blob: d7f9ec9590e1c02e862d59f2b109496042259fff [file] [log] [blame]
/*==============================================================================
Copyright (c) 2016-2018, The Linux Foundation.
Copyright (c) 2018, Laurence Lundblade.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
* Neither the name of The Linux Foundation nor the names of its
contributors, nor the name "Laurence Lundblade" may be used to
endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==============================================================================*/
/*===================================================================================
FILE: qcbor.h
DESCRIPTION: This is the full public API and data structures for QCBOR
EDIT HISTORY FOR FILE:
This section contains comments describing changes made to the module.
Notice that changes are listed in reverse chronological order.
when who what, where, why
-------- ---- ---------------------------------------------------
07/05/17 llundbla Add bstr wrapping of maps/arrays for COSE
03/01/17 llundbla More data types; decoding improvements and fixes
11/13/16 llundbla Integrate most TZ changes back into github version.
09/30/16 gkanike Porting to TZ.
03/15/16 llundbla Initial Version.
=====================================================================================*/
#ifndef __QCBOR__qcbor__
#define __QCBOR__qcbor__
/*...... This is a ruler that is 80 characters long...........................*/
/* ===========================================================================
BEGINNING OF PRIVATE PART OF THIS FILE
Caller of QCBOR should not reference any of the details below up until
the start of the public part.
=========================================================================== */
/*
Standard integer types are used in the interface to be precise about
sizes to be better at preventing underflow/overflow errors.
*/
#include <stdint.h>
#include <stdbool.h>
#include "UsefulBuf.h"
/*
The maxium nesting of arrays and maps when encoding or decoding.
(Further down in the file there is a definition that refers to this
that is public. This is done this way so there can be a nice
separation of public and private parts in this file.
*/
#define QCBOR_MAX_ARRAY_NESTING1 10 // Do not increase this over 255
/*
PRIVATE DATA STRUCTURE
Holds the data for tracking array and map nesting during encoding. Pairs up with
the Nesting_xxx functions to make an "object" to handle nesting encoding.
uStart is a uint32_t instead of a size_t to keep the size of this
struct down so it can be on the stack without any concern. It would be about
double if size_t was used instead.
64-bit machine: 10 * (4 + 2 + 1 + 1) + 8 = 88 bytes
32-bit machine: 10 * (4 + 2 + 1 + 1) + 4 = 84 bytes
*/
typedef struct __QCBORTrackNesting {
// PRIVATE DATA STRUCTURE
struct {
// See function OpenArrayInternal() for detailed comments on how this works
uint32_t uStart; // uStart is the byte position where the array starts
uint16_t uCount; // Number of items in the arrary or map; counts items in a map, not pairs of items
uint8_t uMajorType; // Indicates if item is a map or an array
} pArrays[QCBOR_MAX_ARRAY_NESTING1+1], // stored state for the nesting levels
*pCurrentNesting; // the current nesting level
} QCBORTrackNesting;
/*
PRIVATE DATA STRUCTURE
Context / data object for encoding some CBOR. Used by all encode functions to
form a public "object" that does the job of encdoing.
64-bit machine: 27 + 1 (+ 4 padding) + 88 = 32+88 = 120 bytes
32-bit machine: 15 + 1 + 84 = 90 bytes
*/
struct _QCBOREncodeContext {
// PRIVATE DATA STRUCTURE
UsefulOutBuf OutBuf; // Pointer to output buffer, its length and position in it
uint8_t uError; // Error state
QCBORTrackNesting nesting; // Keep track of array and map nesting
};
/*
PRIVATE DATA STRUCTURE
Holds the data for array and map nesting for decoding work. This structure
and the DecodeNesting_xxx functions form an "object" that does the work
for arrays and maps.
Size approximation (varies with CPU/compiler):
64-bit machine: 4 * 10 + 8 + 4 padding = 56
32-bit machine: 4 * 10 + 4 = 44
*/
typedef struct __QCBORDecodeNesting {
// PRIVATE DATA STRUCTURE
struct {
uint16_t uCount;
uint8_t uMajorType;
} pMapsAndArrays[QCBOR_MAX_ARRAY_NESTING1+1],
*pCurrent;
} QCBORDecodeNesting;
/*
PRIVATE DATA STRUCTURE
The decode context. This data structure plus the public QCBORDecode_xxx
functions form an "object" that does CBOR decoding.
Size approximation (varies with CPU/compiler):
64-bit machine: 32 + 1 + 1 + 6 bytes padding + 56 + 8 = 104 bytes
32-bit machine: 16 + 1 + 1 + 2 bytes padding + 44 + 4 = 68 bytes
*/
struct _QCBORDecodeContext {
// PRIVATE DATA STRUCTURE
UsefulInputBuf InBuf;
uint8_t uDecodeMode;
uint8_t bStringAllocateAll;
QCBORDecodeNesting nesting;
// This is NULL or points to a QCBORStringAllocator. It is void
// here because _QCBORDecodeContext is defined early in the
// private part of this file and QCBORStringAllocat is defined
// later in the public part of this file.
void *pStringAllocator;
// This is NULL or points to QCBORTagList.
// It is type void for the same reason as above.
const void *pCallerConfiguredTagList;
};
// Used internally in the impementation here
// Must not conflict with any of the official CBOR types
#define CBOR_MAJOR_NONE_TYPE_RAW 9
#define CBOR_MAJOR_NONE_TAG_LABEL_REORDER 10
/* ===========================================================================
END OF PRIVATE PART OF THIS FILE
BEGINNING OF PUBLIC PART OF THIS FILE
=========================================================================== */
/* ===========================================================================
BEGINNING OF CONSTANTS THAT COME FROM THE CBOR STANDARD, RFC 7049
It is not necessary to use these directly when encoding or decoding
CBOR with this implementation.
=========================================================================== */
/* Standard CBOR Major type for positive integers of various lengths */
#define CBOR_MAJOR_TYPE_POSITIVE_INT 0
/* Standard CBOR Major type for negative integer of various lengths */
#define CBOR_MAJOR_TYPE_NEGATIVE_INT 1
/* Standard CBOR Major type for an array of arbitrary 8-bit bytes. */
#define CBOR_MAJOR_TYPE_BYTE_STRING 2
/* Standard CBOR Major type for a UTF-8 string. Note this is true 8-bit UTF8
with no encoding and no NULL termination */
#define CBOR_MAJOR_TYPE_TEXT_STRING 3
/* Standard CBOR Major type for an ordered array of other CBOR data items */
#define CBOR_MAJOR_TYPE_ARRAY 4
/* Standard CBOR Major type for CBOR MAP. Maps an array of pairs. The
first item in the pair is the "label" (key, name or identfier) and the second
item is the value. */
#define CBOR_MAJOR_TYPE_MAP 5
/* Standard CBOR optional tagging. This tags things like dates and URLs */
#define CBOR_MAJOR_TYPE_OPTIONAL 6
/* Standard CBOR extra simple types like floats and the values true and false */
#define CBOR_MAJOR_TYPE_SIMPLE 7
/*
These are special values for the AdditionalInfo bits that are part of the first byte.
Mostly they encode the length of the data item.
*/
#define LEN_IS_ONE_BYTE 24
#define LEN_IS_TWO_BYTES 25
#define LEN_IS_FOUR_BYTES 26
#define LEN_IS_EIGHT_BYTES 27
#define ADDINFO_RESERVED1 28
#define ADDINFO_RESERVED2 29
#define ADDINFO_RESERVED3 30
#define LEN_IS_INDEFINITE 31
/*
24 is a special number for CBOR. Integers and lengths
less than it are encoded in the same byte as the major type
*/
#define CBOR_TWENTY_FOUR 24
/*
Tags that are used with CBOR_MAJOR_TYPE_OPTIONAL. These are
the ones defined in the CBOR spec.
*/
/** See QCBOREncode_AddDateString() below */
#define CBOR_TAG_DATE_STRING 0
/** See QCBOREncode_AddDateEpoch_2() */
#define CBOR_TAG_DATE_EPOCH 1
#define CBOR_TAG_POS_BIGNUM 2
#define CBOR_TAG_NEG_BIGNUM 3
#define CBOR_TAG_FRACTION 4
#define CBOR_TAG_BIGFLOAT 5
#define CBOR_TAG_COSE_ENCRYPTO 16
#define CBOR_TAG_COSE_MAC0 17
#define CBOR_TAG_COSE_SIGN1 18
/* The data in byte string should be converted in base 64 URL when encoding in JSON or similar text-based representations */
#define CBOR_TAG_ENC_AS_B64URL 21
/* The data in byte string should be encoded in base 64 when encoding in JSON */
#define CBOR_TAG_ENC_AS_B64 22
/* The data in byte string should be encoded in base 16 when encoding in JSON */
#define CBOR_TAG_ENC_AS_B16 23
#define CBOR_TAG_CBOR 24
/** The data in the string is a URIs, as defined in RFC3986 */
#define CBOR_TAG_URI 32
/** The data in the string is a base 64'd URL */
#define CBOR_TAG_B64URL 33
/** The data in the string is base 64'd */
#define CBOR_TAG_B64 34
/** regular expressions in Perl Compatible Regular Expressions (PCRE) / JavaScript syntax ECMA262. */
#define CBOR_TAG_REGEX 35
/** MIME messages (including all headers), as defined in RFC2045 */
#define CBOR_TAG_MIME 36
/** Binary UUID */
#define CBOR_TAG_BIN_UUID 37
#define CBOR_TAG_CWT 61
#define CBOR_TAG_ENCRYPT 96
#define CBOR_TAG_MAC 97
#define CBOR_TAG_SIGN 98
#define CBOR_TAG_GEO_COORD 103
/** The data is CBOR data */
#define CBOR_TAG_CBOR_MAGIC 55799
#define CBOR_TAG_NONE UINT64_MAX
/*
Values for the 5 bits for items of major type 7
*/
#define CBOR_SIMPLEV_FALSE 20
#define CBOR_SIMPLEV_TRUE 21
#define CBOR_SIMPLEV_NULL 22
#define CBOR_SIMPLEV_UNDEF 23
#define CBOR_SIMPLEV_ONEBYTE 24
#define HALF_PREC_FLOAT 25
#define SINGLE_PREC_FLOAT 26
#define DOUBLE_PREC_FLOAT 27
#define CBOR_SIMPLE_BREAK 31
/* ===========================================================================
END OF CONSTANTS THAT COME FROM THE CBOR STANDARD, RFC 7049
BEGINNING OF PUBLIC INTERFACE FOR QCBOR ENCODER / DECODER
=========================================================================== */
/**
@file qcbor.h
Q C B O R E n c o d e / D e c o d e
This implements CBOR -- Concise Binary Ojbect Representation as defined
in RFC 7049. More info is at http://cbor.io. This is a near-complete
implementation of the specification. Limitations are listed further down.
CBOR is intentinonally designed to be translatable to JSON, but not
all CBOR can convert to JSON. See RFC 7049 for more info on how to
construct CBOR that is the most JSON friendly.
The memory model for encoding and decoding is that encoded CBOR
must be in a contigious buffer in memory. During encoding the
caller must supply an output buffer and if the encoding would go
off the end of the buffer an error is returned. During decoding
the caller supplies the encoded CBOR in a contiguous buffer
and the decoder returns pointers and lengths into that buffer
for strings.
This implementation does not use malloc. All data structures
passed in/out of the APIs can fit on the stack.
Decoding of indefinite length strings is a special case that requires
a "string allocator" to allocate memory into which the segments of
the string are coalesced. Without this, decoding will error out if
an indefinite length string is encountered (indefinite length maps
and arrays do not require the string allocator). A simple string
allocator called MemPool is built-in and will work if supplied with
a block of memory to allocate. The string allocator can optionally
use malloc() or some other custom scheme.
Here are some terms and definitions:
- "Item", "Data Item": An integer or string or such. The basic "thing" that
CBOR is about. An array is an item itself that contains some items.
- "Array": An ordered sequence of items, the same as JSON.
- "Map": A collection of label/value pairs. Each pair is a data
item. A JSON "object" is the same as a CBOR "map".
- "Label": The data item in a pair in a map that names or identifies the
pair, not the value. This implementation refers to it as a "label".
JSON refers to it as the "name". The CBOR RFC refers to it this as a "key".
This implementation chooses label instead because key is too easily confused
with a cryptographic key. The COSE standard, which uses CBOR, has also
choosen to use the term "label" rather than "key" for this same reason.
- "Tag": Optional info that can be added before each data item. This is always
CBOR major type 6.
- "Initial Byte": The first byte of an encoded item. Encoding and decoding of
this byte is taken care of by the implementation.
- "Additional Info": In addition to the major type, all data items have some
other info. This is usually the length of the data, but can be several
other things. Encoding and decoding of this is taken care of by the
implementation.
CBOR has two mechanisms for tagging and labeling the primitive data
values like integers and strings. For example an integter that
represents someone's birthday in epoch seconds since Jan 1, 1970
could be encoded like this:
- First it is CBOR_MAJOR_TYPE_POSITIVE_INT, the primitive positive
integer.
- Next it has a "tag" CBOR_TAG_DATE_EPOCH indicating the integer
represents a date in the form of the number of seconds since
Jan 1, 1970.
- Last it has a string "label" like "BirthDate" indicating
the meaning of the data.
The encoded binary looks like this:
a1 # Map of 1 item
69 # Indicates text string of 9 bytes
426972746844617465 # The text "BirthDate"
c1 # Tags next int as epoch date
1a # Indicates 4 byte integer
580d4172 # unsigned integer date 1477263730
Implementors using this API will primarily work with labels. Generally
tags are only needed for making up new data types. This implementation
covers most of the data types defined in the RFC using tags. It also,
allows for the creation of news tags if necessary.
This implementation explicitly supports labels that are text strings
and integers. Text strings translate nicely into JSON objects and
are very readable. Integer labels are much less readable, but
can be very compact. If they are in the range of -23 to
23 they take up only one byte.
CBOR allows a label to be any type of data including an array or
a map. It is possible to use this API to construct and
parse such labels, but it is not explicitly supported.
A common encoding usage mode is to invoke the encoding twice. First
with no output buffer to compute the length of the needed output
buffer. Then the correct sized output buffer is allocated. Last the
encoder is invoked again, this time with the output buffer.
The double invocation is not required if the max output buffer size
can be predicted. This is usually possible for simple CBOR structures.
If the double invocation is implemented it can be
in a loop or function as in the example code so that the code doesn't
have to actually be written twice, saving code size.
If a buffer too small to hold the encoded output is given, the error
QCBOR_ERR_BUFFER_TOO_SMALL will be returned. Data will never be
written off the end of the output buffer no matter which functions
here are called or what parameters are passed to them.
The error handling is simple. The only possible errors are trying to
encode structures that are too large or too complex. There are no
internal malloc calls so there will be no failures for out of memory.
Only the final call, QCBOREncode_Finish(), returns an error code.
Once an error happens, the encoder goes into an error state and calls
to it will do nothing so the encoding can just go on. An error
check is not needed after every data item is added.
Encoding generally proceeds by calling QCBOREncode_Init(), calling
lots of "Add" functions and calling QCBOREncode_Finish(). There
are many "Add" functions for various data types. The input
buffers need only to be valid during the "Add" calls. The
data is copied into the output buf during the "Add" call.
There are several "Add" functions / macros for each type. The
main one is named ending in "_2", for example
QCBOREncode_AddInt64_2().
Generally it is better to use the macros that only take the
parameters necessary what you are adding. For example,
QCBOREncode_AddInt64(),
only takes the integer value to add with no labels and tags.
The simplest aggregate type is an array, which is a simple ordered
set of items without labels the same as JSON arrays. Call
QCBOREncode_OpenArray() to open a new array, then "Add" to
put items in the array and then QCBOREncode_CloseArray(). Nesting
to a limit is allowed. All opens must be matched by closes or an
encoding error will be returned.
The other aggregate is a map which does use labels. For convenience
there are macros for adding each type to a map, one with a string
label, the other with an integer label. (Part of the goal of this
design is to make the code implementing a CBOR protocol easy to
read).
Note that when you nest arrays or maps in a map, the nested
array or map has a label.
Usually it is not necessary to add tags explcitly as most
tagged types have functions here, but they can be added by
calling QCBOREncode_AddTag(). There is an IANA registry for new tags that are
for broad use and standardization as per RFC 7049. It is also
allowed for protocols to make up new tags in the range above 256.
Note that even arrays and maps can be tagged.
Summary Limits of this implementation:
- The entire encoded CBOR must fit into contiguous memory.
- Max size of encoded / decoded CBOR data is UINT32_MAX (4GB).
- Max array / map nesting level when encoding / decoding is
QCBOR_MAX_ARRAY_NESTING (this is typically 10).
- Max items in an array or map when encoding / decoding is
QCBOR_MAX_ITEMS_IN_ARRAY (typicall 65,536).
- Does not support encoding indefinite lengths (decoding is supported).
- Does not directly support some tagged types: decimal fractions, big floats
- Does not directly support labels in maps other than text strings and ints.
- Does not directly support int labels > INT64_MAX
- Epoch dates limited to INT64_MAX (+/- 292 billion years)
- Tags on labels are ignored
This implementation is intended to run on 32 and 64-bit CPUs. It
will probably work on 16-bit CPUs but less efficiently.
The public interface uses size_t for all lengths. Internally the
implementation uses 32-bit lengths by design to use less memory and
fit structures on the stack. This limits the encoded
CBOR it can work with to size UINT32_MAX (4GB) which should be
enough.
This implementation assume two's compliment integer
machines. Stdint.h also requires this. It of course would be easy to
fix this implementation for another integer representation, but all
modern machines seem to be two's compliment.
*/
/**
The maximum number of items in a single array or map when encoding of decoding.
*/
#define QCBOR_MAX_ITEMS_IN_ARRAY (UINT16_MAX) // This value is 65,535 a lot of items for an array
/**
The maxium nesting of arrays and maps when encoding or decoding. The
error QCBOR_ERR_ARRAY_NESTING_TOO_DEEP will be returned on encoding
of decoding if it is exceeded
*/
#define QCBOR_MAX_ARRAY_NESTING QCBOR_MAX_ARRAY_NESTING1
/**
The maximum number of tags that can be in QCBORTagListIn and passed to
QCBORDecode_SetCallerConfiguredTagList()
*/
#define QCBOR_MAX_CUSTOM_TAGS 16
/** The encode or decode completely correctly. */
#define QCBOR_SUCCESS 0
/** The buffer provided for the encoded output when doing encoding was
too small and the encoded output will not fit. */
#define QCBOR_ERR_BUFFER_TOO_SMALL 1
/** During encoding or decoding, the array or map nesting was deeper than this
implementation can handle. Note that in the interest of code size and
memory use, this implementation has a hard limit on array nesting. The
limit is defined as the constant QCBOR_MAX_ARRAY_NESTING. */
#define QCBOR_ERR_ARRAY_NESTING_TOO_DEEP 2
/** During decoding the array or map had too many items in it. This limit is quite
high at 65,535. */
#define QCBOR_ERR_ARRAY_TOO_LONG 3
/** During encoding, more arrays or maps were closed than opened. This is a
coding error on the part of the caller of the encoder. */
#define QCBOR_ERR_TOO_MANY_CLOSES 4
/** During decoding, some CBOR construct was encountered that this decoder
doesn't support. */
#define QCBOR_ERR_UNSUPPORTED 5
/** During decoding, hit the end of the given data to decode. For example,
a byte string of 100 bytes was expected, but the end of the input
was hit before finding those 100 bytes. Corrupted CBOR
input will often result in this error. */
#define QCBOR_ERR_HIT_END 6
/** The length of the input buffer was too large. This might happen
on a 64-bit machine when a buffer larger than INT32_MAX is passed */
#define QCBOR_ERR_BUFFER_TOO_LARGE 7
/** The simple value added for encoding (e.g. passed to QCBOR_AddSimple) was not valid */
#define QCBOR_ERR_INVALID_SIMPLE 8
/** During parsing, the integer received was larger than can be handled. This is
most likely a large negative number as CBOR can represent large negative integers
that C cannot */
#define QCBOR_ERR_INT_OVERFLOW 9
/** During parsing, the label for a map entry is bad. An array is used as a map label,
in mode to accept strings only as labels and it is not a string... */
#define QCBOR_ERR_MAP_LABEL_TYPE 10
/** The number of array or map opens was not matched by the number of closes */
#define QCBOR_ERR_ARRAY_OR_MAP_STILL_OPEN 11
/** The simple value is not between CBOR_SIMPLEV_FALSE and CBOR_SIMPLEV_UNDEF */
#define QCBOR_ERR_BAD_SIMPLE 12 // todo combine with 8?
/** Date greater than +- 292 billion years from Jan 1 1970 encountered during parsing */
#define QCBOR_ERR_DATE_OVERFLOW 13
/** The CBOR is not valid (a simple type is encoded wrong) */
#define QCBOR_ERR_INVALID_CBOR 14
/** Optional tagging that doesn't make sense (an int is tagged as a date string) or can't be handled. */
#define QCBOR_ERR_BAD_OPT_TAG 15
/** Returned by QCBORDecode_Finish() if all the inputs bytes have not been consumed */
#define QCBOR_ERR_EXTRA_BYTES 16
/** Closing something different than is open */
#define QCBOR_ERR_CLOSE_MISMATCH 17
/** Unable to decode an indefinitely length string because no string allocator was configured */
#define QCBOR_ERR_NO_STRING_ALLOCATOR 18
/** One of the segments in an indefinite length string is of the wrong type */
#define QCBOR_ERR_INDEFINITE_STRING_SEG 19
/** Error allocating space for a string, usually for an indefinite length string */
#define QCBOR_ERR_STRING_ALLOC 20
/** The a break occurred outside an indefinite length item */
#define QCBOR_ERR_BAD_BREAK 21
/** Too many tags in the caller-configured tag list, or not enough space in QCBORTagListOut */
#define QCBOR_ERR_TOO_MANY_TAGS 22
/** See QCBORDecode_Init() */
#define QCBOR_DECODE_MODE_NORMAL 0
/** See QCBORDecode_Init() */
#define QCBOR_DECODE_MODE_MAP_STRINGS_ONLY 1
/** See QCBORDecode_Init() */
#define QCBOR_DECODE_MODE_MAP_AS_ARRAY 2
/* Do not renumber these. Code depends on some of these values. */
/** Type for an integer that decoded either between INT64_MIN and INT32_MIN or INT32_MAX and INT64_MAX; val.int64 */
#define QCBOR_TYPE_INT64 2
/** Type for an integer that decoded to a more than INT64_MAX and UINT64_MAX; val.uint64 */
#define QCBOR_TYPE_UINT64 3
/** Type for an array. The number of items in the array is in val.uCount. */
#define QCBOR_TYPE_ARRAY 4
/** Type for a map; number of items in map is in val.uCount */ // todo note how map decoding works
#define QCBOR_TYPE_MAP 5
/** Type for a buffer full of bytes. Data is in val.string. */
#define QCBOR_TYPE_BYTE_STRING 6
/** Type for a UTF-8 string. It is not NULL terminated. Data is in val.string. */
#define QCBOR_TYPE_TEXT_STRING 7
/** Type for a floating point number. Data is in val.float. */
#define QCBOR_TYPE_FLOAT 26
/** Type for a double floating point number. Data is in val.double. */
#define QCBOR_TYPE_DOUBLE 27
/** Type for a postive big number. Data is in val.bignum, a pointer and a length. */
#define QCBOR_TYPE_POSBIGNUM 9
/** Type for a negative big number. Data is in val.bignum, a pointer and a length. */
#define QCBOR_TYPE_NEGBIGNUM 10
/** Type for RFC xxxx date string, possibly with time zone.Data is in val.dateString */
#define QCBOR_TYPE_DATE_STRING 11
/** Type for integer seconds since Jan 1970 + floating point fraction. Data is in val.epochDate */
#define QCBOR_TYPE_DATE_EPOCH 12
/** A simple type that this CBOR implementation doesn't know about; Type is in val.uSimple. */
#define QCBOR_TYPE_UKNOWN_SIMPLE 13
/** Type for the simple value false; nothing more; nothing in val union. */
#define QCBOR_TYPE_FALSE 20
/** Type for the simple value true; nothing more; nothing in val union. */
#define QCBOR_TYPE_TRUE 21
/** Type for the simple value null; nothing more; nothing in val union. */
#define QCBOR_TYPE_NULL 22
/** Type for the simple value undef; nothing more; nothing in val union. */
#define QCBOR_TYPE_UNDEF 23
#define QCBOR_TYPE_BREAK 31 // Used internally; never returned
#define QCBOR_TYPE_OPTTAG 254 // Used internally; never returned
/*
Approx Size of this:
8 + 8 + 1 + 1 + 1 + (1 padding) + (4 padding on 64-bit machine) = 24 for first part (20 on a 32-bit machine)
16 bytes for the val union
16 bytes for label union
total = 56 bytes (52 bytes on 32-bit machine)
*/
/**
QCBORItem holds the type, value and other info for a decoded item returned by GetNextItem().
*/
typedef struct _QCBORItem {
uint8_t uDataType; /** Tells what element of the val union to use. One of QCBOR_TYPE_XXXX */
uint8_t uNestingLevel; /** How deep the nesting from arrays and maps are. 0 is the top level with no arrays or maps entered */
uint8_t uLabelType; /** Tells what element of the label union to use */
uint8_t uDataAlloc; /** 1 if allocated with string allocator, 0 if not. See xxx TODO: more work; also exceeds padding size on 32-bit machine*/
uint8_t uLabelAlloc; /** Like uDataAlloc, but for label */
uint8_t uNextNestLevel; /** If not equal to uNestingLevel, this item closed out at least one map/array */
union {
int64_t int64; /** The value for uDataType QCBOR_TYPE_INT64 */
uint64_t uint64; /** The value for uDataType QCBOR_TYPE_UINT64 */
UsefulBufC string; /** The value for uDataType QCBOR_TYPE_BYTE_STRING and QCBOR_TYPE_TEXT_STRING */
uint16_t uCount; /** The "value" for uDataType QCBOR_TYPE_ARRAY or QCBOR_TYPE_MAP -- the number of items in the array or map */ // TODO: indefinite len arrays
float fnum; /** The value for uDataType QCBOR_TYPE_FLOAT */
double dfnum; /** The value for uDataType QCBOR_TYPE_DOUBLE */
struct {
int64_t nSeconds;
double fSecondsFraction;
} epochDate; /** The value for uDataType QCBOR_TYPE_DATE_EPOCH */
UsefulBufC dateString; /** The value for uDataType QCBOR_TYPE_DATE_STRING */
UsefulBufC bigNum; /** The value for uDataType QCBOR_TYPE_BIGNUM */
uint8_t uSimple; /** The integer value for unknown simple types */
uint64_t uTagV;
} val; /** The union holding the item's value. Select union member based on uDataType */
union {
UsefulBufC string; /** The label for uLabelType QCBOR_TYPE_BYTE_STRING and QCBOR_TYPE_TEXT_STRING */
int64_t int64; /** The label for uLabelType for QCBOR_TYPE_INT64 */
uint64_t uint64; /** The label for uLabelType for QCBOR_TYPE_UINT64 */
} label; /** Union holding the different label types selected based on uLabelType */
uint64_t uTagBits; /** Bit indicating which tags (major type 6) on this item. */
} QCBORItem;
/**
This is a set of functions and pointer context (in object-oriented parlance,
an "object") used to allocate memory for coalescing the segments of an indefinite
length string into one.
The fAllocate function works as an initial allocator and a reallocator to
expand the string for each new segment. When it is an initial allocator
pOldMem is NULL.
The fFree function is called to clean up an individual allocation when an error occurs.
The fDesctructor function is called when QCBORDecode_Finish is called.
Any memory allocated with this will be marked by setting uXXXAlloc in the
QCBORItem structure so the caller knows they have to free it.
fAllocate is only ever called to increase the single most recent
allocation made, making implementation of a memory pool very simple.
fFree is also only called on the single most recent allocation.
*/
typedef struct {
void *pAllocaterContext;
UsefulBuf (*fAllocate)(void *pAllocaterContext, void *pOldMem, size_t uNewSize);
void (*fFree)(void *pAllocaterContext, void *pMem);
void (*fDestructor)(void *pAllocaterContext);
} QCBORStringAllocator;
/**
This is used to tell the decoder about tags that it should
record in uTagBits in QCBORItem beyond the built-in
tags. puTags points to an
array of uint64_t integers that are the tags. uNumTags
is the number of integers in the array. The maximum
size is QCBOR_MAX_CUSTOM_TAGS. See QCBORDecode_IsTagged()
and QCBORDecode_SetCallerAddedTagMap().
*/
typedef struct {
uint8_t uNumTags;
const uint64_t *puTags;
} QCBORTagListIn;
/**
This is for QCBORDecode_GetNextWithTags() to be able to return the
full list of tags on an item. It not needed for most CBOR protocol
implementations. Its primary use is for pretty-printing CBOR or
protocol conversion to another format.
On input, puTags points to a buffer to be filled in
and uNumAllocated is the number of uint64_t values
in the buffer.
On output the buffer contains the tags for the item.
uNumUsed tells how many there are.
*/
typedef struct {
uint8_t uNumUsed;
uint8_t uNumAllocated;
uint64_t *puTags;
} QCBORTagListOut;
/**
Constant passed for paramenter nLabel to indicate that no integer
label should be added for this item. This also means that you can
never use INT64_MAX as an integer label.
*/
#define QCBOR_NO_INT_LABEL INT64_MAX
/**
QCBOREncodeContext is the data type that holds context for all the
encoding functions. It is a little over 100 bytes so it can go on
the stack. The contents are opaque and the caller should not access
any internal items. A context may be re used serially as long as
it is re initialized.
*/
typedef struct _QCBOREncodeContext QCBOREncodeContext;
/**
Initialize the the encoder to prepare to encode some CBOR.
@param[in,out] pCtx The encoder context to initialize.
@param[in] Storage The buffer into which this encoded result will be placed.
Call this once at the start of an encoding of a CBOR structure. Then
call the various QCBOREncode_AddXXX() functions to add the data
items. Then call QCBOREncode_Finish().
The maximum output buffer is UINT32_MAX (4GB). This is not a practical
limit in any way and reduces the memory needed by the implementation.
The error QCBOR_ERR_BUFFER_TOO_LARGE will be returned by QCBOR_Finish()
if a larger buffer length is passed in.
If this is called with pBuf as NULL and uBufLen a large value like
UINT32_MAX, all the QCBOREncode_AddXXXX() functions and
QCBORE_Encode_Finish() can still be called. No data will be encoded,
but the length of what would be encoded will be calculated. The
length of the encoded structure will be handed back in the call to
QCBOREncode_Finish(). You can then allocate a buffer of that size
and call all the encoding again, this time to fill in the buffer.
A QCBORContext can be reused over and over as long as
QCBOREncode_Init() is called.
*/
void QCBOREncode_Init(QCBOREncodeContext *pCtx, UsefulBuf Storage);
/**
@brief[in] Add an optional tag
@param[in] pCtx The encoding context to add the integer to.
@param[in] uTag The tag to add
The tag is applied to the next data item added to the encoded
output. That data item can be of any major CBOR type.
Any number of tags can be added to a data item.
When one of the Add functions is called with either a string or
integer label after a call to this function, the output will be
re ordered so that the tag comes after the label and tags the
value, not the label.
*/
void QCBOREncode_AddTag(QCBOREncodeContext *pCtx,uint64_t uTag);
/**
@brief Add a 64-bit integer to the encoded output
@param[in] pCtx The encoding context to add the integer to.
@param[in] szLabel The string map label for this integer value.
@param[in] nLabel The integer map label for this integer value.
@param[in] nNum The integer to add.
The functions and macros with a "U" add unsigned integers and those
without add signed. The main reason to use the unsigned versions is
when the integers are in the range of MAX_INT to MAX_UINT, values
that can be expressed by a uint64_t, but not an int64_t.
This function figures out the size and the sign and encodes in the
correct minimal CBOR. Specifically it will select CBOR major type 0 or 1
based on sign and will encode to 1, 2, 4 or 8 bytes depending on the
value of the integer. Values less than 24 effectively encode to one
byte because they are encoded in with the CBOR major type. This is
a neat and efficient characteristic of CBOR that can be taken
advantage of when designing CBOR-based protocols. If integers like
tags can be kept between -23 and 23 they will be encoded in one byte
including the major type.
If you pass a smaller int, say an int16_t or a small value, say 100,
the encoding will still be CBOR's most compact that can represent the
value. For example CBOR always encodes the value 0 as one byte,
0x00. The representation as 0x00 includes identfication of the type
as an integer too as the major type for an integer is 0. See RFC 7049
Appendix A for more examples of CBOR encoding. This compact encoding
is also cannonical CBOR as per section 3.9 in RFC 7049.
There are no functions to add int16_t or int32_t because they are
not necessary because this always encodes to the smallest number
of bytes based on the value (If this code is running on a 32-bit
machine having way to add 32-bit integers would reduce code size some).
If the encoding context is in an error state, this will do
nothing. If this causes an error such as going off the end of the
buffer an internal error flag will be set and the error will be
returned when QCBOREncode_Finish() is called.
*/
void QCBOREncode_AddInt64_2(QCBOREncodeContext *pCtx, const char *szLabel, int64_t nLabel, int64_t nNum);
void QCBOREncode_AddUInt64_2(QCBOREncodeContext *pCtx, const char *szLabel, int64_t nLabel, uint64_t uNum);
#define QCBOREncode_AddUInt64(pCtx, uNum) \
QCBOREncode_AddUInt64_2((pCtx), NULL, QCBOR_NO_INT_LABEL, (uNum))
#define QCBOREncode_AddUInt64ToMap(pCtx, szLabel, uNum) \
QCBOREncode_AddUInt64_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (uNum))
#define QCBOREncode_AddUInt64ToMapN(pCtx, nLabel, uNum) \
QCBOREncode_AddUInt64_2((pCtx), NULL, (nLabel), (uNum))
#define QCBOREncode_AddInt64(pCtx, nNum) \
QCBOREncode_AddInt64_2((pCtx), NULL, QCBOR_NO_INT_LABEL, (nNum))
#define QCBOREncode_AddInt64ToMap(pCtx, szLabel, nNum) \
QCBOREncode_AddInt64_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (nNum))
#define QCBOREncode_AddInt64ToMapN(pCtx, nLabel, nNum) \
QCBOREncode_AddInt64_2((pCtx), NULL, (nLabel), (nNum))
/**
@brief Add a float or double value to the encoded output
@param[in] pCtx The encoding context to add the float to.
@param[in] szLabel The string map label for this integer value.
@param[in] nLabel The integer map label for this integer value.
@param[in] fNum The float to add.
This works the same as QCBOREncode_AddInt64_2() except it is for floats and doubles.
*/
void QCBOREncode_AddFloat_2(QCBOREncodeContext *pCtx, const char *szLabel, int64_t nLabel, float fNum);
void QCBOREncode_AddDouble_2(QCBOREncodeContext *pCtx, const char *szLabel, int64_t nLabel, double dNum);
#define QCBOREncode_AddFloat(pCtx, fNum) \
QCBOREncode_AddFloat_2((pCtx), NULL, QCBOR_NO_INT_LABEL, (fNum))
#define QCBOREncode_AddFloatToMap(pCtx, szLabel, fNum) \
QCBOREncode_AddFloat_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (fNum))
#define QCBOREncode_AddFloatToMapN(pCtx, nLabel, fNum) \
QCBOREncode_AddFloat_2((pCtx), NULL, (nLabel), (fNum))
#define QCBOREncode_AddDouble(pCtx, dNum) \
QCBOREncode_AddDouble_2((pCtx), NULL, QCBOR_NO_INT_LABEL, (dNum))
#define QCBOREncode_AddDoubleToMap(pCtx, szLabel, dNum) \
QCBOREncode_AddDouble_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (dNum))
#define QCBOREncode_AddDoubleToMapN(pCtx, nLabel, dNum) \
QCBOREncode_AddDouble_2((pCtx), NULL, (nLabel), (dNum))
/*
@brief Add a half-precision floating point number to the encoded output
@param[in] pCtx The encoding context to add the float to.
@param[in] szLabel The string map label for this integer value.
@param[in] nLabel The integer map label for this integer value.
@param[in] fNum The float to add.
This will truncate the precision of the single precision float to half-precision.
Numbers whose absolute value is larger than 65504 will be encoded as infinity as this is the largest number
half-precision can encode. Numbers whose absolute value is less than 5.96E−8 will be
encoded as 0. Single precision floats smaller than 6.10E−5 will be converted
half-precision subnormal numbers.
Infinity and NaN are handled correctly. NaN payloads are partially carried.
Half-precision floating point number take up 2 bytes, half that of single-precision.
This works the same as QCBOREncode_AddInt64_2() except it is for half-precision floats.
*/
void QCBOREncode_AddFloatAsHalf_2(QCBOREncodeContext *me, const char *szLabel, int64_t nLabel, float fNum);
#define QCBOREncode_AddFloatAsHalf(pCtx, fNum) \
QCBOREncode_AddFloatAsHalf_2((pCtx), NULL, QCBOR_NO_INT_LABEL, (fNum))
#define QCBOREncode_AddFloatAsHalfToMap(pCtx, szLabel, fNum) \
QCBOREncode_AddFloatAsHalf_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (fNum))
#define QCBOREncode_AddFloatAsHalfToMapN(pCtx, nLabel, fNum) \
QCBOREncode_AddFloatAsHalf_2((pCtx), NULL, (nLabel), (fNum))
/*
@brief Add a dynamically sized floating point number to the encoded output
@param[in] pCtx The encoding context to add the float to.
@param[in] szLabel The string map label for this integer value.
@param[in] nLabel The integer map label for this integer value.
@param[in] fNum The float to add.
This will selectively encode the single-precision floating point number as either
single-precision or half-precision. It will always encode infinity, NaN and 0
has half precision. If no precision will be lost in the conversion to half-precision
then it will be performed, otherwise it will not be performed.
This reduces the size of encoded messages a lot, maybe even half if most values are
0, infinity or NaN.
Half-precision floating point numbers take up 2 bytes, half that of single-precision.
These will always be decoded into a float as standard C doesn't have a widely used
standard representation for half-precision floats yet.
This works the same as QCBOREncode_AddInt64_2() except it is for single and half-precision floats.
*/
void QCBOREncode_AddFloatAsSmallest_2(QCBOREncodeContext *me, const char *szLabel, int64_t nLabel, float fNum);
#define QCBOREncode_AddFloatAsSmallest(pCtx, fNum) \
QCBOREncode_AddFloatAsSmallest_2((pCtx), NULL, QCBOR_NO_INT_LABEL, CBOR_TAG_NONE, (fNum))
#define QCBOREncode_AddFloatAsSmallestToMap(pCtx, szLabel, fNum) \
QCBOREncode_AddFloatAsSmallest_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (fNum))
#define QCBOREncode_AddFloatAsSmallestToMapN(pCtx, nLabel, fNum) \
QCBOREncode_AddFloatAsSmallest_2((pCtx), NULL, (nLabel), (fNum))
/**
@brief Add a dynamically sized floating point number to the encoded output
@param[in] pCtx The encoding context to add the float to.
@param[in] szLabel The string map label for this integer value.
@param[in] nLabel The integer map label for this integer value.
@param[in] dNum The float to add.
This will selectively encode the double-precision floating point number as either
double-precision, single-precision or half-precision. It will always encode infinity, NaN and 0
has half precision. If no precision will be lost in the conversion to half-precision
then it will be converted and encoded. If not and no precision will be lost in
conversion to single-precision, then it will be converted and encoded. If not, then
no conversion is performed and it sent as a double.
Half-precision floating point numbers take up 2 bytes, half that of single-precision,
one quarter of double-preceision
This reduces the size of encoded messages a lot, maybe even by four if a most of values are
0, infinity or NaN.
On decode, these will always be represented has float or double. Half-precision values
will decode as float as standard C doesn't have a widely used
standard representation for half-precision floats yet. The designer of the protocol
using this approach can / should assume that floats received actually have the precision
of double. They should probably cast the float received to double.
This works the same as QCBOREncode_AddInt64_2() except it is for floating point types.
*/
void QCBOREncode_AddDoubleAsSmallest_2(QCBOREncodeContext *pCtx, const char *szLabel, int64_t nLabel, double dNum);
#define QCBOREncode_AddDoubleAsSmallest(pCtx, dNum) \
QCBOREncode_AddDoubleAsSmallest_2((pCtx), NULL, QCBOR_NO_INT_LABEL, (dNum))
#define QCBOREncode_AddDoubleAsSmallestToMap(pCtx, szLabel, dNum) \
QCBOREncode_AddDoubleAsSmallest_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (dNum))
#define QCBOREncode_AddDoubleAsSmallestToMapN(pCtx, nLabel, dNum) \
QCBOREncode_AddDoubleAsSmallest_2((pCtx), NULL, (nLabel), (dNum))
/**
@brief Add an epoch-based date
@param[in] pCtx The encoding context to add the simple value to.
@param[in] szLabel The string map label for this integer value.
@param[in] nLabel The integer map label for this integer value.
@param[in] date Number of seconds since 1970-01-01T00:00Z in UTC time.
As per RFC 7049 this is similar to UNIX/Linux/POSIX dates. This is
the most compact way to specify a date and time in CBOR. Note that this
is always UTC and does not include the time zone. Use
QCBOREncode_AddDateString() if you want to include the time zone.
The integer encoding rules apply here so the date will be encoded in a
minimal number of 1, 2 4 or 8 bytes. Until about the year 2106 these
dates should encode in 6 bytes -- one byte for the tag, one byte for the type
and 4 bytes for the integer.
If you care about leap-seconds and that level of accuracy, make sure the
system you are running this code on does it correctly. This code just takes
the value passed in.
This implementation cannot encode fractional seconds using float or double
even though that is allowed by CBOR, but you can encode them if you
want to by calling QCBOREncode_AddFloat_2() or QCBOREncode_AddDouble_2()
with the right parameters.
Error handling is the same as QCBOREncode_AddInt64_2().
*/
static inline void QCBOREncode_AddDateEpoch_2(QCBOREncodeContext *pCtx, const char *szLabel, uint64_t nLabel, int64_t date)
{
QCBOREncode_AddTag(pCtx, CBOR_TAG_DATE_EPOCH);
QCBOREncode_AddInt64_2(pCtx, szLabel, nLabel, date);
}
#define QCBOREncode_AddDateEpoch(pCtx, date) \
QCBOREncode_AddDateEpoch_2((pCtx), NULL, QCBOR_NO_INT_LABEL, (date))
#define QCBOREncode_AddDateEpochToMap(pCtx, szLabel, date) \
QCBOREncode_AddDateEpoch_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (date))
#define QCBOREncode_AddDateEpochToMapN(pCtx, nLabel, date) \
QCBOREncode_AddDateEpoch_2((pCtx), NULL, (nLabel), (date))
/*
Use QCBOREncode_AddBytes_2() or QCBOREncode_AddBText_2() or
QCBOREncode_AddEncoded_2() instead of this. Their inline
implementations call this to do their work.
The code is structured like this with the inline functions
to reduce object code.
*/
void QCBOREncode_AddBuffer_2(QCBOREncodeContext *me, uint8_t uMajorType, const char *szLabel, int64_t nLabel, UsefulBufC Bytes);
/**
@brief Add a byte string to the encoded output.
@param[in] pCtx The context to initialize.
@param[in] szLabel The string map label for this integer value.
@param[in] nLabel The integer map label for this integer value.
@param[in] Bytes Pointer and length of the input data.
Simply adds the bytes to the encoded output and CBOR major type 2.
If called with Bytes.len equal to 0, an empty string will be
added. When Bytes.len is 0, Bytes.ptr may be NULL.
*/
static inline void QCBOREncode_AddBytes_2(QCBOREncodeContext *pCtx, const char *szLabel, int64_t nLabel, UsefulBufC Bytes)
{
QCBOREncode_AddBuffer_2(pCtx, CBOR_MAJOR_TYPE_BYTE_STRING, szLabel, nLabel, Bytes);
}
#define QCBOREncode_AddBytes(pCtx, Bytes) \
QCBOREncode_AddBytes_2((pCtx), NULL, QCBOR_NO_INT_LABEL, Bytes)
#define QCBOREncode_AddBytesToMap(pCtx, szLabel, Bytes) \
QCBOREncode_AddBytes_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (Bytes))
#define QCBOREncode_AddBytesToMapN(pCtx, nLabel, Bytes) \
QCBOREncode_AddBytes_2((pCtx), NULL, (nLabel), (Bytes))
static inline void QCBOREncode_AddBinaryUUID_2(QCBOREncodeContext *pCtx, const char *szLabel, int64_t nLabel, UsefulBufC Bytes)
{
QCBOREncode_AddTag(pCtx, CBOR_TAG_BIN_UUID);
QCBOREncode_AddBytes_2(pCtx, szLabel, nLabel, Bytes);
}
#define QCBOREncode_AddBinaryUUID(pCtx, Bytes) \
QCBOREncode_AddBinaryUUID_2((pCtx), NULL, QCBOR_NO_INT_LABEL, (Bytes))
#define QCBOREncode_AddBinaryUUIDToMap(pCtx, szLabel, Bytes) \
QCBOREncode_AddBinaryUUID_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (Bytes))
#define QCBOREncode_AddBinaryUUIDToMapN(pCtx, nLabel, Bytes) \
QCBOREncode_AddBinaryUUID_2((pCtx), NULL, (nLabel), (Bytes))
static inline void QCBOREncode_AddPositiveBignum_2(QCBOREncodeContext *pCtx, const char *szLabel, int64_t nLabel, UsefulBufC Bytes)
{
QCBOREncode_AddTag(pCtx, CBOR_TAG_POS_BIGNUM);
QCBOREncode_AddBytes_2(pCtx, szLabel, nLabel, Bytes);
}
#define QCBOREncode_AddPositiveBignum(pCtx, Bytes) \
QCBOREncode_AddPositiveBignum_2((pCtx), NULL, QCBOR_NO_INT_LABEL, (Bytes))
#define QCBOREncode_AddPositiveBignumToMap(pCtx, szLabel, Bytes) \
QCBOREncode_AddPositiveBignum_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (Bytes))
#define QCBOREncode_AddPositiveBignumToMapN(pCtx, nLabel, Bytes) \
QCBOREncode_AddPositiveBignum_2((pCtx), NULL, (nLabel), (Bytes))
static inline void QCBOREncode_AddNegativeBignum_2(QCBOREncodeContext *pCtx, const char *szLabel, int64_t nLabel, UsefulBufC Bytes)
{
QCBOREncode_AddTag(pCtx, CBOR_TAG_NEG_BIGNUM);
QCBOREncode_AddBytes_2(pCtx, szLabel, nLabel, Bytes);
}
#define QCBOREncode_AddNegativeBignum(pCtx, Bytes) \
QCBOREncode_AddNegativeBignum_2((pCtx), NULL, QCBOR_NO_INT_LABEL, (Bytes))
#define QCBOREncode_AddNegativeBignumToMap(pCtx, szLabel, Bytes) \
QCBOREncode_AddNegativeBignum_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (Bytes))
#define QCBOREncode_AddNegativeBignumToMapN(pCtx, nLabel, Bytes) \
QCBOREncode_AddNegativeBignum_2((pCtx), NULL, (nLabel), (Bytes))
/**
@brief Add a UTF-8 text string to the encoded output
@param[in] pCtx The context to initialize.
@param[in] szLabel The string map label for this integer value.
@param[in] nLabel The integer map label for this integer value.
@param[in] Bytes Pointer and length of text to add.
The text passed in must be unencoded UTF-8 according to RFC
3629. There is no NULL termination.
If called with nBytesLen equal to 0, an empty string will be
added. When nBytesLen is 0, pBytes may be NULL.
Note that the restriction of the buffer length to an uint32_t is
entirely intentional as this encoder is not capable of encoding
lengths greater. This limit to 4GB for a text string should not be a
problem.
Error handling is the same as QCBOREncode_AddInt64_2().
*/
static inline void QCBOREncode_AddText_2(QCBOREncodeContext *pCtx, const char *szLabel, int64_t nLabel, UsefulBufC Bytes)
{
QCBOREncode_AddBuffer_2(pCtx, CBOR_MAJOR_TYPE_TEXT_STRING, szLabel, nLabel, Bytes);
}
#define QCBOREncode_AddText(pCtx, Bytes) \
QCBOREncode_AddText_2((pCtx), NULL, QCBOR_NO_INT_LABEL, (Bytes))
#define QCBOREncode_AddTextToMap(pCtx, szLabel, Bytes) \
QCBOREncode_AddText_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (Bytes))
#define QCBOREncode_AddTextToMapN(pCtx, nLabel, Bytes) \
QCBOREncode_AddText_2((pCtx), NULL, (nLabel), (Bytes))
inline static void QCBOREncode_AddSZString_2(QCBOREncodeContext *pCtx, const char *szLabel, int64_t nLabel, const char *szString)
{
QCBOREncode_AddText_2(pCtx, szLabel, nLabel,UsefulBuf_FromSZ(szString));
}
#define QCBOREncode_AddSZString(pCtx, szString) \
QCBOREncode_AddSZString_2((pCtx), NULL, QCBOR_NO_INT_LABEL, (szString))
#define QCBOREncode_AddSZStringToMap(pCtx, szLabel, szString) \
QCBOREncode_AddSZString_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (szString))
#define QCBOREncode_AddSZStringToMapN(pCtx, nLabel, szString) \
QCBOREncode_AddSZString_2((pCtx), NULL, (nLabel), (szString))
static inline void QCBOREncode_AddURI_2(QCBOREncodeContext *pCtx, const char *szLabel, int64_t nLabel, UsefulBufC Bytes)
{
QCBOREncode_AddTag(pCtx, CBOR_TAG_URI);
QCBOREncode_AddText_2(pCtx, szLabel, nLabel, Bytes);
}
#define QCBOREncode_AddURI(pCtx, Bytes) \
QCBOREncode_AddURI_2((pCtx), NULL, QCBOR_NO_INT_LABEL, (Bytes))
#define QCBOREncode_AddURIToMap(pCtx, szLabel, Bytes) \
QCBOREncode_AddURI_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (Bytes))
#define QCBOREncode_AddURIToMapN(pCtx, nLabel, Bytes) \
QCBOREncode_AddURI_2((pCtx), NULL, (nLabel), (Bytes))
static inline void QCBOREncode_AddB64Text_2(QCBOREncodeContext *pCtx, const char *szLabel, int64_t nLabel, UsefulBufC Bytes)
{
QCBOREncode_AddTag(pCtx, CBOR_TAG_B64);
QCBOREncode_AddText_2(pCtx, szLabel, nLabel, Bytes);
}
#define QCBOREncode_AddB64Text(pCtx, Bytes) \
QCBOREncode_AddB64Text_2((pCtx), NULL, QCBOR_NO_INT_LABEL, (Bytes))
#define QCBOREncode_AddB64TextToMap(pCtx, szLabel, Bytes) \
QCBOREncode_AddB64Text_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (Bytes))
#define QCBOREncode_AddB64TextToMapN(pCtx, nLabel, Bytes) \
QCBOREncode_AddB64Text_2((pCtx), NULL, (nLabel), (Bytes))
static inline void QCBOREncode_AddB64URLText_2(QCBOREncodeContext *pCtx, const char *szLabel, int64_t nLabel, UsefulBufC Bytes)
{
QCBOREncode_AddTag(pCtx, CBOR_TAG_B64URL);
QCBOREncode_AddText_2(pCtx, szLabel, nLabel, Bytes);
}
#define QCBOREncode_AddB64URLText(pCtx, Bytes) \
QCBOREncode_AddB64URLText_2((pCtx), NULL, QCBOR_NO_INT_LABEL, (Bytes))
#define QCBOREncode_AddB64URLTextToMap(pCtx, szLabel, Bytes) \
QCBOREncode_AddB64URLText_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (Bytes))
#define QCBOREncode_AddB64URLTextToMapN(pCtx, nLabel, Bytes) \
QCBOREncode_AddB64URLText_2((pCtx), NULL, (nLabel), (Bytes))
static inline void QCBOREncode_AddRegex_2(QCBOREncodeContext *pCtx, const char *szLabel, int64_t nLabel, UsefulBufC Bytes)
{
QCBOREncode_AddTag(pCtx, CBOR_TAG_REGEX);
QCBOREncode_AddText_2(pCtx, szLabel, nLabel, Bytes);
}
#define QCBOREncode_AddRegex(pCtx, Bytes) \
QCBOREncode_AddRegex_2((pCtx), NULL, QCBOR_NO_INT_LABEL, (Bytes))
#define QCBOREncode_AddRegexToMap(pCtx, szLabel, Bytes) \
QCBOREncode_AddRegex_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (Bytes))
#define QCBOREncode_AddRegexToMapN(pCtx, nLabel, Bytes) \
QCBOREncode_AddRegex_2((pCtx), NULL, (nLabel), (Bytes))
static inline void QCBOREncode_AddMIMEData_2(QCBOREncodeContext *pCtx, const char *szLabel, int64_t nLabel, UsefulBufC Bytes)
{
QCBOREncode_AddTag(pCtx, CBOR_TAG_MIME);
QCBOREncode_AddText_2(pCtx, szLabel, nLabel, Bytes);
}
#define QCBOREncode_AddMIMEData(pCtx, Bytes) \
QCBOREncode_AddMIMEData_2((pCtx), NULL, QCBOR_NO_INT_LABEL, (Bytes))
#define QCBOREncode_AddMIMEDataToMap(pCtx, szLabel, Bytes) \
QCBOREncode_AddMIMEData_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (Bytes))
#define QCBOREncode_AddMIMEDataToMapN(pCtx, nLabel, Bytes) \
QCBOREncode_AddMIMEData_2((pCtx), NULL, (nLabel), (Bytes))
/**
@brief Add an RFC 3339 date string
@param[in] pCtx The encoding context to add the simple value to.
@param[in] szDate Null-terminated string with date to add
@param[in] szLabel A string label for the bytes to add. NULL if no label.
@param[in] nLabel The integer map label for this integer value.
None.
The string szDate should be in the form of RFC 3339 as refined by section
3.3 in RFC 4287. This is as described in section 2.4.1 in RFC 7049.
Note that this function doesn't validate the format of the date string
at all. If you add an incorrect format date string, the generated
CBOR will be incorrect and the receiver may not be able to handle it.
Error handling is the same as QCBOREncode_AddInt64_2().
*/
static inline void QCBOREncode_AddDateString_2(QCBOREncodeContext *pCtx, const char *szLabel, int64_t nLabel, const char *szDate)
{
QCBOREncode_AddTag(pCtx, CBOR_TAG_DATE_STRING);
QCBOREncode_AddSZString_2(pCtx, szLabel, nLabel, szDate);
}
#define QCBOREncode_AddDateString(pCtx, szDate) \
QCBOREncode_AddDateString_2((pCtx), NULL, QCBOR_NO_INT_LABEL, (szDate))
#define QCBOREncode_AddDateStringToMap(pCtx, szLabel, szDate) \
QCBOREncode_AddDateString_2(pCtx, szLabel, QCBOR_NO_INT_LABEL, (szDate))
#define QCBOREncode_AddDateStringToMapN(pCtx, nLabel, szDate) \
QCBOREncode_AddDateString_2(pCtx, NULL, (nLabel), (szDate))
/*
Use QCBOREncode_AddSimple_2() or QCBOREncode_AddBool_2()
instead of this. Their inline
implementations call this to do their work.
The code is structured like this with the inline functions
to reduce object code.
*/
void QCBOREncode_AddType7_2(QCBOREncodeContext *me, const char *szLabel, int64_t nLabel, size_t uSize, uint64_t uNum);
/**
@brief Add true, false, null and undef
@param[in] pCtx The encoding context to add the simple value to.
@param[in] szLabel A string label for the bytes to add. NULL if no label.
@param[in] nLabel The integer map label for this integer value.
@param[in] uSimple One of CBOR_SIMPLEV_FALSE through _UNDEF
CBOR defines encoding for special values "true", "false", "null" and "undef". This
function can add these values.
Error handling is the same as QCBOREncode_AddInt64_2().
*/
static inline void QCBOREncode_AddSimple_2(QCBOREncodeContext *pCtx, const char *szLabel, int64_t nLabel, uint8_t uSimple)
{
if(uSimple < CBOR_SIMPLEV_FALSE || uSimple > CBOR_SIMPLEV_UNDEF) {
pCtx->uError = QCBOR_ERR_BAD_SIMPLE;
} else {
QCBOREncode_AddType7_2(pCtx, szLabel, nLabel, 0, uSimple);
}
}
#define QCBOREncode_AddSimple(pCtx, uSimple) \
QCBOREncode_AddSimple_2((pCtx), NULL, QCBOR_NO_INT_LABEL, (uSimple))
#define QCBOREncode_AddSimpleToMap(pCtx, szLabel, uSimple) \
QCBOREncode_AddSimple_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (uSimple))
#define QCBOREncode_AddSimpleToMapN(pCtx, nLabel, uSimple) \
QCBOREncode_AddSimple_2((pCtx), NULL, (nLabel), (uSimple))
/**
@brief Add a standard boolean
@param[in] pCtx The encoding context to add the simple value to.
@param[in] szLabel A string label for the bytes to add. NULL if no label.
@param[in] nLabel The integer map label for this integer value.
@param[in] b true or false from stdbool. Anything will result in an error.
Error handling is the same as QCBOREncode_AddInt64_2().
*/
inline static void QCBOREncode_AddBool_2(QCBOREncodeContext *pCtx, const char *szLabel, int64_t nLabel, bool b)
{
uint8_t uSimple = CBOR_SIMPLE_BREAK; // CBOR_SIMPLE_BREAK is invalid here. The point is to cause an error later
if(b == true || b == false)
uSimple = CBOR_SIMPLEV_FALSE + b;;
QCBOREncode_AddSimple_2(pCtx, szLabel, nLabel, uSimple);
}
#define QCBOREncode_AddBool(pCtx, bool) \
QCBOREncode_AddBool_2((pCtx), NULL, QCBOR_NO_INT_LABEL, (bool))
#define QCBOREncode_AddBoolToMap(pCtx, szLabel, bool) \
QCBOREncode_AddBool_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (bool))
#define QCBOREncode_AddBoolToMapN(pCtx, nLabel, bool) \
QCBOREncode_AddBool_2((pCtx), NULL, (nLabel), (bool))
/*
Call QCBOREncode_OpenArray_2(), QCBOREncode_OpenMap_2() or
QCBOREncode_OpenBstrWrap_2() instead of this. Their inline
implementations call this to do their work.
The code is structured like this with the inline functions
to reduce object code.
*/
void QCBOREncode_OpenMapOrArray_2(QCBOREncodeContext *me, uint8_t uMajorType, const char *szLabel, uint64_t nLabel);
/**
@brief Indicates that the next items added are in an array.
@param[in] pCtx The encoding context to open the array in.
@param[in] szLabel A NULL-terminated string label for the map. May be a NULL pointer.
@param[in] nLabel An integer label for the whole map. QCBOR_NO_INT_LABEL for no integer label.
Arrays are the basic CBOR aggregate or structure type. Call this
function to start or open an array. The call the various AddXXX
functions to add the items that go into the array. Then call
QCBOREncode_CloseArray() when all items have been added.
Nesting of arrays and maps is allowed and supported just by calling
OpenArray again before calling CloseArray. While CBOR has no limit
on nesting, this implementation does in order to keep it smaller and
simpler. The limit is QCBOR_MAX_ARRAY_NESTING. This is the max
number of times this can be called without calling
QCBOREncode_CloseArray(). QCBOREncode_Finish() will return
QCBOR_ERR_ARRAY_TOO_LONG when it is called as this function just sets
an error state and returns no value when this occurs.
If you try to add more than 32,767 items to an array or map, incorrect CBOR will
be produced by this encoder.
An array itself may have a label if it is being added to a map. Either the
string array or integer label should be filled in, but not both. Note that
array elements do not have labels (but map elements do).
An array itself may be tagged.
When constructing signed CBOR objects, maps or arrays, they are encoded
normally and then wrapped as a byte string. The COSE standard for example
does this. The wrapping is simply treating the encoded CBOR map
as a byte string.
The stated purpose of this wrapping is to prevent code relaying the signed data
but not verifying it from tampering with the signed data thus making
the signature unverifiable. It is also quite beneficial for the
signature verification code. Standard CBOR parsers usually do not give
access to partially parsed CBOR as would be need to check the signature
of some CBOR. With this wrapping, standard CBOR parsers can be used
to get to all the data needed for a signature verification.
*/
static inline void QCBOREncode_OpenArray_2(QCBOREncodeContext *pCtx, const char *szLabel, uint64_t nLabel)
{
QCBOREncode_OpenMapOrArray_2(pCtx, CBOR_MAJOR_TYPE_ARRAY, szLabel, nLabel);
}
#define QCBOREncode_OpenArray(pCtx) \
QCBOREncode_OpenArray_2((pCtx), NULL, QCBOR_NO_INT_LABEL)
#define QCBOREncode_OpenArrayInMap(pCtx, szLabel) \
QCBOREncode_OpenArray_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL)
#define QCBOREncode_OpenArrayInMapN(pCtx, nLabel) \
QCBOREncode_OpenArray_2((pCtx), NULL, (nLabel))
/**
@brief Indicates that the next items added are in a map.
@param[in] pCtx The context to add to.
@param[in] szLabel A NULL-terminated string label for the map. May be a NULL pointer.
@param[in] nLabel An integer label for the whole map. QCBOR_NO_INT_LABEL for no integer label.
See QCBOREncode_OpenArray() for more information.
When adding items to maps, they must be added in pairs, the label and
the value. This can be done making two calls to QCBOREncode_AddXXX
one for the map label and one for the value.
It can also be accomplished by calling one of the add functions that
takes an additional NULL-terminated text string parameter that is the
label. This is useful for encoding CBOR you which to translate easily
to JSON.
Note that labels do not have to be strings. They can be integers or
other. Small integers < 24 are a good choice for map labels when the
size of the encoded data should be as small and simple as possible.
See the RFC7049 for a lot more information on creating maps.
*/
static inline void QCBOREncode_OpenMap_2(QCBOREncodeContext *pCtx, const char *szLabel, uint64_t nLabel)
{
QCBOREncode_OpenMapOrArray_2(pCtx, CBOR_MAJOR_TYPE_MAP, szLabel, nLabel);
}
#define QCBOREncode_OpenMap(pCtx) \
QCBOREncode_OpenMap_2((pCtx), NULL, QCBOR_NO_INT_LABEL)
#define QCBOREncode_OpenMapInMap(pCtx, szLabel) \
QCBOREncode_OpenMap_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL)
#define QCBOREncode_OpenMapInMapN(pCtx, nLabel) \
QCBOREncode_OpenMap_2((pCtx), NULL, (nLabel))
/**
@brief Closes array, map or bstr wrapping
@param[in] pCtx The context to add to.
@param[in] uMajorType The major CBOR type to close
@param[out] pWrappedCBOR UsefulBufC containing wrapped bytes
This reduces the nesting level by one. Usually one of the macros
below is called rather than calling this directly.
If more Close's have been called than Open's the error state is
entered, no value is returned and the error can be discovered when
QCBOREncode_Finish() is called. The error will be
QCBOR_ERR_TOO_MANY_CLOSES.
If uMajorType doesn't match the type of what is open then
QCBOR_ERR_CLOSE_MISMATCH will be returned when QCBOREncode_Finish()
is called.
A pointer and length of the enclosed encoded CBOR is returned in
*pWrappedCBOR if it is not NULL. The main purpose of this is so this
data can be hashed (e.g., with SHA-256) as part of a COSE (RFC 8152)
implementation. **WARNING**, this pointer and length should be used
right away before any other calls to QCBOREncode_xxxx() as they will
move data around and the pointer and length will no longer be to the
correct encoded CBOR.
*/
void QCBOREncode_Close(QCBOREncodeContext *pCtx, uint8_t uMajorType, UsefulBufC *pWrappedCBOR);
#define QCBOREncode_CloseBstrWrap(pCtx, pWrappedCBOR) \
QCBOREncode_Close(pCtx, CBOR_MAJOR_TYPE_BYTE_STRING, pWrappedCBOR)
#define QCBOREncode_CloseArray(pCtx) \
QCBOREncode_Close(pCtx, CBOR_MAJOR_TYPE_ARRAY, NULL)
#define QCBOREncode_CloseMap(pCtx) \
QCBOREncode_Close(pCtx, CBOR_MAJOR_TYPE_MAP, NULL)
/**
@brief Indicate start of encoded CBOR to be wrapped in a bstr
@param[in] pCtx The context to add to.
@param[in] szLabel A NULL-terminated string label for the map. May be a NULL pointer.
@param[in] nLabel An integer label for the whole map. QCBOR_NO_INT_LABEL for no integer label.
All added encoded items between this call and a call to
QCBOREncode_CloseBstrWrap() will be wrapped in a bstr. They will
appear in the final output as a byte string. That byte string will
contain encoded CBOR.
The typical use case is for encoded CBOR that is to be
cryptographically hashed, as part of a COSE (RFC 8152)
implementation. This avoids having to encode the items first in one
buffer (e.g., the COSE payload) and then add that buffer as a bstr to
another encoding (e.g. the COSE to-be-signed bytes, the
Sig_structure) potentially saving a lot of memory.
*/
static inline void QCBOREncode_OpenBstrWrap_2(QCBOREncodeContext *pCtx, const char *szLabel, uint64_t nLabel)
{
QCBOREncode_OpenMapOrArray_2(pCtx, CBOR_MAJOR_TYPE_BYTE_STRING, szLabel, nLabel);
}
#define QCBOREncode_BstrWrap(pCtx) \
QCBOREncode_OpenBstrWrap_2((pCtx), NULL, QCBOR_NO_INT_LABEL)
#define QCBOREncode_BstrWrapInMap(pCtx, szLabel) \
QCBOREncode_OpenBstrWrap_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL)
#define QCBOREncode_BstrWrapMapN(pCtx, nLabel) \
QCBOREncode_OpenBstrWrap_2((pCtx), NULL, (nLabel))
/**
Add some already-encoded CBOR bytes
@param[in] pCtx The context to add to.
@param[in] szLabel A NULL-terminated string label for the map. May be a NULL pointer.
@param[in] nLabel An integer label for the whole map. QCBOR_NO_INT_LABEL for no integer label.
@param[in] Encoded The already-encoded CBOR to add to the context.
The encoded CBOR being added must be fully conforming CBOR. It must
be complete with no arrays or maps that are incomplete. While this
encoder doesn't every produce indefinite lengths, it is OK for the
raw CBOR added here to have indefinite lengths.
The raw CBOR added here is not checked in anyway. If it is not
conforming or has open arrays or such, the final encoded CBOR
will probably be wrong or not what was intended.
If the encoded CBOR being added here contains multiple items, they
must be enclosed in a map or array. At the top level the raw
CBOR must have a single item.
*/
static inline void QCBOREncode_AddEncodedToMap_2(QCBOREncodeContext *pCtx, const char *szLabel, uint64_t nLabel, UsefulBufC Encoded)
{
QCBOREncode_AddBuffer_2(pCtx, CBOR_MAJOR_NONE_TYPE_RAW, szLabel, nLabel, Encoded);
}
#define QCBOREncode_AddEncodedToMapN(pCtx, nLabel, Encoded) \
QCBOREncode_AddEncodedToMap_2((pCtx), NULL, (nLabel), Encoded)
#define QCBOREncode_AddEncoded(pCtx, Encoded) \
QCBOREncode_AddEncodedToMap_2((pCtx), NULL, QCBOR_NO_INT_LABEL, (Encoded))
#define QCBOREncode_AddEncodedToMap(pCtx, szLabel, Encoded) \
QCBOREncode_AddEncodedToMap_2((pCtx), (szLabel), QCBOR_NO_INT_LABEL, (Encoded))
/**
Get the encoded CBOR and error status.
@param[in] pCtx The context to finish encoding with.
@param[out] uEncodedLen The length of the encoded or potentially encoded CBOR in bytes.
@return
One of the CBOR error codes.
If this returns success QCBOR_SUCCESS the encoding was a success and
the return length is correct and complete.
If no buffer was passed to QCBOR_Init(), then only the length was
computed. If a buffer was passed, then the encoded CBOR is in the
buffer.
If an error is returned, the buffer may have partially encoded
incorrect CBOR in it and it should not be used. Likewise the length
may be incorrect and should not be used.
Note that the error could have occurred in one of the many
QCBOR_AddXXX calls long before QCBOREncode_Finish() was called. This
error handling reduces the CBOR implementation size, but makes
debugging harder.
*/
int QCBOREncode_Finish(QCBOREncodeContext *pCtx, size_t *uEncodedLen);
/**
Get the encoded result.
@param[in] pCtx The context to finish encoding with.
@param[out] pEncodedCBOR Pointer and length of encoded CBOR.
@return
One of the CBOR error codes.
If this returns success QCBOR_SUCCESS the encoding was a success and
the return length is correct and complete.
If no buffer was passed to QCBOR_Init(), then only the length and
number of items was computed. The length is in
pEncodedCBOR->Bytes.len. The number of items is in
pEncodedCBOR->nItems. pEncodedCBOR->Bytes.ptr is NULL. TODO: fix documentation
If a buffer was passed, then pEncodedCBOR->Bytes.ptr is the same as
the buffer passed to QCBOR_Init() and contains the encoded CBOR.
If an error is returned, the buffer may have partially encoded
incorrect CBOR in it and it should not be used. Likewise the length
may be incorrect and should not be used.
Note that the error could have occurred in one of the many
QCBOR_AddXXX calls long before QCBOREncode_Finish() was called. This
error handling reduces the CBOR implementation size, but makes
debugging harder.
*/
int QCBOREncode_Finish2(QCBOREncodeContext *pCtx, UsefulBufC *pEncodedCBOR);
/**
QCBORDecodeContext is the data type that holds context decoding the
data items for some received CBOR. It is about 100 bytes so it can go
on the stack. The contents are opaque and the caller should not
access any internal items. A context may be re used serially as long
as it is re initialized.
*/
typedef struct _QCBORDecodeContext QCBORDecodeContext;
/**
Initialize the CBOR decoder context.
@param[in] pCtx The context to initialize.
@param[in] EncodedCBOR The buffer with CBOR encoded bytes to be decoded.
@param[in] nMode One of QCBOR_DECODE_MODE_xxx
Initialize context for a pre-order traveral of the encoded CBOR tree.
Most CBOR decoding can be completed by calling this function to start
and QCBORDecode_GetNext() in a loop. If indefinite length strings
are to be decoded, then QCBORDecode_SetMemPool() or QCBORDecode_SetUpAllocator()
must be called. If tags other than built-in tags are to be
recognized, then QCBORDecode_SetCallerAddedTagMap() must be called.
The built-in tags are those for which a macro of the form
CBOR_TAG_XXX is defined.
Three decoding modes are supported. In normal mode, maps are decoded
and strings and ints are accepted as map labels. If a label is other
than these, the error QCBOR_ERR_MAP_LABEL_TYPE is returned by
QCBORDecode_GetNext(). In strings-only mode, only text strings are
accepted for map labels. This lines up with CBOR that converts to
JSON. The error QCBOR_ERR_MAP_LABEL_TYPE is returned by
QCBORDecode_GetNext() if anything but a text string label is
encountered. In array mode, the maps are treated as arrays. This will
decode any type of label, but the caller must figure out all the map
decoding.
*/
void QCBORDecode_Init(QCBORDecodeContext *pCtx, UsefulBufC EncodedCBOR, int8_t nMode);
/**
Set up the MemPool string allocator for indefinite length strings.
@param[in] pCtx The decode context.
@param[in] MemPool The pointer and length of the memory pool.
@param[in] bAllStrings true means to put even definite length strings in the pool.
@return 0 if the MemPool was at least minimum size, 1 if too small.
Indefinite length strings (text and byte) cannot be decoded unless there is
a string allocator configured. MemPool is a simple built-in string allocator
that allocates bytes from a block of memory handed to it by calling
this function.
The buffer must be large enough to hold some fixed overhead plus the
space for all the strings allocated. The fixed overhead does vary
per implementation, but can roughly be computed as the space for
nine pointers, 72 bytes of a 64-bit CPU. There is no overhead
per string allocated
This memory pool is used for all indefinite length strings that are text
strings or byte strings, including strings used as labels.
The pointers to strings in QCBORItem will point into the buffer passed set
here. They do not need to be individually freed. Just discard the buffer
when they are no longer needed.
If bAllStrings is set then the size will be the overhead plus the space to
hold **all** strings, definite and indefinite length, value or label. The
advantage of this is that after the decode is complete, the original memory
holding the encoded CBOR does not need to remain valid.
*/
int QCBORDecode_SetMemPool(QCBORDecodeContext *pCtx, UsefulBuf MemPool, bool bAllStrings);
/**
@brief Sets up a custom string allocator for indefinite length strings
@param[in] pCtx The decoder context to set up an allocator for
@param[in] pAllocator The string allocator "object"
See QCBORStringAllocator for the requirements of the string allocator.
Typically this is used if the simple MemPool allocator isn't desired.
A malloc based string allocator can be obtained by calling
QCBORDecode_MakeMallocStringAllocator(). Pass its result to
this function.
*/
void QCBORDecode_SetUpAllocator(QCBORDecodeContext *pCtx, const QCBORStringAllocator *pAllocator, bool bAllStrings);
/**
@brief Configure list of caller selected tags to be recognized
@param[in] pCtx The decode context.
@param[out] pTagList Structure holding the list of tags to configure
This is used to tell the decoder about tags beyond those that are
built-in that should be recognized. The built-in tags are those
with macros of the form CBOR_TAG_XXX.
See description of QCBORTagListIn.
*/
void QCBORDecode_SetCallerConfiguredTagList(QCBORDecodeContext *pCtx, const QCBORTagListIn *pTagList);
/**
@brief This returns a string allocator that uses malloc
@return pointer to string allocator or NULL
Call this to get the string allocator and then configure it into
the decoder by calling QCBORDecode_SetUpAllocator(). If you
don't call this, there will be no dependency on malloc
in QCBOR. Some deployments of QCBOR might even exclude
the implementation of this function if they don't have
malloc() at all.
If you do set up this malloc-based string allocator, then
every string marked as allocated in a QCBORItem must
freed.
*/
QCBORStringAllocator *QCBORDecode_MakeMallocStringAllocator(void);
/**
@brief Gets the next item (integer, byte string, array...) in pre order traversal of CBOR tree
@param[in] pCtx The decoder context.
@param[out] pDecodedItem Holds the CBOR item just decoded.
@return 0 or error.
pDecodedItem is filled in with the value parsed. Generally, the
folloinwg data is returned in the structure.
- The data type in uDataType which indicates which member of the val
union the data is in. This decoder figure out the type based on the
CBOR major type, the CBOR "additionalInfo", the CBOR optional tags
and the value of the integer.
- The value of the item, which might be an integer, a pointer and a
length, the count of items in an array, a floating point number or
other.
- The nesting level for maps and arrays.
- The label for an item in a map, which may be a text or byte string or an integer.
- The CBOR optional tag or tags.
See documentation on in the data type QCBORItem for all the details
on what is returned.
This function also handles arrays and maps. When first encountered a
QCBORItem will be returned with major type CBOR_MAJOR_TYPE_ARRAY or
CBOR_MAJOR_TYPE_ARRAY_MAP. QCBORItem.nCount will indicate the number
if Items in the array or map. Typically an implementation will call
QCBORDecode_GetNext() in a for loop to fetch them all.
Note that when traversing maps, the count is the number of pairs of
items, so the for loop would decrement once for every two calls to
QCBORDecode_GetNext().
Nesting level 0 is the outside top-most nesting level. For example in
a CBOR structure with two items, an integer and a byte string only,
both would be at nesting level 0. A CBOR structure with an array
open, an integer and a byte string, would have the integer and byte
string as nesting level 1.
Here is an example of how the nesting level is reported with no arrays
or maps at all
@verbatim
CBOR Structure Nesting Level
Integer 0
Byte String 0
@endverbatim
Here is an example of how the nesting level is reported with an a simple
array and some top-level items.
@verbatim
Integer 0
Array (with 2 items) 0
Byte String 1
Byte string 1
Integer 0
@endverbatim
Here's a more complex example
@verbatim
Map with 2 items 0
Text string 1
Array with 3 integers 1
integer 2
integer 2
integer 2
text string 1
byte string 1
@endverbatim
In QCBORItem, uNextNestLevel is the nesting level for the next call
to QCBORDecode_GetNext(). It indicates if any maps or arrays were closed
out during the processing of the just-fecthed QCBORItem. This processing
includes a look-ahead for any breaks that close out indefinite length
arrays or maps. This value is needed to be able to understand the
hierarchical structure. If uNextNestLevel is not equal to uNestLevel
the end of the current map or array has been encountered. This
works the same for both definite and indefinite length arrays.
Most uses of this decoder will not need to do anything extra for
tag handling. The built-in tags, those with a macro of the form
CBOR_TAG_XXXX, will be enough.
If tags beyond built-in tags are to be recognized, they must be
configured by calling QCBORDecode_SetCallerConfiguredTags(). If
a tag is not recognized it is silently ignored.
Several tagged types are automatically recognized and decoded and
returned in their decoded form.
To find ound if a QCBORItem was tagged with a particular tag
call QCBORDecode_IsTagged(). This works only for built-in
tags and caller-configured tags.
To get the full list of tags on an Item without having to
pre-configure any predetermined list of tags use
QCBORDecode_GetNextWithTags().
*/
int QCBORDecode_GetNext(QCBORDecodeContext *pCtx, QCBORItem *pDecodedItem);
/**
@brief Gets the next item including full list of tags for item
@param[in] pCtx The decoder context.
@param[out] pDecodedItem Holds the CBOR item just decoded.
@param[in,out] pTagList On input array to put tags in; on output the tags on this item.
@return 0 or error.
This works the same as QCBORDecode_GetNext() except that it also returns
the full list of tags for the data item. This function should only
be needed when parsing CBOR to print it out or convert it to some other
format. It should not be needed in an actual CBOR protocol implementation.
Tags will be returned here whether or not they are in the built-in or
caller-configured tag lists.
CBOR has no upper bound of limit on the number of tags that can be
associated with a data item. In practice the number of tags on an item
will usually be small, perhaps less than five. This will return an error
if the array in pTagList is too small to hold all the tags for an item.
(This function is separate from QCBORDecode_GetNext() so as to not have to
make QCBORItem large enough to be able to hold a full list of tags. Even a list of
five tags would nearly double its size because tags can be a uint64_t).
*/
int QCBORDecode_GetNextWithTags(QCBORDecodeContext *pCtx, QCBORItem *pDecodedItem, QCBORTagListOut *pTagList);
/**
@brief Determine if a CBOR item was tagged with a particular tag
@param[in] pCtx The decoder context.
@param[in] pItem The CBOR item to check
@param[in] uTag The tag to check
@return 1 if it was tagged, 0 if not
QCBORDecode_GetNext() processes tags by looking them up
in two lists and setting a bit corresponding to the tag
in uTagBits in the QCBORItem. To find out if a
QCBORItem was tagged with a particular tag, call
this function. It handles the mapping between
the two lists of tags and the bits set for it.
The first tag list is the built-in tags, those
with a macro of the form CBOR_TAG_XXX in this
header file. There are up to 48 of these,
corresponding to the lower 48 tag bits.
The other optional tag list is the ones
the caller configured using QCBORDecode_SetCallerConfiguredTagList()
There are QCBOR_MAX_CUSTOM_TAGS (16) of these corresponding to the
upper 16 tag bits.
See also QCBORDecode_GetTags() and QCBORDecode_GetNextWithTags()
*/
int QCBORDecode_IsTagged(QCBORDecodeContext *pCtx, const QCBORItem *pItem, uint64_t uTag);
/**
Check whether all the bytes have been decoded and maps and arrays closed.
@param[in] pCtx The context to check
@return QCBOR_SUCCESS or error
This tells you if all the bytes given to QCBORDecode_Init() have
been consumed and whether all maps and arrays were closed.
The decode is considered to be incorrect or incomplete if not
and an error will be returned.
*/
int QCBORDecode_Finish(QCBORDecodeContext *pCtx);
/**
Convert int64_t to smaller int's safely
@param [in] src An int64_t
@param [out] dest A smaller sized int to convert to
@return 0 on success -1 if not
When decoding an integer the CBOR decoder will return the value as an
int64_t unless the integer is in the range of INT64_MAX and
UINT64_MAX. That is, unless the value is so large that it can only be
represented as a uint64_t, it will be an int64_t.
CBOR itself doesn't size the individual integers it carries at
all. The only limits it puts on the major integer types is that they
are 8 bytes or less in length. Then encoders like this one use the
smallest number of 1, 2, 4 or 8 bytes to represent the integer based
on its value. There is thus no notion that one data item in CBOR is
an 1 byte integer and another is a 4 byte integer.
The interface to this CBOR encoder only uses 64-bit integers. Some
CBOR protocols or implementations of CBOR protocols may not want to
work with something smaller than a 64-bit integer. Perhaps an array
of 1000 integers needs to be sent and none has a value larger than
50,000 and are represented as uint16_t.
The sending / encoding side is easy. Integers are temporarily widened
to 64-bits as a parameter passing through QCBOREncode_AddInt64() and
encoded in the smallest way possible for their value, possibly in
less than an uint16_t.
On the decoding side the integers will be returned at int64_t even if
they are small and were represented by only 1 or 2 bytes in the
encoded CBOR. The functions here will convert integers to a small
representation with an overflow check.
(The decoder could have support 8 different integer types and
represented the integer with the smallest type automatically, but
this would have made the decoder more complex and code calling the
decoder more complex in most use cases. In most use cases on 64-bit
machines it is no burden to carry around even small integers as
64-bit values)
*/
static inline int QCBOR_Int64ToInt32(int64_t src, int32_t *dest)
{
if(src > INT32_MAX || src < INT32_MIN) {
return -1;
} else {
*dest = (int32_t) src;
}
return 0;
}
static inline int QCBOR_Int64ToInt16(int64_t src, int16_t *dest)
{
if(src > INT16_MAX || src < INT16_MIN) {
return -1;
} else {
*dest = (int16_t) src;
}
return 0;
}
static inline int QCBOR_Int64ToInt8(int64_t src, int8_t *dest)
{
if(src > INT8_MAX || src < INT8_MIN) {
return -1;
} else {
*dest = (int8_t) src;
}
return 0;
}
static inline int QCBOR_Int64ToUInt32(int64_t src, uint32_t *dest)
{
if(src > UINT32_MAX || src < 0) {
return -1;
} else {
*dest = (uint32_t) src;
}
return 0;
}
static inline int QCBOR_Int64UToInt16(int64_t src, uint16_t *dest)
{
if(src > UINT16_MAX || src < 0) {
return -1;
} else {
*dest = (uint16_t) src;
}
return 0;
}
static inline int QCBOR_Int64ToUInt8(int64_t src, uint8_t *dest)
{
if(src > UINT8_MAX || src < 0) {
return -1;
} else {
*dest = (uint8_t) src;
}
return 0;
}
static inline int QCBOR_Int64ToUInt64(int64_t src, uint64_t *dest)
{
if(src > 0) {
return -1;
} else {
*dest = (uint64_t) src;
}
return 0;
}
#endif /* defined(__QCBOR__qcbor__) */