_t nExponent, int64_t *pnResult, fExponentiator pfExp) |
| { |
| uint64_t uResult; |
| |
| // Take the absolute value of the mantissa |
| uint64_t uMantissa = nMantissa > 0 ? (uint64_t)nMantissa : (uint64_t)-nMantissa; |
| |
| // Do the exponentiation of the positive mantissa |
| QCBORError uReturn = (*pfExp)(uMantissa, nExponent, &uResult); |
| if(uReturn) { |
| return uReturn; |
| } |
| |
| // Error out if too large on the plus side for an int64_t |
| if(uResult > INT64_MAX) { |
| return QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; |
| } |
| |
| // Error out if too large on the negative side for an int64_t |
| if(uResult < (uint64_t)INT64_MAX+1) { |
| /* (uint64_t)INT64_MAX+1 is used to represent the absolute value |
| of INT64_MIN. This assumes two's compliment representation where |
| INT64_MIN is one increment farther from 0 than INT64_MAX. |
| Trying to write -INT64_MIN doesn't work to get this because the |
| compiler tries to work with an int64_t which can't represent |
| -INT64_MIN. |
| */ |
| return QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; |
| } |
| |
| // Casts are safe because of checks above |
| *pnResult = nMantissa > 0 ? (int64_t)uResult : -(int64_t)uResult; |
| |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| static inline QCBORError ExponentitateNU(int64_t nMantissa, int64_t nExponent, uint64_t *puResult, fExponentiator pfExp) |
| { |
| if(nMantissa < 0) { |
| return QCBOR_ERR_NUMBER_SIGN_CONVERSION; |
| } |
| |
| // Cast to unsigned is OK because of check for negative |
| // Cast to unsigned is OK because UINT64_MAX > INT64_MAX |
| // Exponentiation is straight forward |
| return (*pfExp)((uint64_t)nMantissa, nExponent, puResult); |
| } |
| |
| |
| // TODO: use this or get rid of it |
| QCBORError ExponentitateUN(uint64_t uMantissa, int64_t nExponent, int64_t *pnResult, fExponentiator pfExp) |
| { |
| uint64_t uResult; |
| |
| QCBORError uR; |
| |
| uR = (*pfExp)(uMantissa, nExponent, &uResult); |
| if(uR) { |
| return uR; |
| } |
| |
| if(uResult > INT64_MAX) { |
| return QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; |
| } |
| |
| // Cast is OK because of check above |
| *pnResult = (int64_t)uResult; |
| |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| |
| |
| #include <math.h> |
| /* |
| static inline uint8_t Exponentitate10F(uint64_t uMantissa, int64_t nExponent, double *pfResult) |
| { |
| // TODO: checkout exceptions; what is HUGE_VAL? |
| *pfResult = pow((double)10, (double)nExponent) * (double)uMantissa; |
| |
| //if(*pfResult == HUGE_VAL) |
| return 0; |
| } |
| */ |
| |
| |
| |
| |
| |
| |
| /* |
| A) bignum is positive |
| A1) output is signed INT64_MAX |
| A2) output is unsigned UINT64_MAX |
| B) bignum is negative |
| B1) output is signed INT64_MAX |
| B2) output is unsigned error |
| */ |
| static inline QCBORError ConvertBigNum(const UsefulBufC BigNum, uint64_t uMax, uint64_t *pResult) |
| { |
| uint64_t uResult; |
| |
| uResult = 0; |
| const uint8_t *pByte = BigNum.ptr; |
| size_t uLen = BigNum.len; |
| while(uLen--) { |
| if(uResult > uMax >> 8) { |
| return QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; |
| } |
| uResult = (uResult << 8) + *pByte; |
| } |
| |
| *pResult = uResult; |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| |
| static double ConvertBigNumToDouble(const UsefulBufC BigNum) |
| { |
| double dResult; |
| |
| dResult = 0.0; |
| const uint8_t *pByte = BigNum.ptr; |
| size_t uLen = BigNum.len; |
| /* This will overflow and become the float value INFINITY if the number |
| is too large to fit. No error will be logged. |
| TODO: should an error be logged? */ |
| while(uLen--) { |
| dResult = (dResult * 256.0) + *pByte; |
| } |
| |
| return dResult; |
| } |
| |
| |
| |
| static inline QCBORError ConvertPositiveBigNumToUnSigned(const UsefulBufC BigNum, uint64_t *pResult) |
| { |
| return ConvertBigNum(BigNum, UINT64_MAX, pResult); |
| } |
| |
| static inline QCBORError ConvertPositiveBigNumToSigned(const UsefulBufC BigNum, int64_t *pResult) |
| { |
| uint64_t uResult; |
| QCBORError n = ConvertBigNum(BigNum, INT64_MAX, &uResult); |
| if(n) { |
| return n; |
| } |
| /* Cast is safe because ConvertBigNum is told to limit to INT64_MAX */ |
| *pResult = (int64_t)uResult; |
| return QCBOR_SUCCESS; |
| } |
| |
| |
| static inline QCBORError ConvertNegativeBigNumToSigned(const UsefulBufC BigNum, int64_t *pResult) |
| { |
| uint64_t uResult; |
| QCBORError n = ConvertBigNum(BigNum, INT64_MAX-1, &uResult); |
| if(n) { |
| return n; |
| } |
| /* Cast is safe because ConvertBigNum is told to limit to INT64_MAX */ |
| *pResult = -(int64_t)uResult; |
| return 0; |
| } |
| |
| // No function to convert a negative bignum to unsigned; it is an error |
| |
| |
| #if 0 |
| static inline int ConvertXYZ(const UsefulBufC Mantissa, int64_t nExponent, int64_t *pResult) |
| { |
| int64_t nMantissa; |
| |
| int xx = ConvertPositiveBigNumToSigned(Mantissa, &nMantissa); |
| if(xx) { |
| return xx; |
| } |
| |
| return ExponentiateNN(nMantissa, nExponent, pResult, &Exponentitate10UU); |
| } |
| |
| #endif |
| |
| |
| #include "fenv.h" |
| |
| /* |
| Get the next item as an int64_t. The CBOR type can be unsigned, negative, float |
| a big float, a decimal fraction or a big num. Conversion will be dones as |
| expected. Some cases will error out with under or over flow. |
| */ |
| void QCBORDecode_GetInt64ConvertInternal(QCBORDecodeContext *pMe, uint32_t uOptions, int64_t *pValue, QCBORItem *pItem) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORItem Item; |
| QCBORError nError; |
| |
| nError = QCBORDecode_GetNext(pMe, &Item); |
| if(nError) { |
| pMe->uLastError = (uint8_t)nError; |
| return; |
| } |
| |
| if(pItem) { |
| *pItem = Item; |
| } |
| |
| switch(Item.uDataType) { |
| // TODO: float when ifdefs are set |
| case QCBOR_TYPE_DOUBLE: |
| if(uOptions & QCBOR_CONVERT_TYPE_FLOAT) { |
| // TODO: what about under/overflow here? |
| // Invokes the floating-point HW and/or compiler-added libraries |
| feclearexcept(FE_ALL_EXCEPT); |
| *pValue = llround(Item.val.dfnum); |
| if(fetestexcept(FE_INVALID)) { |
| // TODO: better error code |
| pMe->uLastError = QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; |
| } |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| case QCBOR_TYPE_INT64: |
| if(uOptions & QCBOR_CONVERT_TYPE_INT64) { |
| *pValue = Item.val.int64; |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| case QCBOR_TYPE_UINT64: |
| if(uOptions & QCBOR_CONVERT_TYPE_UINT64) { |
| if(Item.val.uint64 < INT64_MAX) { |
| *pValue = Item.val.int64; |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; |
| } |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| default: |
| pMe->uLastError = QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| } |
| |
| |
| |
| /* |
| Get the next item as an int64_t. The CBOR type can be unsigned, negative, float |
| a big float, a decimal fraction or a big num. Conversion will be dones as |
| expected. Some cases will error out with under or over flow. |
| */ |
| void QCBORDecode_GetInt64ConvertAll(QCBORDecodeContext *pMe, uint32_t uOptions, int64_t *pValue) |
| { |
| QCBORItem Item; |
| |
| QCBORDecode_GetInt64ConvertInternal(pMe, uOptions, pValue, &Item); |
| |
| if(pMe->uLastError == QCBOR_SUCCESS) { |
| // The above conversion succeeded |
| return; |
| } |
| |
| if(pMe->uLastError != QCBOR_ERR_UNEXPECTED_TYPE) { |
| // The above conversion failed in a way that code below can't correct |
| return; |
| } |
| |
| switch(Item.uDataType) { |
| |
| case QCBOR_TYPE_POSBIGNUM: |
| if(uOptions & QCBOR_CONVERT_TYPE_BIG_NUM) { |
| pMe->uLastError = (uint8_t)ConvertPositiveBigNumToSigned(Item.val.bigNum, pValue); |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| case QCBOR_TYPE_NEGBIGNUM: |
| if(uOptions & QCBOR_CONVERT_TYPE_BIG_NUM) { |
| pMe->uLastError = (uint8_t)ConvertNegativeBigNumToSigned(Item.val.bigNum, pValue); |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| #ifndef QCBOR_CONFIG_DISABLE_EXP_AND_MANTISSA |
| case QCBOR_TYPE_DECIMAL_FRACTION: |
| if(uOptions & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| pMe->uLastError = (uint8_t)ExponentiateNN(Item.val.expAndMantissa.Mantissa.nInt, |
| Item.val.expAndMantissa.nExponent, |
| pValue, |
| &Exponentitate10UU); |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| case QCBOR_TYPE_BIGFLOAT: |
| if(uOptions & QCBOR_CONVERT_TYPE_BIGFLOAT) { |
| pMe->uLastError = (uint8_t)ExponentiateNN(Item.val.expAndMantissa.Mantissa.nInt, |
| Item.val.expAndMantissa.nExponent, |
| pValue, |
| &Exponentitate2UU); |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| |
| case QCBOR_TYPE_DECIMAL_FRACTION_POS_BIGNUM: |
| if(uOptions & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| int64_t nMantissa; |
| pMe->uLastError = (uint8_t)ConvertPositiveBigNumToSigned(Item.val.expAndMantissa.Mantissa.bigNum, &nMantissa); |
| if(!pMe->uLastError) { |
| pMe->uLastError = (uint8_t)ExponentiateNN(nMantissa, |
| Item.val.expAndMantissa.nExponent, |
| pValue, |
| &Exponentitate10UU); |
| } |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| case QCBOR_TYPE_DECIMAL_FRACTION_NEG_BIGNUM: |
| if(uOptions & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| int64_t nMantissa; |
| pMe->uLastError = (uint8_t)ConvertNegativeBigNumToSigned(Item.val.expAndMantissa.Mantissa.bigNum, &nMantissa); |
| if(!pMe->uLastError) { |
| pMe->uLastError = (uint8_t)ExponentiateNN(nMantissa, |
| Item.val.expAndMantissa.nExponent, |
| pValue, |
| Exponentitate10UU); |
| } |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| case QCBOR_TYPE_BIGFLOAT_POS_BIGNUM: |
| if(uOptions & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| int64_t nMantissa; |
| pMe->uLastError = (uint8_t)ConvertPositiveBigNumToSigned(Item.val.expAndMantissa.Mantissa.bigNum, &nMantissa); |
| if(!pMe->uLastError) { |
| pMe->uLastError = (uint8_t)ExponentiateNN(nMantissa, |
| Item.val.expAndMantissa.nExponent, |
| pValue, |
| Exponentitate2UU); |
| } |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| case QCBOR_TYPE_BIGFLOAT_NEG_BIGNUM: |
| if(uOptions & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| int64_t nMantissa; |
| pMe->uLastError = (uint8_t)ConvertNegativeBigNumToSigned(Item.val.expAndMantissa.Mantissa.bigNum, &nMantissa); |
| if(!pMe->uLastError) { |
| pMe->uLastError = (uint8_t)ExponentiateNN(nMantissa, |
| Item.val.expAndMantissa.nExponent, |
| pValue, |
| Exponentitate2UU); |
| } |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| default: |
| pMe->uLastError = QCBOR_ERR_UNEXPECTED_TYPE; |
| #endif |
| } |
| } |
| |
| |
| |
| void QCBORDecode_GetUInt64ConvertInternal(QCBORDecodeContext *pMe, uint32_t uOptions, uint64_t *pValue, QCBORItem *pItem) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORItem Item; |
| QCBORError nError; |
| |
| nError = QCBORDecode_GetNext(pMe, &Item); |
| if(nError) { |
| pMe->uLastError = (uint8_t)nError; |
| return; |
| } |
| |
| if(pItem) { |
| *pItem = Item; |
| } |
| |
| switch(Item.uDataType) { |
| // TODO: type flaot |
| case QCBOR_TYPE_DOUBLE: |
| if(uOptions & QCBOR_CONVERT_TYPE_FLOAT) { |
| feclearexcept(FE_ALL_EXCEPT); |
| double dRounded = round(Item.val.dfnum); |
| // TODO: over/underflow |
| if(fetestexcept(FE_INVALID)) { |
| // TODO: better error code |
| pMe->uLastError = QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; |
| } else if(isnan(dRounded)) { |
| // TODO: better error code |
| pMe->uLastError = QCBOR_ERR_CONVERSION_UNDER_OVER_FLOW; |
| } else if(dRounded >= 0) { |
| *pValue = (uint64_t)dRounded; |
| } else { |
| pMe->uLastError = QCBOR_ERR_NUMBER_SIGN_CONVERSION; |
| } |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| case QCBOR_TYPE_INT64: |
| if(uOptions & QCBOR_CONVERT_TYPE_INT64) { |
| if(Item.val.int64 >= 0) { |
| *pValue = (uint64_t)Item.val.int64; |
| } else { |
| pMe->uLastError = QCBOR_ERR_NUMBER_SIGN_CONVERSION; |
| } |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| case QCBOR_TYPE_UINT64: |
| if(uOptions & QCBOR_CONVERT_TYPE_UINT64) { |
| *pValue = Item.val.uint64; |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| default: |
| pMe->uLastError = QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| } |
| |
| |
| |
| void QCBORDecode_GetUInt64ConvertAll(QCBORDecodeContext *pMe, uint32_t uOptions, uint64_t *pValue) |
| { |
| QCBORItem Item; |
| |
| QCBORDecode_GetUInt64ConvertInternal(pMe, uOptions, pValue, &Item); |
| |
| if(pMe->uLastError == QCBOR_SUCCESS) { |
| // The above conversion succeeded |
| return; |
| } |
| |
| if(pMe->uLastError != QCBOR_ERR_UNEXPECTED_TYPE) { |
| // The above conversion failed in a way that code below can't correct |
| return; |
| } |
| |
| switch(Item.uDataType) { |
| |
| case QCBOR_TYPE_POSBIGNUM: |
| if(uOptions & QCBOR_CONVERT_TYPE_BIG_NUM) { |
| pMe->uLastError = (uint8_t)ConvertPositiveBigNumToUnSigned(Item.val.bigNum, pValue); |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| case QCBOR_TYPE_NEGBIGNUM: |
| if(uOptions & QCBOR_CONVERT_TYPE_BIG_NUM) { |
| pMe->uLastError = (uint8_t)ConvertPositiveBigNumToUnSigned(Item.val.bigNum, pValue); |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| #ifndef QCBOR_CONFIG_DISABLE_EXP_AND_MANTISSA |
| |
| case QCBOR_TYPE_DECIMAL_FRACTION: |
| if(uOptions & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| pMe->uLastError = (uint8_t)ExponentitateNU(Item.val.expAndMantissa.Mantissa.nInt, |
| Item.val.expAndMantissa.nExponent, |
| pValue, |
| Exponentitate10UU); |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; // TODO: error code |
| } |
| break; |
| |
| case QCBOR_TYPE_BIGFLOAT: |
| if(uOptions & QCBOR_CONVERT_TYPE_BIGFLOAT) { |
| pMe->uLastError = (uint8_t)ExponentitateNU(Item.val.expAndMantissa.Mantissa.nInt, |
| Item.val.expAndMantissa.nExponent, |
| pValue, |
| Exponentitate2UU); |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; // TODO: error code |
| } |
| break; |
| |
| |
| |
| case QCBOR_TYPE_DECIMAL_FRACTION_POS_BIGNUM: |
| if(uOptions & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| int64_t nMantissa; |
| pMe->uLastError = (uint8_t)ConvertPositiveBigNumToSigned(Item.val.expAndMantissa.Mantissa.bigNum, &nMantissa); |
| if(!pMe->uLastError) { |
| pMe->uLastError = (uint8_t)ExponentitateNU(nMantissa, |
| Item.val.expAndMantissa.nExponent, |
| pValue, |
| Exponentitate10UU); |
| } |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; // TODO: error code |
| } |
| break; |
| |
| case QCBOR_TYPE_DECIMAL_FRACTION_NEG_BIGNUM: |
| if(uOptions & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| int64_t nMantissa; |
| pMe->uLastError = (uint8_t)ConvertNegativeBigNumToSigned(Item.val.expAndMantissa.Mantissa.bigNum, &nMantissa); |
| if(!pMe->uLastError) { |
| pMe->uLastError = (uint8_t)ExponentitateNU(nMantissa, |
| Item.val.expAndMantissa.nExponent, |
| pValue, |
| Exponentitate10UU); |
| } |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; // TODO: error code |
| } |
| break; |
| |
| case QCBOR_TYPE_BIGFLOAT_POS_BIGNUM: |
| if(uOptions & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| int64_t nMantissa; |
| pMe->uLastError = (uint8_t)ConvertPositiveBigNumToSigned(Item.val.expAndMantissa.Mantissa.bigNum, &nMantissa); |
| if(!pMe->uLastError) { |
| pMe->uLastError = (uint8_t)ExponentitateNU(nMantissa, |
| Item.val.expAndMantissa.nExponent, |
| pValue, |
| Exponentitate2UU); |
| } |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; // TODO: error code |
| } |
| break; |
| |
| case QCBOR_TYPE_BIGFLOAT_NEG_BIGNUM: |
| if(uOptions & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| int64_t nMantissa; |
| pMe->uLastError = (uint8_t)ConvertNegativeBigNumToSigned(Item.val.expAndMantissa.Mantissa.bigNum, &nMantissa); |
| if(!pMe->uLastError) { |
| pMe->uLastError = (uint8_t)ExponentitateNU(nMantissa, |
| Item.val.expAndMantissa.nExponent, |
| pValue, |
| Exponentitate2UU); |
| } |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| #endif |
| default: |
| pMe->uLastError = QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| } |
| |
| |
| void QCBORDecode_GetDoubleConvertInternal(QCBORDecodeContext *pMe, uint32_t uOptions, double *pValue, QCBORItem *pItem) |
| { |
| if(pMe->uLastError != QCBOR_SUCCESS) { |
| return; |
| } |
| |
| QCBORItem Item; |
| QCBORError uError; |
| |
| uError = QCBORDecode_GetNext(pMe, &Item); |
| if(uError) { |
| pMe->uLastError = (uint8_t)uError; |
| return; |
| } |
| |
| if(pItem) { |
| *pItem = Item; |
| } |
| |
| switch(Item.uDataType) { |
| // TODO: float when ifdefs are set |
| case QCBOR_TYPE_DOUBLE: |
| if(uOptions & QCBOR_CONVERT_TYPE_FLOAT) { |
| if(uOptions & QCBOR_CONVERT_TYPE_FLOAT) { |
| *pValue = Item.val.dfnum; |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| } |
| break; |
| |
| case QCBOR_TYPE_INT64: |
| if(uOptions & QCBOR_CONVERT_TYPE_INT64) { |
| // TODO: how does this work? |
| *pValue = (double)Item.val.int64; |
| |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| case QCBOR_TYPE_UINT64: |
| if(uOptions & QCBOR_CONVERT_TYPE_UINT64) { |
| *pValue = (double)Item.val.uint64; |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| default: |
| pMe->uLastError = QCBOR_ERR_UNEXPECTED_TYPE; |
| } |
| } |
| |
| |
| /* |
| |
| |
| https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html |
| |
| */ |
| void QCBORDecode_GetDoubleConvertAll(QCBORDecodeContext *pMe, uint32_t uOptions, double *pValue) |
| { |
| QCBORItem Item; |
| |
| QCBORDecode_GetDoubleConvertInternal(pMe, uOptions, pValue, &Item); |
| |
| if(pMe->uLastError == QCBOR_SUCCESS) { |
| // The above conversion succeeded |
| return; |
| } |
| |
| if(pMe->uLastError != QCBOR_ERR_UNEXPECTED_TYPE) { |
| // The above conversion failed in a way that code below can't correct |
| return; |
| } |
| |
| switch(Item.uDataType) { |
| // TODO: type float |
| case QCBOR_TYPE_DECIMAL_FRACTION: |
| if(uOptions & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| // TODO: rounding and overflow errors |
| *pValue = (double)Item.val.expAndMantissa.Mantissa.nInt * |
| pow(10.0, (double)Item.val.expAndMantissa.nExponent); |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| case QCBOR_TYPE_BIGFLOAT: |
| if(uOptions & QCBOR_CONVERT_TYPE_BIGFLOAT ) { |
| *pValue = (double)Item.val.expAndMantissa.Mantissa.nInt * |
| exp2((double)Item.val.expAndMantissa.nExponent); |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| case QCBOR_TYPE_POSBIGNUM: |
| if(uOptions & QCBOR_CONVERT_TYPE_BIG_NUM) { |
| *pValue = ConvertBigNumToDouble(Item.val.bigNum); |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| case QCBOR_TYPE_NEGBIGNUM: |
| if(uOptions & QCBOR_CONVERT_TYPE_BIG_NUM) { |
| *pValue = -ConvertBigNumToDouble(Item.val.bigNum); |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| case QCBOR_TYPE_DECIMAL_FRACTION_POS_BIGNUM: |
| if(uOptions & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| double dMantissa = ConvertBigNumToDouble(Item.val.expAndMantissa.Mantissa.bigNum); |
| *pValue = dMantissa * pow(10, (double)Item.val.expAndMantissa.nExponent); |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| case QCBOR_TYPE_DECIMAL_FRACTION_NEG_BIGNUM: |
| if(uOptions & QCBOR_CONVERT_TYPE_DECIMAL_FRACTION) { |
| double dMantissa = -ConvertBigNumToDouble(Item.val.expAndMantissa.Mantissa.bigNum); |
| *pValue = dMantissa * pow(10, (double)Item.val.expAndMantissa.nExponent); |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| case QCBOR_TYPE_BIGFLOAT_POS_BIGNUM: |
| if(uOptions & QCBOR_CONVERT_TYPE_BIGFLOAT) { |
| double dMantissa = ConvertBigNumToDouble(Item.val.expAndMantissa.Mantissa.bigNum); |
| *pValue = dMantissa * exp2((double)Item.val.expAndMantissa.nExponent); |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| |
| case QCBOR_TYPE_BIGFLOAT_NEG_BIGNUM: |
| if(uOptions & QCBOR_CONVERT_TYPE_BIGFLOAT) { |
| double dMantissa = -ConvertBigNumToDouble(Item.val.expAndMantissa.Mantissa.bigNum); |
| *pValue = dMantissa * exp2((double)Item.val.expAndMantissa.nExponent); |
| } else { |
| pMe->uLastError = QCBOR_ERR_CONVERSION_NOT_REQUESTED; |
| } |
| break; |
| } |
| } |
| |