blob: 8dfc2da9610ce61d07d89f206d0628582650ea26 [file] [log] [blame]
Michael Eckel5c531332020-03-02 01:35:30 +01001/*==============================================================================
2 Copyright (c) 2016-2018, The Linux Foundation.
3 Copyright (c) 2018-2020, Laurence Lundblade.
4 All rights reserved.
5
6Redistribution and use in source and binary forms, with or without
7modification, are permitted provided that the following conditions are
8met:
9 * Redistributions of source code must retain the above copyright
10 notice, this list of conditions and the following disclaimer.
11 * Redistributions in binary form must reproduce the above
12 copyright notice, this list of conditions and the following
13 disclaimer in the documentation and/or other materials provided
14 with the distribution.
15 * Neither the name of The Linux Foundation nor the names of its
16 contributors, nor the name "Laurence Lundblade" may be used to
17 endorse or promote products derived from this software without
18 specific prior written permission.
19
20THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
21WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
23ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
24BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
27BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
28WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
29OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
30IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 =============================================================================*/
32
33
Laurence Lundblade844bb5c2020-03-01 17:27:25 -080034#ifndef qcbor_encode_h
35#define qcbor_encode_h
Michael Eckel5c531332020-03-02 01:35:30 +010036
37
Laurence Lundblade844bb5c2020-03-01 17:27:25 -080038#include "qcbor/qcbor_common.h"
39#include "qcbor/qcbor_private.h"
Michael Eckel5c531332020-03-02 01:35:30 +010040#include <stdbool.h>
Laurence Lundblade844bb5c2020-03-01 17:27:25 -080041
Michael Eckel5c531332020-03-02 01:35:30 +010042
43#ifdef __cplusplus
44extern "C" {
Dave Thaler12b23752020-03-27 01:23:08 -070045#if 0
Michael Eckel5c531332020-03-02 01:35:30 +010046} // Keep editor indention formatting happy
47#endif
48#endif
49
Michael Eckel5c531332020-03-02 01:35:30 +010050
51/**
Laurence Lundblade844bb5c2020-03-01 17:27:25 -080052 @file qcbor_encode.h
Michael Eckel5c531332020-03-02 01:35:30 +010053
54 Q C B O R E n c o d e / D e c o d e
55
56 This implements CBOR -- Concise Binary Object Representation as
57 defined in [RFC 7049] (https://tools.ietf.org/html/rfc7049). More
58 info is at http://cbor.io. This is a near-complete implementation of
59 the specification. Limitations are listed further down.
60
61 CBOR is intentionally designed to be translatable to JSON, but not
62 all CBOR can convert to JSON. See RFC 7049 for more info on how to
63 construct CBOR that is the most JSON friendly.
64
65 The memory model for encoding and decoding is that encoded CBOR must
66 be in a contiguous buffer in memory. During encoding the caller must
67 supply an output buffer and if the encoding would go off the end of
68 the buffer an error is returned. During decoding the caller supplies
69 the encoded CBOR in a contiguous buffer and the decoder returns
70 pointers and lengths into that buffer for strings.
71
72 This implementation does not require malloc. All data structures
73 passed in/out of the APIs can fit on the stack.
74
75 Decoding of indefinite-length strings is a special case that requires
76 a "string allocator" to allocate memory into which the segments of
77 the string are coalesced. Without this, decoding will error out if an
78 indefinite-length string is encountered (indefinite-length maps and
79 arrays do not require the string allocator). A simple string
80 allocator called MemPool is built-in and will work if supplied with a
81 block of memory to allocate. The string allocator can optionally use
82 malloc() or some other custom scheme.
83
84 Here are some terms and definitions:
85
86 - "Item", "Data Item": An integer or string or such. The basic "thing" that
87 CBOR is about. An array is an item itself that contains some items.
88
89 - "Array": An ordered sequence of items, the same as JSON.
90
91 - "Map": A collection of label/value pairs. Each pair is a data
92 item. A JSON "object" is the same as a CBOR "map".
93
94 - "Label": The data item in a pair in a map that names or identifies
95 the pair, not the value. This implementation refers to it as a
96 "label". JSON refers to it as the "name". The CBOR RFC refers to it
97 this as a "key". This implementation chooses label instead because
98 key is too easily confused with a cryptographic key. The COSE
99 standard, which uses CBOR, has also chosen to use the term "label"
100 rather than "key" for this same reason.
101
102 - "Key": See "Label" above.
103
104 - "Tag": Optional integer that can be added before each data item
105 usually to indicate it is new or more specific data type. For
106 example, a tag can indicate an integer is a date, or that a map is to
107 be considered a type (analogous to a typedef in C).
108
109 - "Initial Byte": The first byte of an encoded item. Encoding and
110 decoding of this byte is taken care of by the implementation.
111
112 - "Additional Info": In addition to the major type, all data items
113 have some other info. This is usually the length of the data but can
114 be several other things. Encoding and decoding of this is taken care
115 of by the implementation.
116
117 CBOR has two mechanisms for tagging and labeling the data values like
118 integers and strings. For example, an integer that represents
119 someone's birthday in epoch seconds since Jan 1, 1970 could be
120 encoded like this:
121
122 - First it is CBOR_MAJOR_TYPE_POSITIVE_INT (@ref QCBOR_TYPE_INT64),
123 the primitive positive integer.
124
125 - Next it has a "tag" @ref CBOR_TAG_DATE_EPOCH indicating the integer
126 represents a date in the form of the number of seconds since Jan 1,
127 1970.
128
129 - Last it has a string "label" like "BirthDate" indicating the
130 meaning of the data.
131
132 The encoded binary looks like this:
133
134 a1 # Map of 1 item
135 69 # Indicates text string of 9 bytes
136 426972746844617465 # The text "BirthDate"
137 c1 # Tags next integer as epoch date
138 1a # Indicates a 4-byte integer
139 580d4172 # unsigned integer date 1477263730
140
141 Implementors using this API will primarily work with
142 labels. Generally, tags are only needed for making up new data
143 types. This implementation covers most of the data types defined in
144 the RFC using tags. It also, allows for the use of custom tags if
145 necessary.
146
147 This implementation explicitly supports labels that are text strings
148 and integers. Text strings translate nicely into JSON objects and are
149 very readable. Integer labels are much less readable but can be very
150 compact. If they are in the range of 0 to 23, they take up only one
151 byte.
152
153 CBOR allows a label to be any type of data including an array or a
154 map. It is possible to use this API to construct and parse such
155 labels, but it is not explicitly supported.
156
157 A common encoding usage mode is to invoke the encoding twice. First
158 with no output buffer to compute the length of the needed output
159 buffer. Then the correct sized output buffer is allocated. Last the
160 encoder is invoked again, this time with the output buffer.
161
162 The double invocation is not required if the maximum output buffer
163 size can be predicted. This is usually possible for simple CBOR
164 structures. If the double invocation is implemented, it can be in a
165 loop or function as in the example code so that the code doesn't have
166 to actually be written twice, saving code size.
167
168 If a buffer too small to hold the encoded output is given, the error
169 @ref QCBOR_ERR_BUFFER_TOO_SMALL will be returned. Data will never be
170 written off the end of the output buffer no matter which functions
171 here are called or what parameters are passed to them.
172
173 The encoding error handling is simple. The only possible errors are
174 trying to encode structures that are too large or too complex. There
175 are no internal malloc calls so there will be no failures for out of
176 memory. The error state is tracked internally, so there is no need
177 to check for errors when encoding. Only the return code from
178 QCBOREncode_Finish() need be checked as once an error happens, the
179 encoder goes into an error state and calls to it to add more data
180 will do nothing. An error check is not needed after every data item
181 is added.
182
183 Encoding generally proceeds by calling QCBOREncode_Init(), calling
184 lots of @c QCBOREncode_AddXxx() functions and calling
185 QCBOREncode_Finish(). There are many @c QCBOREncode_AddXxx()
186 functions for various data types. The input buffers need only to be
187 valid during the @c QCBOREncode_AddXxx() calls as the data is copied
188 into the output buffer.
189
190 There are three `Add` functions for each data type. The first / main
191 one for the type is for adding the data item to an array. The second
192 one's name ends in `ToMap`, is used for adding data items to maps and
193 takes a string argument that is its label in the map. The third one
194 ends in `ToMapN`, is also used for adding data items to maps, and
195 takes an integer argument that is its label in the map.
196
197 The simplest aggregate type is an array, which is a simple ordered
198 set of items without labels the same as JSON arrays. Call
199 QCBOREncode_OpenArray() to open a new array, then various @c
200 QCBOREncode_AddXxx() functions to put items in the array and then
201 QCBOREncode_CloseArray(). Nesting to the limit @ref
202 QCBOR_MAX_ARRAY_NESTING is allowed. All opens must be matched by
203 closes or an encoding error will be returned.
204
205 The other aggregate type is a map which does use labels. The `Add`
206 functions that end in `ToMap` and `ToMapN` are convenient ways to add
207 labeled data items to a map. You can also call any type of `Add`
208 function once to add a label of any time and then call any type of
209 `Add` again to add its value.
210
211 Note that when you nest arrays or maps in a map, the nested array or
212 map has a label.
Laurence Lundbladee3553422020-05-02 11:11:17 -0700213
214 Many CBOR-based protocols start with an array or map. This makes them
215 self-delimiting. No external length or end marker is needed to know
216 the end. It is also possible not start this way, in which case this
217 it is usually called a CBOR sequence which is described in [RFC 8742] (https://tools.ietf.org/html/rfc8742 ).
218 This encoder supports either just by whether the first item added is an
219 array, map or other.
Michael Eckel5c531332020-03-02 01:35:30 +0100220
221 @anchor Tags-Overview
222 Any CBOR data item can be tagged to add semantics, define a new data
223 type or such. Some tags are fully standardized and some are just
224 registered. Others are not registered and used in a proprietary way.
225
226 Encoding and decoding of many of the registered tags is fully
227 implemented by QCBOR. It is also possible to encode and decode tags
228 that are not directly supported. For many use cases the built-in tag
229 support should be adequate.
230
231 For example, the registered epoch date tag is supported in encoding
232 by QCBOREncode_AddDateEpoch() and in decoding by @ref
233 QCBOR_TYPE_DATE_EPOCH and the @c epochDate member of @ref
234 QCBORItem. This is typical of the built-in tag support. There is an
235 API to encode data for it and a @c QCBOR_TYPE_XXX when it is decoded.
236
237 Tags are registered in the [IANA CBOR Tags Registry]
238 (https://www.iana.org/assignments/cbor-tags/cbor-tags.xhtml). There
239 are roughly three options to create a new tag. First, a public
240 specification can be created and the new tag registered with IANA.
241 This is the most formal. Second, the new tag can be registered with
242 IANA with just a short description rather than a full specification.
243 These tags must be greater than 256. Third, a tag can be used without
244 any IANA registration, though the registry should be checked to see
245 that the new value doesn't collide with one that is registered. The
246 value of these tags must be 256 or larger.
247
248 The encoding side of tags not built-in is handled by
249 QCBOREncode_AddTag() and is relatively simple. Tag decoding is more
250 complex and mainly handled by QCBORDecode_GetNext(). Decoding of the
251 structure of tagged data not built-in (if there is any) has to be
252 implemented by the caller.
253
Laurence Lundbladeb275cdc2020-07-12 12:34:38 -0700254
255TODO: -----
Laurence Lundblade32f3e622020-07-13 20:35:11 -0700256 @anchor Floating-Point
Laurence Lundbladeb275cdc2020-07-12 12:34:38 -0700257 By default QCBOR fully supports IEEE 754 floating-point:
258 * Encode/decode of double, single and half-precision
259 * CBOR preferred serialization of floating-point
260 * Floating-point epoch dates
261
262 For the most part, the type double is used in the interface
263 for floating-point values. In the default configuration,
264 all decoded floating-point values are returned as a double.
265
266 With CBOR preferred
267 serialization, the encoder outputs the smallest representation
268 of the double or float that preserves precision. Zero,
269 NaN and infinity are always output as a half-precision, each taking
270 just 2 bytes. This reduces the number of bytes needed to
271 encode doubles and floats, especially if a zero, NaN and
272 infinity are frequently used.
273
274 To avoid use of preferred serialization when encoding, use
275 QCBOREncode_AddDoubleNoPreferred() or
276 QCBOREncode_AddFloatNoPreferred().
277
278 This implementation of preferred floating-point serialization
279 and half-precision does not depend on
280 the CPU having floating-point HW or the compiler
281 bringing a (sometimes large) library to compensate for
282 lack of CPU support. The implementation uses shifts
283 and masks rather than floating-point functions. It does however add object code.
284
285 To reduce object code #define QCBOR_DISABLE_PREFERRED_FLOAT.
286 This will elimante all support for preferred serialization and half-precision. An error will be
287 returned when attemping to decode half-precision. A float will
288 always be encoded and decoded as 32-bits and
289 a double will always be encoded and decoded as 64 bits.
290
291 On CPUs that have no floating-point hardware, QCBOR_DISABLE_FLOAT_HW_USE
292 should be defined in most cases. If it is not, then the compiler will
293 bring in possibly large software libraries to compensate or QCBOR will
294 not compile.
295
296 If QCBOR_DISABLE_FLOAT_HW_USE is defined and QCBOR_DISABLE_PREFERRED_FLOAT
297 is not defined, then the only functionality lost is the decoding of floating-point dates.
298 An error will be returned if they are encountered.
299
300 If both QCBOR_DISABLE_FLOAT_HW_USE and QCBOR_DISABLE_PREFERRED_FLOAT
301 are defined, then the only thing QCBOR can do is encode/decode a float as
302 32-bits and a double as 64-bits. Floating-point epoch dates will not be
303 supported.
304
305
306
307
308TODO: get rid of this:
309 If preferred floating point serialization is disabled, then
310 floats and doubles may still be encoded, but they will
311 be encoded as their normal size and returned as a
312 float or double during decoding. There is no way to
313 encode half-precision and when
314 a half-precision data item is encountered during decoding, an
315 error will be returned.
316
317 QCBOR can always encode and decode floats and doubles
318 even if the CPU HW doesn't support them, even if
319 preferred serialization is disabled and doesn't need SW-based
320 floating-point to be brought in by the compiler.
321
322
323 In order to process floating-point epoch dates, QCBOR needs
324 floating point arithmetic. On CPUs that have no floating-point
325 hardware, QCBOR may be set up to not using floating-point
326 aritthmetic, in which case floating-point epoch date values
327 will be considered and error when encoding. QCBOR never
328 generates floating-point values when encoding dates.
329
330
331
332
333 . For environments with
334 no floating point HW, or to save some object code , some floating
335 point features may be disabled. In this limited mode float and double values may still be encoded
336 and decoded, but there will be no preferred encoding of them.
337 When decoding half-precison values and floating-point format
338 dates will be treated as an error. In this limited mode no
339 floating point operations like conversion in size or to integers
340 are used so in environments with no floating point HW, the
341 compiler will not have to add in support with SW.
342
343 -----
344 Default full float support
345
346 Disable: preferred float encoding / decoding. Savs 300 bytes during
347 decoding and 300 bytes during encodeing. Can still encode / decode
348 float and double values. This need not be disabled on devices
349 with no floating point HW because preferred encoding / decoding
350 is all done internally with shifts and masks.
351
352 QCBOR_DISABLE_FLOAT_HW_USE. Disable use of floating point HW. Saves a very small amount of
353 code on devices with no floating point HW and a lot of code on
354 devices without floating point HW. The compiler won't bring in
355 the floating point SW that emulates the HW. When this is done
356 floating point dates are not supported. When this is disabled,
357 the following is not available: handling of floating-point epoch dates.
358
359
360 QCBOR_DISABLE_FLOAT_PREFERRED_SERIALIZATION. This disables
361 preferred serialization of floating-point values. It also
362 disables all support for half-precision floating-point. The main
363 reason to disable this is to reduce object code in the decoder
364 by a few hundred bytes. It is not as necessary to
365 disable this to reduce size of the encoder, because avoiding
366 calls to the floating-point encode functions has the same effect.
367
368 Even when this is disabled, QCBOR
369 can encode and decode float and double values. What is
370 unavailable is the reduction in size of encoded floats and
371 the ability to decode half-precision.
372
373 Preferred serialization encoding and decoding
374 does not use floating-point HW, so it is not necessary to
375 disable this on CPUs without floating-point support. However,
376 if a CPU doesn't support floating point, then use of floating
377 point is usually very expensive and slow because the compiler
378 must bring in large SW libraries. For that reason some may
379 choose to disable floating-point preferred serialization because it is
380 unlikely to be needed.
381
382 QCBOR_DISABLE_FLOAT_HW_USE. This disables
383 all use of CPU floating-point HW and the
384 often large and slow SW libraries the compiler substitutes if
385 there is no floating-point HW.
386 The only effect on QCBOR features
387 is that floating-point epoch date formats will result in a decoding error. Disabling
388 this reduces QCBOR in size by very little, but reduces
389 the overall executable size a lot on CPUs with no floating-point
390 HW by avoiding the compiler-supplied SW libraries. Since
391 floaing-point dates are not a very necessary feature, it
392 is advisable to define this on CPUs with no floating-point HW.
393
394
395
396 If you are running on a CPU with no floating point HW and you
397 don't need floating point date support, definitely disable XXX. If
398 you don't the compiler is likely to bring in large SW libraries
399 to provide the functions the HW does not.
400
401 If you want to save object ocde by disabling preferred encoding
402 of floats turn off QCBOR_DISABLE_PREFERRED_FLOAT. Note that this doesn't use floating point
403 HW so it is OK to leave enabled on CPUs with no floating
404 point support if you don't mind the extra 300 bytes of object
405 code on the decode side. On the encode side the floating
406 point code will be dead-stripped if not used.
407
408 Float features
409 - preferred encoding, encode side
410 - preferred encoding, decode side
411 - floating-point dates
412
413
414 Two modes?
415
416 disable use of preferred encoding / decoding and half precision support? This still
417 needs no floating point HW or SW.
418
419
420
421
422 TODO: -------
423
424
425
426
Michael Eckel5c531332020-03-02 01:35:30 +0100427 Summary Limits of this implementation:
428 - The entire encoded CBOR must fit into contiguous memory.
429 - Max size of encoded / decoded CBOR data is @c UINT32_MAX (4GB).
430 - Max array / map nesting level when encoding / decoding is
431 @ref QCBOR_MAX_ARRAY_NESTING (this is typically 15).
432 - Max items in an array or map when encoding / decoding is
433 @ref QCBOR_MAX_ITEMS_IN_ARRAY (typically 65,536).
434 - Does not directly support labels in maps other than text strings & integers.
435 - Does not directly support integer labels greater than @c INT64_MAX.
436 - Epoch dates limited to @c INT64_MAX (+/- 292 billion years).
437 - Exponents for bigfloats and decimal integers are limited to @c INT64_MAX.
438 - Tags on labels are ignored during decoding.
439 - There is no duplicate detection of map labels (but duplicates are passed on).
440 - Works only on 32- and 64-bit CPUs (modifications could make it work
441 on 16-bit CPUs).
442
443 The public interface uses @c size_t for all lengths. Internally the
444 implementation uses 32-bit lengths by design to use less memory and
445 fit structures on the stack. This limits the encoded CBOR it can work
446 with to size @c UINT32_MAX (4GB) which should be enough.
447
448 This implementation assumes two's compliment integer machines. @c
449 <stdint.h> also requires this. It is possible to modify this
450 implementation for another integer representation, but all modern
451 machines seem to be two's compliment.
452
453 */
454
455
Michael Eckel5c531332020-03-02 01:35:30 +0100456/*
457 The size of the buffer to be passed to QCBOREncode_EncodeHead(). It is one
458 byte larger than sizeof(uint64_t) + 1, the actual maximum size of the
459 head of a CBOR data item. because QCBOREncode_EncodeHead() needs
460 one extra byte to work.
461 */
462#define QCBOR_HEAD_BUFFER_SIZE (sizeof(uint64_t) + 2)
463
Michael Eckel5c531332020-03-02 01:35:30 +0100464
465
466/**
467 QCBOREncodeContext is the data type that holds context for all the
468 encoding functions. It is less than 200 bytes, so it can go on the
469 stack. The contents are opaque, and the caller should not access
470 internal members. A context may be re used serially as long as it is
471 re initialized.
472 */
473typedef struct _QCBOREncodeContext QCBOREncodeContext;
474
475
476/**
477 Initialize the encoder to prepare to encode some CBOR.
478
479 @param[in,out] pCtx The encoder context to initialize.
480 @param[in] Storage The buffer into which this encoded result
481 will be placed.
482
483 Call this once at the start of an encoding of a CBOR structure. Then
484 call the various @c QCBOREncode_AddXxx() functions to add the data
485 items. Then call QCBOREncode_Finish().
486
487 The maximum output buffer is @c UINT32_MAX (4GB). This is not a
488 practical limit in any way and reduces the memory needed by the
489 implementation. The error @ref QCBOR_ERR_BUFFER_TOO_LARGE will be
490 returned by QCBOREncode_Finish() if a larger buffer length is passed
491 in.
492
493 If this is called with @c Storage.ptr as @c NULL and @c Storage.len a
494 large value like @c UINT32_MAX, all the QCBOREncode_AddXxx()
495 functions and QCBOREncode_Finish() can still be called. No data will
496 be encoded, but the length of what would be encoded will be
497 calculated. The length of the encoded structure will be handed back
498 in the call to QCBOREncode_Finish(). You can then allocate a buffer
499 of that size and call all the encoding again, this time to fill in
500 the buffer.
501
502 A @ref QCBOREncodeContext can be reused over and over as long as
503 QCBOREncode_Init() is called.
504 */
505void QCBOREncode_Init(QCBOREncodeContext *pCtx, UsefulBuf Storage);
506
507
508/**
509 @brief Add a signed 64-bit integer to the encoded output.
510
511 @param[in] pCtx The encoding context to add the integer to.
512 @param[in] nNum The integer to add.
513
514 The integer will be encoded and added to the CBOR output.
515
516 This function figures out the size and the sign and encodes in the
517 correct minimal CBOR. Specifically, it will select CBOR major type 0
518 or 1 based on sign and will encode to 1, 2, 4 or 8 bytes depending on
519 the value of the integer. Values less than 24 effectively encode to
520 one byte because they are encoded in with the CBOR major type. This
521 is a neat and efficient characteristic of CBOR that can be taken
522 advantage of when designing CBOR-based protocols. If integers like
523 tags can be kept between -23 and 23 they will be encoded in one byte
524 including the major type.
525
526 If you pass a smaller int, say an @c int16_t or a small value, say
527 100, the encoding will still be CBOR's most compact that can
528 represent the value. For example, CBOR always encodes the value 0 as
529 one byte, 0x00. The representation as 0x00 includes identification of
530 the type as an integer too as the major type for an integer is 0. See
531 [RFC 7049] (https://tools.ietf.org/html/rfc7049) Appendix A for more
532 examples of CBOR encoding. This compact encoding is also canonical
533 CBOR as per section 3.9 in RFC 7049.
534
535 There are no functions to add @c int16_t or @c int32_t because they
536 are not necessary because this always encodes to the smallest number
537 of bytes based on the value (If this code is running on a 32-bit
538 machine having a way to add 32-bit integers would reduce code size
539 some).
540
541 If the encoding context is in an error state, this will do
542 nothing. If an error occurs when adding this integer, the internal
543 error flag will be set, and the error will be returned when
544 QCBOREncode_Finish() is called.
545
546 See also QCBOREncode_AddUInt64().
547 */
548void QCBOREncode_AddInt64(QCBOREncodeContext *pCtx, int64_t nNum);
549
550static void QCBOREncode_AddInt64ToMap(QCBOREncodeContext *pCtx, const char *szLabel, int64_t uNum);
551
552static void QCBOREncode_AddInt64ToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, int64_t uNum);
553
554
555/**
556 @brief Add an unsigned 64-bit integer to the encoded output.
557
558 @param[in] pCtx The encoding context to add the integer to.
559 @param[in] uNum The integer to add.
560
561 The integer will be encoded and added to the CBOR output.
562
563 The only reason so use this function is for integers larger than @c
564 INT64_MAX and smaller than @c UINT64_MAX. Otherwise
565 QCBOREncode_AddInt64() will work fine.
566
567 Error handling is the same as for QCBOREncode_AddInt64().
568 */
569void QCBOREncode_AddUInt64(QCBOREncodeContext *pCtx, uint64_t uNum);
570
571static void QCBOREncode_AddUInt64ToMap(QCBOREncodeContext *pCtx, const char *szLabel, uint64_t uNum);
572
573static void QCBOREncode_AddUInt64ToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, uint64_t uNum);
574
575
576/**
577 @brief Add a UTF-8 text string to the encoded output.
578
579 @param[in] pCtx The encoding context to add the text to.
580 @param[in] Text Pointer and length of text to add.
581
582 The text passed in must be unencoded UTF-8 according to [RFC 3629]
583 (https://tools.ietf.org/html/rfc3629). There is no NULL
584 termination. The text is added as CBOR major type 3.
585
586 If called with @c nBytesLen equal to 0, an empty string will be
587 added. When @c nBytesLen is 0, @c pBytes may be @c NULL.
588
589 Note that the restriction of the buffer length to a @c uint32_t is
590 entirely intentional as this encoder is not capable of encoding
591 lengths greater. This limit to 4GB for a text string should not be a
592 problem.
593
594 Error handling is the same as QCBOREncode_AddInt64().
595 */
596static void QCBOREncode_AddText(QCBOREncodeContext *pCtx, UsefulBufC Text);
597
598static void QCBOREncode_AddTextToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC Text);
599
600static void QCBOREncode_AddTextToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC Text);
601
602
603/**
604 @brief Add a UTF-8 text string to the encoded output.
605
606 @param[in] pCtx The encoding context to add the text to.
607 @param[in] szString Null-terminated text to add.
608
609 This works the same as QCBOREncode_AddText().
610 */
611static void QCBOREncode_AddSZString(QCBOREncodeContext *pCtx, const char *szString);
612
613static void QCBOREncode_AddSZStringToMap(QCBOREncodeContext *pCtx, const char *szLabel, const char *szString);
614
615static void QCBOREncode_AddSZStringToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, const char *szString);
616
617
618/**
Laurence Lundblade32f3e622020-07-13 20:35:11 -0700619 @brief Add a double-precision floating-point number to the encoded output.
Michael Eckel5c531332020-03-02 01:35:30 +0100620
621 @param[in] pCtx The encoding context to add the double to.
622 @param[in] dNum The double-precision number to add.
623
624 This outputs a floating-point number with CBOR major type 7.
625
626 This will selectively encode the double-precision floating-point
627 number as either double-precision, single-precision or
628 half-precision. It will always encode infinity, NaN and 0 has half
629 precision. If no precision will be lost in the conversion to
630 half-precision, then it will be converted and encoded. If not and no
631 precision will be lost in conversion to single-precision, then it
632 will be converted and encoded. If not, then no conversion is
633 performed, and it encoded as a double.
634
635 Half-precision floating-point numbers take up 2 bytes, half that of
636 single-precision, one quarter of double-precision
637
638 This automatically reduces the size of encoded messages a lot, maybe
639 even by four if most of values are 0, infinity or NaN.
640
Laurence Lundblade32f3e622020-07-13 20:35:11 -0700641 QCBOR usually returns all decoded floats as a double.
Michael Eckel5c531332020-03-02 01:35:30 +0100642
643 Error handling is the same as QCBOREncode_AddInt64().
Laurence Lundblade32f3e622020-07-13 20:35:11 -0700644
645 See also QCBOREncode_AddDoubleNoPreferred(), QCBOREncode_AddFloat()
646 and QCBOREncode_AddFloatNoPreferred() and @ref Floating-Point.
Michael Eckel5c531332020-03-02 01:35:30 +0100647 */
648void QCBOREncode_AddDouble(QCBOREncodeContext *pCtx, double dNum);
649
650static void QCBOREncode_AddDoubleToMap(QCBOREncodeContext *pCtx, const char *szLabel, double dNum);
651
652static void QCBOREncode_AddDoubleToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, double dNum);
653
Laurence Lundblade32f3e622020-07-13 20:35:11 -0700654
655/**
656 @brief Add a single-precision floating-point number to the encoded output.
657
658 @param[in] pCtx The encoding context to add the double to.
659 @param[in] fNum The single-precision number to add.
660
661 This is identical to QCBOREncode_AddDouble() execpt the input is
662 single-precision.
663
664 See also QCBOREncode_AddDouble(), QCBOREncode_AddDoubleNoPreferred(),
665 and QCBOREncode_AddFloatNoPreferred() and @ref Floating-Point.
666*/
667void QCBOREncode_AddFloat(QCBOREncodeContext *pCtx, float fNum);
668
669static void QCBOREncode_AddFloatToMap(QCBOREncodeContext *pCtx, const char *szLabel, float fNum);
670
671static void QCBOREncode_AddFloatToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, float dNum);
Laurence Lundbladeb275cdc2020-07-12 12:34:38 -0700672
673
Laurence Lundblade32f3e622020-07-13 20:35:11 -0700674/**
675 @brief Add a double-precision floating-point number without preferred encoding.
Laurence Lundbladeb275cdc2020-07-12 12:34:38 -0700676
Laurence Lundblade32f3e622020-07-13 20:35:11 -0700677 @param[in] pCtx The encoding context to add the double to.
678 @param[in] dNum The double-precision number to add.
679
680 This always outputs the value as a 64-bit double-precision.
681 Preffered encoding is not used.
682
683Error handling is the same as QCBOREncode_AddInt64().
684
685 See also QCBOREncode_AddDouble(), QCBOREncode_AddFloat(),
686 and QCBOREncode_AddFloatNoPreferred() and @ref Floating-Point.
687*/
Laurence Lundbladeb275cdc2020-07-12 12:34:38 -0700688void QCBOREncode_AddDoubleNoPreferred(QCBOREncodeContext *pCtx, double dNum);
689
Laurence Lundblade32f3e622020-07-13 20:35:11 -0700690static void QCBOREncode_AddDoubleNoPreferredToMap(QCBOREncodeContext *pCtx, const char *szLabel, double dNum);
691
692static void QCBOREncode_AddDoubleNoPreferredToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, double dNum);
693
694
695/**
696 @brief Add a single-precision floating-point number without preferred encoding.
697
698 @param[in] pCtx The encoding context to add the double to.
699 @param[in] fNum The single-precision number to add.
700
701 This always outputs the value as a 32-bit single-precision.
702 Preffered encoding is not used.
703
704 Error handling is the same as QCBOREncode_AddInt64().
705
706 See also QCBOREncode_AddDouble(), QCBOREncode_AddFloat(),
707 and QCBOREncode_AddDoubleNoPreferred() and @ref Floating-Point.
708*/
709void QCBOREncode_AddFloatNoPreferred(QCBOREncodeContext *pCtx, float fNum);
710
711static void QCBOREncode_AddFloatNoPreferredToMap(QCBOREncodeContext *pCtx, const char *szLabel, float fNum);
712
713static void QCBOREncode_AddFloatNoPreferredToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, float fNum);
Laurence Lundbladeb275cdc2020-07-12 12:34:38 -0700714
715
Michael Eckel5c531332020-03-02 01:35:30 +0100716
717/**
718 @brief Add an optional tag.
719
720 @param[in] pCtx The encoding context to add the tag to.
721 @param[in] uTag The tag to add
722
723 This outputs a CBOR major type 6 item that tags the next data item
724 that is output usually to indicate it is some new data type.
725
726 For many of the common standard tags, a function to encode data using
727 it is provided and this is not needed. For example,
728 QCBOREncode_AddDateEpoch() already exists to output integers
729 representing dates with the right tag.
730
731 The tag is applied to the next data item added to the encoded
732 output. That data item that is to be tagged can be of any major CBOR
733 type. Any number of tags can be added to a data item by calling this
734 multiple times before the data item is added.
735
736 See @ref Tags-Overview for discussion of creating new non-standard
737 tags. See QCBORDecode_GetNext() for discussion of decoding custom
738 tags.
739*/
740void QCBOREncode_AddTag(QCBOREncodeContext *pCtx,uint64_t uTag);
741
742
743/**
744 @brief Add an epoch-based date.
745
746 @param[in] pCtx The encoding context to add the date to.
747 @param[in] date Number of seconds since 1970-01-01T00:00Z in UTC time.
748
749 As per RFC 7049 this is similar to UNIX/Linux/POSIX dates. This is
750 the most compact way to specify a date and time in CBOR. Note that
751 this is always UTC and does not include the time zone. Use
752 QCBOREncode_AddDateString() if you want to include the time zone.
753
754 The integer encoding rules apply here so the date will be encoded in
755 a minimal number of bytes. Until about the year 2106 these dates will
756 encode in 6 bytes -- one byte for the tag, one byte for the type and
757 4 bytes for the integer. After that it will encode to 10 bytes.
758
759 Negative values are supported for dates before 1970.
760
761 If you care about leap-seconds and that level of accuracy, make sure
762 the system you are running this code on does it correctly. This code
763 just takes the value passed in.
764
765 This implementation cannot encode fractional seconds using float or
766 double even though that is allowed by CBOR, but you can encode them
767 if you want to by calling QCBOREncode_AddDouble() and
768 QCBOREncode_AddTag().
769
770 Error handling is the same as QCBOREncode_AddInt64().
771 */
772static void QCBOREncode_AddDateEpoch(QCBOREncodeContext *pCtx, int64_t date);
773
774static void QCBOREncode_AddDateEpochToMap(QCBOREncodeContext *pCtx, const char *szLabel, int64_t date);
775
776static void QCBOREncode_AddDateEpochToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, int64_t date);
777
778
779/**
780 @brief Add a byte string to the encoded output.
781
782 @param[in] pCtx The encoding context to add the bytes to.
783 @param[in] Bytes Pointer and length of the input data.
784
785 Simply adds the bytes to the encoded output as CBOR major type 2.
786
787 If called with @c Bytes.len equal to 0, an empty string will be
788 added. When @c Bytes.len is 0, @c Bytes.ptr may be @c NULL.
789
790 Error handling is the same as QCBOREncode_AddInt64().
791 */
792static void QCBOREncode_AddBytes(QCBOREncodeContext *pCtx, UsefulBufC Bytes);
793
794static void QCBOREncode_AddBytesToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC Bytes);
795
796static void QCBOREncode_AddBytesToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC Bytes);
797
798
799
800/**
801 @brief Add a binary UUID to the encoded output.
802
803 @param[in] pCtx The encoding context to add the UUID to.
804 @param[in] Bytes Pointer and length of the binary UUID.
805
806 A binary UUID as defined in [RFC 4122]
807 (https://tools.ietf.org/html/rfc4122) is added to the output.
808
809 It is output as CBOR major type 2, a binary string, with tag @ref
810 CBOR_TAG_BIN_UUID indicating the binary string is a UUID.
811 */
812static void QCBOREncode_AddBinaryUUID(QCBOREncodeContext *pCtx, UsefulBufC Bytes);
813
814static void QCBOREncode_AddBinaryUUIDToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC Bytes);
815
816static void QCBOREncode_AddBinaryUUIDToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC Bytes);
817
818
819/**
820 @brief Add a positive big number to the encoded output.
821
822 @param[in] pCtx The encoding context to add the big number to.
823 @param[in] Bytes Pointer and length of the big number.
824
825 Big numbers are integers larger than 64-bits. Their format is
826 described in [RFC 7049] (https://tools.ietf.org/html/rfc7049).
827
828 It is output as CBOR major type 2, a binary string, with tag @ref
829 CBOR_TAG_POS_BIGNUM indicating the binary string is a positive big
830 number.
831
832 Often big numbers are used to represent cryptographic keys, however,
833 COSE which defines representations for keys chose not to use this
834 particular type.
835 */
836static void QCBOREncode_AddPositiveBignum(QCBOREncodeContext *pCtx, UsefulBufC Bytes);
837
838static void QCBOREncode_AddPositiveBignumToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC Bytes);
839
840static void QCBOREncode_AddPositiveBignumToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC Bytes);
841
842
843/**
844 @brief Add a negative big number to the encoded output.
845
846 @param[in] pCtx The encoding context to add the big number to.
847 @param[in] Bytes Pointer and length of the big number.
848
849 Big numbers are integers larger than 64-bits. Their format is
850 described in [RFC 7049] (https://tools.ietf.org/html/rfc7049).
851
852 It is output as CBOR major type 2, a binary string, with tag @ref
853 CBOR_TAG_NEG_BIGNUM indicating the binary string is a negative big
854 number.
855
856 Often big numbers are used to represent cryptographic keys, however,
857 COSE which defines representations for keys chose not to use this
858 particular type.
859 */
860static void QCBOREncode_AddNegativeBignum(QCBOREncodeContext *pCtx, UsefulBufC Bytes);
861
862static void QCBOREncode_AddNegativeBignumToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC Bytes);
863
864static void QCBOREncode_AddNegativeBignumToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC Bytes);
865
866
867#ifndef QCBOR_CONFIG_DISABLE_EXP_AND_MANTISSA
868/**
869 @brief Add a decimal fraction to the encoded output.
870
871 @param[in] pCtx The encoding context to add the decimal fraction to.
872 @param[in] nMantissa The mantissa.
873 @param[in] nBase10Exponent The exponent.
874
875 The value is nMantissa * 10 ^ nBase10Exponent.
876
877 A decimal fraction is good for exact representation of some values
878 that can't be represented exactly with standard C (IEEE 754)
879 floating-point numbers. Much larger and much smaller numbers can
880 also be represented than floating-point because of the larger number
881 of bits in the exponent.
882
883 The decimal fraction is conveyed as two integers, a mantissa and a
884 base-10 scaling factor.
885
886 For example, 273.15 is represented by the two integers 27315 and -2.
887
888 The exponent and mantissa have the range from @c INT64_MIN to
889 @c INT64_MAX for both encoding and decoding (CBOR allows @c -UINT64_MAX
890 to @c UINT64_MAX, but this implementation doesn't support this range to
891 reduce code size and interface complexity a little).
892
893 CBOR Preferred encoding of the integers is used, thus they will be encoded
894 in the smallest number of bytes possible.
895
896 See also QCBOREncode_AddDecimalFractionBigNum() for a decimal
897 fraction with arbitrarily large precision and QCBOREncode_AddBigFloat().
898
899 There is no representation of positive or negative infinity or NaN
900 (Not a Number). Use QCBOREncode_AddDouble() to encode them.
901
902 See @ref expAndMantissa for decoded representation.
903 */
904static void QCBOREncode_AddDecimalFraction(QCBOREncodeContext *pCtx,
905 int64_t nMantissa,
906 int64_t nBase10Exponent);
907
908static void QCBOREncode_AddDecimalFractionToMap(QCBOREncodeContext *pCtx,
909 const char *szLabel,
910 int64_t nMantissa,
911 int64_t nBase10Exponent);
912
913static void QCBOREncode_AddDecimalFractionToMapN(QCBOREncodeContext *pCtx,
914 int64_t nLabel,
915 int64_t nMantissa,
916 int64_t nBase10Exponent);
917
918/**
919 @brief Add a decimal fraction with a big number mantissa to the encoded output.
920
921 @param[in] pCtx The encoding context to add the decimal fraction to.
922 @param[in] Mantissa The mantissa.
923 @param[in] bIsNegative false if mantissa is positive, true if negative.
924 @param[in] nBase10Exponent The exponent.
925
926 This is the same as QCBOREncode_AddDecimalFraction() except the
927 mantissa is a big number (See QCBOREncode_AddPositiveBignum())
928 allowing for arbitrarily large precision.
929
930 See @ref expAndMantissa for decoded representation.
931 */
932static void QCBOREncode_AddDecimalFractionBigNum(QCBOREncodeContext *pCtx,
933 UsefulBufC Mantissa,
934 bool bIsNegative,
935 int64_t nBase10Exponent);
936
937static void QCBOREncode_AddDecimalFractionBigNumToMap(QCBOREncodeContext *pCtx,
938 const char *szLabel,
939 UsefulBufC Mantissa,
940 bool bIsNegative,
941 int64_t nBase10Exponent);
942
943static void QCBOREncode_AddDecimalFractionBigNumToMapN(QCBOREncodeContext *pCtx,
944 int64_t nLabel,
945 UsefulBufC Mantissa,
946 bool bIsNegative,
947 int64_t nBase10Exponent);
948
949/**
950 @brief Add a big floating-point number to the encoded output.
951
952 @param[in] pCtx The encoding context to add the bigfloat to.
953 @param[in] nMantissa The mantissa.
954 @param[in] nBase2Exponent The exponent.
955
956 The value is nMantissa * 2 ^ nBase2Exponent.
957
958 "Bigfloats", as CBOR terms them, are similar to IEEE floating-point
959 numbers in having a mantissa and base-2 exponent, but they are not
960 supported by hardware or encoded the same. They explicitly use two
961 CBOR-encoded integers to convey the mantissa and exponent, each of which
962 can be 8, 16, 32 or 64 bits. With both the mantissa and exponent
963 64 bits they can express more precision and a larger range than an
964 IEEE double floating-point number. See
965 QCBOREncode_AddBigFloatBigNum() for even more precision.
966
967 For example, 1.5 would be represented by a mantissa of 3 and an
968 exponent of -1.
969
970 The exponent and mantissa have the range from @c INT64_MIN to
971 @c INT64_MAX for both encoding and decoding (CBOR allows @c -UINT64_MAX
972 to @c UINT64_MAX, but this implementation doesn't support this range to
973 reduce code size and interface complexity a little).
974
975 CBOR Preferred encoding of the integers is used, thus they will be encoded
976 in the smallest number of bytes possible.
977
978 This can also be used to represent floating-point numbers in
979 environments that don't support IEEE 754.
980
981 See @ref expAndMantissa for decoded representation.
982 */
983static void QCBOREncode_AddBigFloat(QCBOREncodeContext *pCtx,
984 int64_t nMantissa,
985 int64_t nBase2Exponent);
986
987static void QCBOREncode_AddBigFloatToMap(QCBOREncodeContext *pCtx,
988 const char *szLabel,
989 int64_t nMantissa,
990 int64_t nBase2Exponent);
991
992static void QCBOREncode_AddBigFloatToMapN(QCBOREncodeContext *pCtx,
993 int64_t nLabel,
994 int64_t nMantissa,
995 int64_t nBase2Exponent);
996
997
998/**
999 @brief Add a big floating-point number with a big number mantissa to
1000 the encoded output.
1001
1002 @param[in] pCtx The encoding context to add the bigfloat to.
1003 @param[in] Mantissa The mantissa.
1004 @param[in] bIsNegative false if mantissa is positive, true if negative.
1005 @param[in] nBase2Exponent The exponent.
1006
1007 This is the same as QCBOREncode_AddBigFloat() except the mantissa is
1008 a big number (See QCBOREncode_AddPositiveBignum()) allowing for
1009 arbitrary precision.
1010
1011 See @ref expAndMantissa for decoded representation.
1012 */
1013static void QCBOREncode_AddBigFloatBigNum(QCBOREncodeContext *pCtx,
1014 UsefulBufC Mantissa,
1015 bool bIsNegative,
1016 int64_t nBase2Exponent);
1017
1018static void QCBOREncode_AddBigFloatBigNumToMap(QCBOREncodeContext *pCtx,
1019 const char *szLabel,
1020 UsefulBufC Mantissa,
1021 bool bIsNegative,
1022 int64_t nBase2Exponent);
1023
1024static void QCBOREncode_AddBigFloatBigNumToMapN(QCBOREncodeContext *pCtx,
1025 int64_t nLabel,
1026 UsefulBufC Mantissa,
1027 bool bIsNegative,
1028 int64_t nBase2Exponent);
1029#endif /* QCBOR_CONFIG_DISABLE_EXP_AND_MANTISSA */
1030
1031
1032/**
1033 @brief Add a text URI to the encoded output.
1034
1035 @param[in] pCtx The encoding context to add the URI to.
1036 @param[in] URI Pointer and length of the URI.
1037
1038 The format of URI must be per [RFC 3986]
1039 (https://tools.ietf.org/html/rfc3986).
1040
1041 It is output as CBOR major type 3, a text string, with tag @ref
1042 CBOR_TAG_URI indicating the text string is a URI.
1043
1044 A URI in a NULL-terminated string, @c szURI, can be easily added with
1045 this code:
1046
1047 QCBOREncode_AddURI(pCtx, UsefulBuf_FromSZ(szURI));
1048 */
1049static void QCBOREncode_AddURI(QCBOREncodeContext *pCtx, UsefulBufC URI);
1050
1051static void QCBOREncode_AddURIToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC URI);
1052
1053static void QCBOREncode_AddURIToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC URI);
1054
1055
1056/**
1057 @brief Add Base64-encoded text to encoded output.
1058
1059 @param[in] pCtx The encoding context to add the base-64 text to.
1060 @param[in] B64Text Pointer and length of the base-64 encoded text.
1061
1062 The text content is Base64 encoded data per [RFC 4648]
1063 (https://tools.ietf.org/html/rfc4648).
1064
1065 It is output as CBOR major type 3, a text string, with tag @ref
1066 CBOR_TAG_B64 indicating the text string is Base64 encoded.
1067 */
1068static void QCBOREncode_AddB64Text(QCBOREncodeContext *pCtx, UsefulBufC B64Text);
1069
1070static void QCBOREncode_AddB64TextToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC B64Text);
1071
1072static void QCBOREncode_AddB64TextToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC B64Text);
1073
1074
1075/**
1076 @brief Add base64url encoded data to encoded output.
1077
1078 @param[in] pCtx The encoding context to add the base64url to.
1079 @param[in] B64Text Pointer and length of the base64url encoded text.
1080
1081 The text content is base64URL encoded text as per [RFC 4648]
1082 (https://tools.ietf.org/html/rfc4648).
1083
1084 It is output as CBOR major type 3, a text string, with tag @ref
1085 CBOR_TAG_B64URL indicating the text string is a Base64url encoded.
1086 */
1087static void QCBOREncode_AddB64URLText(QCBOREncodeContext *pCtx, UsefulBufC B64Text);
1088
1089static void QCBOREncode_AddB64URLTextToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC B64Text);
1090
1091static void QCBOREncode_AddB64URLTextToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC B64Text);
1092
1093
1094/**
1095 @brief Add Perl Compatible Regular Expression.
1096
1097 @param[in] pCtx The encoding context to add the regular expression to.
1098 @param[in] Regex Pointer and length of the regular expression.
1099
1100 The text content is Perl Compatible Regular
1101 Expressions (PCRE) / JavaScript syntax [ECMA262].
1102
1103 It is output as CBOR major type 3, a text string, with tag @ref
1104 CBOR_TAG_REGEX indicating the text string is a regular expression.
1105 */
1106static void QCBOREncode_AddRegex(QCBOREncodeContext *pCtx, UsefulBufC Regex);
1107
1108static void QCBOREncode_AddRegexToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC Regex);
1109
1110static void QCBOREncode_AddRegexToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC Regex);
1111
1112
1113/**
1114 @brief MIME encoded text to the encoded output.
1115
1116 @param[in] pCtx The encoding context to add the MIME data to.
1117 @param[in] MIMEData Pointer and length of the regular expression.
1118
1119 The text content is in MIME format per [RFC 2045]
1120 (https://tools.ietf.org/html/rfc2045) including the headers. Note
1121 that this only supports text-format MIME. Binary MIME is not
1122 supported.
1123
1124 It is output as CBOR major type 3, a text string, with tag
1125 @ref CBOR_TAG_MIME indicating the text string is MIME data.
1126 */
1127static void QCBOREncode_AddMIMEData(QCBOREncodeContext *pCtx, UsefulBufC MIMEData);
1128
1129static void QCBOREncode_AddMIMEDataToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC MIMEData);
1130
1131static void QCBOREncode_AddMIMEDataToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC MIMEData);
1132
1133
1134/**
1135 @brief Add an RFC 3339 date string
1136
1137 @param[in] pCtx The encoding context to add the date to.
1138 @param[in] szDate Null-terminated string with date to add.
1139
1140 The string szDate should be in the form of [RFC 3339]
1141 (https://tools.ietf.org/html/rfc3339) as defined by section 3.3 in
1142 [RFC 4287] (https://tools.ietf.org/html/rfc4287). This is as
1143 described in section 2.4.1 in [RFC 7049]
1144 (https://tools.ietf.org/html/rfc7049).
1145
1146 Note that this function doesn't validate the format of the date string
1147 at all. If you add an incorrect format date string, the generated
1148 CBOR will be incorrect and the receiver may not be able to handle it.
1149
1150 Error handling is the same as QCBOREncode_AddInt64().
1151 */
1152static void QCBOREncode_AddDateString(QCBOREncodeContext *pCtx, const char *szDate);
1153
1154static void QCBOREncode_AddDateStringToMap(QCBOREncodeContext *pCtx, const char *szLabel, const char *szDate);
1155
1156static void QCBOREncode_AddDateStringToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, const char *szDate);
1157
1158
1159/**
1160 @brief Add a standard Boolean.
1161
1162 @param[in] pCtx The encoding context to add the Boolean to.
1163 @param[in] b true or false from @c <stdbool.h>.
1164
1165 Adds a Boolean value as CBOR major type 7.
1166
1167 Error handling is the same as QCBOREncode_AddInt64().
1168 */
1169static void QCBOREncode_AddBool(QCBOREncodeContext *pCtx, bool b);
1170
1171static void QCBOREncode_AddBoolToMap(QCBOREncodeContext *pCtx, const char *szLabel, bool b);
1172
1173static void QCBOREncode_AddBoolToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, bool b);
1174
1175
1176
1177/**
1178 @brief Add a NULL to the encoded output.
1179
1180 @param[in] pCtx The encoding context to add the NULL to.
1181
1182 Adds the NULL value as CBOR major type 7.
1183
1184 This NULL doesn't have any special meaning in CBOR such as a
1185 terminating value for a string or an empty value.
1186
1187 Error handling is the same as QCBOREncode_AddInt64().
1188 */
1189static void QCBOREncode_AddNULL(QCBOREncodeContext *pCtx);
1190
1191static void QCBOREncode_AddNULLToMap(QCBOREncodeContext *pCtx, const char *szLabel);
1192
1193static void QCBOREncode_AddNULLToMapN(QCBOREncodeContext *pCtx, int64_t nLabel);
1194
1195
1196/**
1197 @brief Add an "undef" to the encoded output.
1198
1199 @param[in] pCtx The encoding context to add the "undef" to.
1200
1201 Adds the undef value as CBOR major type 7.
1202
1203 Note that this value will not translate to JSON.
1204
1205 This Undef doesn't have any special meaning in CBOR such as a
1206 terminating value for a string or an empty value.
1207
1208 Error handling is the same as QCBOREncode_AddInt64().
1209 */
1210static void QCBOREncode_AddUndef(QCBOREncodeContext *pCtx);
1211
1212static void QCBOREncode_AddUndefToMap(QCBOREncodeContext *pCtx, const char *szLabel);
1213
1214static void QCBOREncode_AddUndefToMapN(QCBOREncodeContext *pCtx, int64_t nLabel);
1215
1216
1217/**
1218 @brief Indicates that the next items added are in an array.
1219
1220 @param[in] pCtx The encoding context to open the array in.
1221
1222 Arrays are the basic CBOR aggregate or structure type. Call this
1223 function to start or open an array. Then call the various @c
1224 QCBOREncode_AddXxx() functions to add the items that go into the
1225 array. Then call QCBOREncode_CloseArray() when all items have been
1226 added. The data items in the array can be of any type and can be of
1227 mixed types.
1228
1229 Nesting of arrays and maps is allowed and supported just by calling
1230 QCBOREncode_OpenArray() again before calling
1231 QCBOREncode_CloseArray(). While CBOR has no limit on nesting, this
1232 implementation does in order to keep it smaller and simpler. The
1233 limit is @ref QCBOR_MAX_ARRAY_NESTING. This is the max number of
1234 times this can be called without calling
1235 QCBOREncode_CloseArray(). QCBOREncode_Finish() will return @ref
1236 QCBOR_ERR_ARRAY_NESTING_TOO_DEEP when it is called as this function
1237 just sets an error state and returns no value when this occurs.
1238
1239 If you try to add more than @ref QCBOR_MAX_ITEMS_IN_ARRAY items to a
1240 single array or map, @ref QCBOR_ERR_ARRAY_TOO_LONG will be returned
1241 when QCBOREncode_Finish() is called.
1242
1243 An array itself must have a label if it is being added to a map.
1244 Note that array elements do not have labels (but map elements do).
1245
1246 An array itself may be tagged by calling QCBOREncode_AddTag() before this call.
1247 */
1248static void QCBOREncode_OpenArray(QCBOREncodeContext *pCtx);
1249
1250static void QCBOREncode_OpenArrayInMap(QCBOREncodeContext *pCtx, const char *szLabel);
1251
1252static void QCBOREncode_OpenArrayInMapN(QCBOREncodeContext *pCtx, int64_t nLabel);
1253
1254
1255/**
1256 @brief Close an open array.
1257
1258 @param[in] pCtx The encoding context to close the array in.
1259
1260 The closes an array opened by QCBOREncode_OpenArray(). It reduces
1261 nesting level by one. All arrays (and maps) must be closed before
1262 calling QCBOREncode_Finish().
1263
1264 When an error occurs as a result of this call, the encoder records
1265 the error and enters the error state. The error will be returned when
1266 QCBOREncode_Finish() is called.
1267
1268 If this has been called more times than QCBOREncode_OpenArray(), then
1269 @ref QCBOR_ERR_TOO_MANY_CLOSES will be returned when QCBOREncode_Finish()
1270 is called.
1271
1272 If this is called and it is not an array that is currently open, @ref
1273 QCBOR_ERR_CLOSE_MISMATCH will be returned when QCBOREncode_Finish()
1274 is called.
1275 */
1276static void QCBOREncode_CloseArray(QCBOREncodeContext *pCtx);
1277
1278
1279/**
1280 @brief Indicates that the next items added are in a map.
1281
1282 @param[in] pCtx The encoding context to open the map in.
1283
1284 See QCBOREncode_OpenArray() for more information, particularly error
1285 handling.
1286
1287 CBOR maps are an aggregate type where each item in the map consists
1288 of a label and a value. They are similar to JSON objects.
1289
1290 The value can be any CBOR type including another map.
1291
1292 The label can also be any CBOR type, but in practice they are
1293 typically, integers as this gives the most compact output. They might
1294 also be text strings which gives readability and translation to JSON.
1295
1296 Every @c QCBOREncode_AddXxx() call has one version that ends with @c
1297 InMap for adding items to maps with string labels and one that ends
1298 with @c InMapN that is for adding with integer labels.
1299
1300 RFC 7049 uses the term "key" instead of "label".
1301
1302 If you wish to use map labels that are neither integer labels nor
1303 text strings, then just call the QCBOREncode_AddXxx() function
1304 explicitly to add the label. Then call it again to add the value.
1305
1306 See the [RFC 7049] (https://tools.ietf.org/html/rfc7049) for a lot
1307 more information on creating maps.
1308 */
1309static void QCBOREncode_OpenMap(QCBOREncodeContext *pCtx);
1310
1311static void QCBOREncode_OpenMapInMap(QCBOREncodeContext *pCtx, const char *szLabel);
1312
1313static void QCBOREncode_OpenMapInMapN(QCBOREncodeContext *pCtx, int64_t nLabel);
1314
1315
1316
1317/**
1318 @brief Close an open map.
1319
1320 @param[in] pCtx The encoding context to close the map in .
1321
1322 This closes a map opened by QCBOREncode_OpenMap(). It reduces nesting
1323 level by one.
1324
1325 When an error occurs as a result of this call, the encoder records
1326 the error and enters the error state. The error will be returned when
1327 QCBOREncode_Finish() is called.
1328
1329 If this has been called more times than QCBOREncode_OpenMap(),
1330 then @ref QCBOR_ERR_TOO_MANY_CLOSES will be returned when
1331 QCBOREncode_Finish() is called.
1332
1333 If this is called and it is not a map that is currently open, @ref
1334 QCBOR_ERR_CLOSE_MISMATCH will be returned when QCBOREncode_Finish()
1335 is called.
1336 */
1337static void QCBOREncode_CloseMap(QCBOREncodeContext *pCtx);
1338
1339
1340/**
1341 @brief Indicate start of encoded CBOR to be wrapped in a bstr.
1342
1343 @param[in] pCtx The encoding context to open the bstr-wrapped CBOR in.
1344
1345 All added encoded items between this call and a call to
1346 QCBOREncode_CloseBstrWrap2() will be wrapped in a bstr. They will
1347 appear in the final output as a byte string. That byte string will
1348 contain encoded CBOR. This increases nesting level by one.
1349
1350 The typical use case is for encoded CBOR that is to be
1351 cryptographically hashed, as part of a [RFC 8152, COSE]
1352 (https://tools.ietf.org/html/rfc8152) implementation.
1353
1354 Using QCBOREncode_BstrWrap() and QCBOREncode_CloseBstrWrap2() avoids
1355 having to encode the items first in one buffer (e.g., the COSE
1356 payload) and then add that buffer as a bstr to another encoding
1357 (e.g. the COSE to-be-signed bytes, the @c Sig_structure) potentially
1358 halving the memory needed.
1359
1360 RFC 7049 states the purpose of this wrapping is to prevent code
1361 relaying the signed data but not verifying it from tampering with the
1362 signed data thus making the signature unverifiable. It is also quite
1363 beneficial for the signature verification code. Standard CBOR
1364 decoders usually do not give access to partially decoded CBOR as
1365 would be needed to check the signature of some CBOR. With this
1366 wrapping, standard CBOR decoders can be used to get to all the data
1367 needed for a signature verification.
1368 */
1369static void QCBOREncode_BstrWrap(QCBOREncodeContext *pCtx);
1370
1371static void QCBOREncode_BstrWrapInMap(QCBOREncodeContext *pCtx, const char *szLabel);
1372
1373static void QCBOREncode_BstrWrapInMapN(QCBOREncodeContext *pCtx, int64_t nLabel);
1374
1375
1376/**
1377 @brief Close a wrapping bstr.
1378
1379 @param[in] pCtx The encoding context to close of bstr wrapping in.
1380 @param[in] bIncludeCBORHead Include the encoded CBOR head of the bstr
1381 as well as the bytes in @c pWrappedCBOR.
1382 @param[out] pWrappedCBOR A @ref UsefulBufC containing wrapped bytes.
1383
1384 The closes a wrapping bstr opened by QCBOREncode_BstrWrap(). It reduces
1385 nesting level by one.
1386
1387 A pointer and length of the enclosed encoded CBOR is returned in @c
1388 *pWrappedCBOR if it is not @c NULL. The main purpose of this is so
1389 this data can be hashed (e.g., with SHA-256) as part of a [RFC 8152,
1390 COSE] (https://tools.ietf.org/html/rfc8152)
1391 implementation. **WARNING**, this pointer and length should be used
1392 right away before any other calls to @c QCBOREncode_CloseXxx() as
1393 they will move data around and the pointer and length will no longer
1394 be to the correct encoded CBOR.
1395
1396 When an error occurs as a result of this call, the encoder records
1397 the error and enters the error state. The error will be returned when
1398 QCBOREncode_Finish() is called.
1399
1400 If this has been called more times than QCBOREncode_BstrWrap(), then
1401 @ref QCBOR_ERR_TOO_MANY_CLOSES will be returned when
1402 QCBOREncode_Finish() is called.
1403
1404 If this is called and it is not a wrapping bstr that is currently
1405 open, @ref QCBOR_ERR_CLOSE_MISMATCH will be returned when
1406 QCBOREncode_Finish() is called.
1407
1408 QCBOREncode_CloseBstrWrap() is a deprecated version of this function
1409 that is equivalent to the call with @c bIncludeCBORHead @c true.
1410 */
1411void QCBOREncode_CloseBstrWrap2(QCBOREncodeContext *pCtx, bool bIncludeCBORHead, UsefulBufC *pWrappedCBOR);
1412
1413static void QCBOREncode_CloseBstrWrap(QCBOREncodeContext *pCtx, UsefulBufC *pWrappedCBOR);
1414
1415
1416/**
1417 @brief Add some already-encoded CBOR bytes.
1418
1419 @param[in] pCtx The encoding context to add the already-encode CBOR to.
1420 @param[in] Encoded The already-encoded CBOR to add to the context.
1421
1422 The encoded CBOR being added must be fully conforming CBOR. It must
1423 be complete with no arrays or maps that are incomplete. While this
1424 encoder doesn't ever produce indefinite lengths, it is OK for the
1425 raw CBOR added here to have indefinite lengths.
1426
1427 The raw CBOR added here is not checked in anyway. If it is not
1428 conforming or has open arrays or such, the final encoded CBOR
1429 will probably be wrong or not what was intended.
1430
1431 If the encoded CBOR being added here contains multiple items, they
1432 must be enclosed in a map or array. At the top level the raw
1433 CBOR must be a single data item.
1434 */
1435static void QCBOREncode_AddEncoded(QCBOREncodeContext *pCtx, UsefulBufC Encoded);
1436
1437static void QCBOREncode_AddEncodedToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC Encoded);
1438
1439static void QCBOREncode_AddEncodedToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC Encoded);
1440
1441
1442/**
1443 @brief Get the encoded result.
1444
1445 @param[in] pCtx The context to finish encoding with.
1446 @param[out] pEncodedCBOR Pointer and length of encoded CBOR.
1447
1448 @retval QCBOR_ERR_TOO_MANY_CLOSES Nesting error
1449
1450 @retval QCBOR_ERR_CLOSE_MISMATCH Nesting error
1451
1452 @retval QCBOR_ERR_ARRAY_OR_MAP_STILL_OPEN Nesting error
1453
1454 @retval QCBOR_ERR_BUFFER_TOO_LARGE Encoded output buffer size
1455
1456 @retval QCBOR_ERR_BUFFER_TOO_SMALL Encoded output buffer size
1457
1458 @retval QCBOR_ERR_ARRAY_NESTING_TOO_DEEP Implementation limit
1459
1460 @retval QCBOR_ERR_ARRAY_TOO_LONG Implementation limit
1461
1462 If this returns success @ref QCBOR_SUCCESS the encoding was a success
1463 and the return length is correct and complete.
1464
1465 If no buffer was passed to QCBOREncode_Init(), then only the length
1466 was computed. If a buffer was passed, then the encoded CBOR is in the
1467 buffer.
1468
1469 Encoding errors primarily manifest here as most other encoding function
1470 do no return an error. They just set the error state in the encode
1471 context after which no encoding function does anything.
1472
1473 Three types of errors manifest here. The first type are nesting
1474 errors where the number of @c QCBOREncode_OpenXxx() calls do not
1475 match the number @c QCBOREncode_CloseXxx() calls. The solution is to
1476 fix the calling code.
1477
1478 The second type of error is because the buffer given is either too
1479 small or too large. The remedy is to give a correctly sized buffer.
1480
1481 The third type are due to limits in this implementation. @ref
1482 QCBOR_ERR_ARRAY_NESTING_TOO_DEEP can be worked around by encoding the
1483 CBOR in two (or more) phases and adding the CBOR from the first phase
1484 to the second with @c QCBOREncode_AddEncoded().
1485
1486 If an error is returned, the buffer may have partially encoded
1487 incorrect CBOR in it and it should not be used. Likewise, the length
1488 may be incorrect and should not be used.
1489
1490 Note that the error could have occurred in one of the many @c
1491 QCBOREncode_AddXxx() calls long before QCBOREncode_Finish() was
1492 called. This error handling reduces the CBOR implementation size but
1493 makes debugging harder.
1494
1495 This may be called multiple times. It will always return the same. It
1496 can also be interleaved with calls to QCBOREncode_FinishGetSize().
1497
1498 QCBOREncode_GetErrorState() can be called to get the current
1499 error state and abort encoding early as an optimization, but is
1500 is never required.
1501 */
1502QCBORError QCBOREncode_Finish(QCBOREncodeContext *pCtx, UsefulBufC *pEncodedCBOR);
1503
1504
1505/**
1506 @brief Get the encoded CBOR and error status.
1507
1508 @param[in] pCtx The context to finish encoding with.
1509 @param[out] uEncodedLen The length of the encoded or potentially
1510 encoded CBOR in bytes.
1511
1512 @return The same errors as QCBOREncode_Finish().
1513
1514 This functions the same as QCBOREncode_Finish(), but only returns the
1515 size of the encoded output.
1516 */
1517QCBORError QCBOREncode_FinishGetSize(QCBOREncodeContext *pCtx, size_t *uEncodedLen);
1518
1519
1520/**
1521 @brief Indicate whether output buffer is NULL or not.
1522
1523 @param[in] pCtx The encoding context.
1524
1525 @return 1 if the output buffer is @c NULL.
1526
1527 Sometimes a @c NULL input buffer is given to QCBOREncode_Init() so
1528 that the size of the generated CBOR can be calculated without
1529 allocating a buffer for it. This returns 1 when the output buffer is
1530 NULL and 0 when it is not.
1531*/
1532static int QCBOREncode_IsBufferNULL(QCBOREncodeContext *pCtx);
1533
1534 /**
1535 @brief Get the encoding error state.
1536
1537 @param[in] pCtx The encoding context.
1538
1539 @return One of \ref QCBORError. See return values from
1540 QCBOREncode_Finish()
1541
1542 Normally encoding errors need only be handled at the end of encoding
1543 when QCBOREncode_Finish() is called. This can be called to get the
1544 error result before finish should there be a need to halt encoding
1545 before QCBOREncode_Finish() is called.
1546*/
1547static QCBORError QCBOREncode_GetErrorState(QCBOREncodeContext *pCtx);
1548
1549
1550/**
1551 Encode the "head" of a CBOR data item.
1552
1553 @param buffer Buffer to output the encoded head to; must be
1554 @ref QCBOR_HEAD_BUFFER_SIZE bytes in size.
1555 @param uMajorType One of CBOR_MAJOR_TYPE_XX.
1556 @param uMinLen The minimum number of bytes to encode uNumber. Almost always
1557 this is 0 to use preferred minimal encoding. If this is 4,
1558 then even the values 0xffff and smaller will be encoded
1559 as in 4 bytes. This is used primarily when encoding a
1560 float or double put into uNumber as the leading zero bytes
1561 for them must be encoded.
1562 @param uNumber The numeric argument part of the CBOR head.
1563 @return Pointer and length of the encoded head or
1564 @NULLUsefulBufC if the output buffer is too small.
1565
1566 Callers to need to call this for normal CBOR encoding. Note that it doesn't even
1567 take a @ref QCBOREncodeContext argument.
1568
1569 This encodes the major type and argument part of a data item. The
1570 argument is an integer that is usually either the value or the length
1571 of the data item.
1572
1573 This is exposed in the public interface to allow hashing of some CBOR
1574 data types, bstr in particular, a chunk at a time so the full CBOR
1575 doesn't have to be encoded in a contiguous buffer.
1576
1577 For example, if you have a 100,000 byte binary blob in a buffer that
1578 needs to be a bstr encoded and then hashed. You could allocate a
1579 100,010 byte buffer and encode it normally. Alternatively, you can
1580 encode the head in a 10 byte buffer with this function, hash that and
1581 then hash the 100,000 bytes using the same hash context.
1582
1583 See also QCBOREncode_AddBytesLenOnly();
1584 */
1585UsefulBufC QCBOREncode_EncodeHead(UsefulBuf buffer,
1586 uint8_t uMajorType,
1587 uint8_t uMinLen,
1588 uint64_t uNumber);
1589
1590
Michael Eckel5c531332020-03-02 01:35:30 +01001591
1592
1593/* ===========================================================================
1594 BEGINNING OF PRIVATE INLINE IMPLEMENTATION
1595
1596 =========================================================================== */
1597
1598/**
1599 @brief Semi-private method to add a buffer full of bytes to encoded output
1600
1601 @param[in] pCtx The encoding context to add the integer to.
1602 @param[in] uMajorType The CBOR major type of the bytes.
1603 @param[in] Bytes The bytes to add.
1604
1605 Use QCBOREncode_AddText() or QCBOREncode_AddBytes() or
1606 QCBOREncode_AddEncoded() instead. They are inline functions that call
1607 this and supply the correct major type. This function is public to
1608 make the inline functions work to keep the overall code size down and
1609 because the C language has no way to make it private.
1610
1611 If this is called the major type should be @c
1612 CBOR_MAJOR_TYPE_TEXT_STRING, @c CBOR_MAJOR_TYPE_BYTE_STRING or @c
1613 CBOR_MAJOR_NONE_TYPE_RAW. The last one is special for adding
1614 already-encoded CBOR.
1615 */
1616void QCBOREncode_AddBuffer(QCBOREncodeContext *pCtx, uint8_t uMajorType, UsefulBufC Bytes);
1617
1618
1619/**
1620 @brief Semi-private method to open a map, array or bstr-wrapped CBOR
1621
1622 @param[in] pCtx The context to add to.
1623 @param[in] uMajorType The major CBOR type to close
1624
1625 Call QCBOREncode_OpenArray(), QCBOREncode_OpenMap() or
1626 QCBOREncode_BstrWrap() instead of this.
1627 */
1628void QCBOREncode_OpenMapOrArray(QCBOREncodeContext *pCtx, uint8_t uMajorType);
1629
1630
1631/**
1632 @brief Semi-private method to open a map, array with indefinite length
1633
1634 @param[in] pCtx The context to add to.
1635 @param[in] uMajorType The major CBOR type to close
1636
1637 Call QCBOREncode_OpenArrayIndefiniteLength() or
1638 QCBOREncode_OpenMapIndefiniteLength() instead of this.
1639 */
1640void QCBOREncode_OpenMapOrArrayIndefiniteLength(QCBOREncodeContext *pCtx, uint8_t uMajorType);
1641
1642
1643/**
1644 @brief Semi-private method to close a map, array or bstr wrapped CBOR
1645
1646 @param[in] pCtx The context to add to.
1647 @param[in] uMajorType The major CBOR type to close.
1648
1649 Call QCBOREncode_CloseArray() or QCBOREncode_CloseMap() instead of this.
1650 */
1651void QCBOREncode_CloseMapOrArray(QCBOREncodeContext *pCtx, uint8_t uMajorType);
1652
1653
1654/**
1655 @brief Semi-private method to close a map, array with indefinite length
1656
1657 @param[in] pCtx The context to add to.
1658 @param[in] uMajorType The major CBOR type to close.
1659
1660 Call QCBOREncode_CloseArrayIndefiniteLength() or
1661 QCBOREncode_CloseMapIndefiniteLength() instead of this.
1662 */
1663void QCBOREncode_CloseMapOrArrayIndefiniteLength(QCBOREncodeContext *pCtx,
1664 uint8_t uMajorType);
1665
1666
1667/**
1668 @brief Semi-private method to add simple types.
1669
1670 @param[in] pCtx The encoding context to add the simple value to.
1671 @param[in] uMinLen Minimum encoding size for uNum. Usually 0.
1672 @param[in] uNum One of CBOR_SIMPLEV_FALSE through _UNDEF or other.
1673
1674 This is used to add simple types like true and false.
1675
1676 Call QCBOREncode_AddBool(), QCBOREncode_AddNULL(),
1677 QCBOREncode_AddUndef() instead of this.
1678
1679 This function can add simple values that are not defined by CBOR
1680 yet. This expansion point in CBOR should not be used unless they are
1681 standardized.
1682
1683 Error handling is the same as QCBOREncode_AddInt64().
1684 */
1685void QCBOREncode_AddType7(QCBOREncodeContext *pCtx, uint8_t uMinLen, uint64_t uNum);
1686
1687
1688/**
1689 @brief Semi-private method to add bigfloats and decimal fractions.
1690
1691 @param[in] pCtx The encoding context to add the value to.
1692 @param[in] uTag The type 6 tag indicating what this is to be
1693 @param[in] BigNumMantissa Is @ref NULLUsefulBufC if mantissa is an
1694 @c int64_t or the actual big number mantissa
1695 if not.
1696 @param[in] nMantissa The @c int64_t mantissa if it is not a big number.
1697 @param[in] nExponent The exponent.
1698
1699 This adds a tagged array with two members, the mantissa and exponent. The
1700 mantissa can be either a big number or an @c int64_t.
1701
1702 Typically, QCBOREncode_AddDecimalFraction(), QCBOREncode_AddBigFloat(),
1703 QCBOREncode_AddDecimalFractionBigNum() or QCBOREncode_AddBigFloatBigNum()
1704 is called instead of this.
1705 */
1706void QCBOREncode_AddExponentAndMantissa(QCBOREncodeContext *pCtx,
1707 uint64_t uTag,
1708 UsefulBufC BigNumMantissa,
1709 bool bBigNumIsNegative,
1710 int64_t nMantissa,
1711 int64_t nExponent);
1712
1713/**
1714 @brief Semi-private method to add only the type and length of a byte string.
1715
1716 @param[in] pCtx The context to initialize.
1717 @param[in] Bytes Pointer and length of the input data.
1718
1719 This is the same as QCBOREncode_AddBytes() except it only adds the
1720 CBOR encoding for the type and the length. It doesn't actually add
1721 the bytes. You can't actually produce correct CBOR with this and the
1722 rest of this API. It is only used for a special case where
1723 the valid CBOR is created manually by putting this type and length in
1724 and then adding the actual bytes. In particular, when only a hash of
1725 the encoded CBOR is needed, where the type and header are hashed
1726 separately and then the bytes is hashed. This makes it possible to
1727 implement COSE Sign1 with only one copy of the payload in the output
1728 buffer, rather than two, roughly cutting memory use in half.
1729
1730 This is only used for this odd case, but this is a supported
1731 tested function.
1732
1733 See also QCBOREncode_EncodeHead().
1734*/
1735static inline void QCBOREncode_AddBytesLenOnly(QCBOREncodeContext *pCtx, UsefulBufC Bytes);
1736
1737static inline void QCBOREncode_AddBytesLenOnlyToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC Bytes);
1738
1739static inline void QCBOREncode_AddBytesLenOnlyToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC Bytes);
1740
1741
1742
1743
1744
1745static inline void QCBOREncode_AddInt64ToMap(QCBOREncodeContext *pCtx, const char *szLabel, int64_t uNum)
1746{
1747 // Use _AddBuffer() because _AddSZString() is defined below, not above
1748 QCBOREncode_AddBuffer(pCtx, CBOR_MAJOR_TYPE_TEXT_STRING, UsefulBuf_FromSZ(szLabel));
1749 QCBOREncode_AddInt64(pCtx, uNum);
1750}
1751
1752static inline void QCBOREncode_AddInt64ToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, int64_t uNum)
1753{
1754 QCBOREncode_AddInt64(pCtx, nLabel);
1755 QCBOREncode_AddInt64(pCtx, uNum);
1756}
1757
1758
1759static inline void QCBOREncode_AddUInt64ToMap(QCBOREncodeContext *pCtx, const char *szLabel, uint64_t uNum)
1760{
1761 // Use _AddBuffer() because _AddSZString() is defined below, not above
1762 QCBOREncode_AddBuffer(pCtx, CBOR_MAJOR_TYPE_TEXT_STRING, UsefulBuf_FromSZ(szLabel));
1763 QCBOREncode_AddUInt64(pCtx, uNum);
1764}
1765
1766static inline void QCBOREncode_AddUInt64ToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, uint64_t uNum)
1767{
1768 QCBOREncode_AddInt64(pCtx, nLabel);
1769 QCBOREncode_AddUInt64(pCtx, uNum);
1770}
1771
1772
1773static inline void QCBOREncode_AddText(QCBOREncodeContext *pCtx, UsefulBufC Text)
1774{
1775 QCBOREncode_AddBuffer(pCtx, CBOR_MAJOR_TYPE_TEXT_STRING, Text);
1776}
1777
1778static inline void QCBOREncode_AddTextToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC Text)
1779{
1780 // Use _AddBuffer() because _AddSZString() is defined below, not above
1781 QCBOREncode_AddText(pCtx, UsefulBuf_FromSZ(szLabel));
1782 QCBOREncode_AddText(pCtx, Text);
1783}
1784
1785static inline void QCBOREncode_AddTextToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC Text)
1786{
1787 QCBOREncode_AddInt64(pCtx, nLabel);
1788 QCBOREncode_AddText(pCtx, Text);
1789}
1790
1791
1792inline static void QCBOREncode_AddSZString(QCBOREncodeContext *pCtx, const char *szString)
1793{
1794 QCBOREncode_AddText(pCtx, UsefulBuf_FromSZ(szString));
1795}
1796
1797static inline void QCBOREncode_AddSZStringToMap(QCBOREncodeContext *pCtx, const char *szLabel, const char *szString)
1798{
1799 QCBOREncode_AddSZString(pCtx, szLabel);
1800 QCBOREncode_AddSZString(pCtx, szString);
1801}
1802
1803static inline void QCBOREncode_AddSZStringToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, const char *szString)
1804{
1805 QCBOREncode_AddInt64(pCtx, nLabel);
1806 QCBOREncode_AddSZString(pCtx, szString);
1807}
1808
1809
1810static inline void QCBOREncode_AddDoubleToMap(QCBOREncodeContext *pCtx, const char *szLabel, double dNum)
1811{
1812 QCBOREncode_AddSZString(pCtx, szLabel);
1813 QCBOREncode_AddDouble(pCtx, dNum);
1814}
1815
1816static inline void QCBOREncode_AddDoubleToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, double dNum)
1817{
1818 QCBOREncode_AddInt64(pCtx, nLabel);
1819 QCBOREncode_AddDouble(pCtx, dNum);
1820}
1821
Laurence Lundbladeb275cdc2020-07-12 12:34:38 -07001822static inline void QCBOREncode_AddFloatToMap(QCBOREncodeContext *pCtx, const char *szLabel, float dNum)
1823{
1824 QCBOREncode_AddSZString(pCtx, szLabel);
1825 QCBOREncode_AddFloat(pCtx, dNum);
1826}
1827
1828static inline void QCBOREncode_AddFloatToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, float fNum)
1829{
1830 QCBOREncode_AddInt64(pCtx, nLabel);
1831 QCBOREncode_AddFloat(pCtx, fNum);
1832}
1833
Laurence Lundblade32f3e622020-07-13 20:35:11 -07001834static inline void QCBOREncode_AddDoubleNoPreferredToMap(QCBOREncodeContext *pCtx, const char *szLabel, double dNum)
1835{
1836 QCBOREncode_AddSZString(pCtx, szLabel);
1837 QCBOREncode_AddDoubleNoPreferred(pCtx, dNum);
1838}
1839
1840static inline void QCBOREncode_AddDoubleNoPreferredToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, double dNum)
1841{
1842 QCBOREncode_AddInt64(pCtx, nLabel);
1843 QCBOREncode_AddDoubleNoPreferred(pCtx, dNum);
1844}
1845
1846static inline void QCBOREncode_AddFloatNoPreferredToMap(QCBOREncodeContext *pCtx, const char *szLabel, float dNum)
1847{
1848 QCBOREncode_AddSZString(pCtx, szLabel);
1849 QCBOREncode_AddFloatNoPreferred(pCtx, dNum);
1850}
1851
1852static inline void QCBOREncode_AddFloatNoPreferredToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, float dNum)
1853{
1854 QCBOREncode_AddInt64(pCtx, nLabel);
1855 QCBOREncode_AddFloatNoPreferred(pCtx, dNum);
1856}
1857
Michael Eckel5c531332020-03-02 01:35:30 +01001858
1859static inline void QCBOREncode_AddDateEpoch(QCBOREncodeContext *pCtx, int64_t date)
1860{
1861 QCBOREncode_AddTag(pCtx, CBOR_TAG_DATE_EPOCH);
1862 QCBOREncode_AddInt64(pCtx, date);
1863}
1864
1865static inline void QCBOREncode_AddDateEpochToMap(QCBOREncodeContext *pCtx, const char *szLabel, int64_t date)
1866{
1867 QCBOREncode_AddSZString(pCtx, szLabel);
1868 QCBOREncode_AddTag(pCtx, CBOR_TAG_DATE_EPOCH);
1869 QCBOREncode_AddInt64(pCtx, date);
1870}
1871
1872static inline void QCBOREncode_AddDateEpochToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, int64_t date)
1873{
1874 QCBOREncode_AddInt64(pCtx, nLabel);
1875 QCBOREncode_AddTag(pCtx, CBOR_TAG_DATE_EPOCH);
1876 QCBOREncode_AddInt64(pCtx, date);
1877}
1878
1879
1880static inline void QCBOREncode_AddBytes(QCBOREncodeContext *pCtx, UsefulBufC Bytes)
1881{
1882 QCBOREncode_AddBuffer(pCtx, CBOR_MAJOR_TYPE_BYTE_STRING, Bytes);
1883}
1884
1885static inline void QCBOREncode_AddBytesToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC Bytes)
1886{
1887 QCBOREncode_AddSZString(pCtx, szLabel);
1888 QCBOREncode_AddBytes(pCtx, Bytes);
1889}
1890
1891static inline void QCBOREncode_AddBytesToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC Bytes)
1892{
1893 QCBOREncode_AddInt64(pCtx, nLabel);
1894 QCBOREncode_AddBytes(pCtx, Bytes);
1895}
1896
1897static inline void QCBOREncode_AddBytesLenOnly(QCBOREncodeContext *pCtx, UsefulBufC Bytes)
1898{
1899 QCBOREncode_AddBuffer(pCtx, CBOR_MAJOR_NONE_TYPE_BSTR_LEN_ONLY, Bytes);
1900}
1901
1902static inline void QCBOREncode_AddBytesLenOnlyToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC Bytes)
1903{
1904 QCBOREncode_AddSZString(pCtx, szLabel);
1905 QCBOREncode_AddBytesLenOnly(pCtx, Bytes);
1906}
1907
1908static inline void QCBOREncode_AddBytesLenOnlyToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC Bytes)
1909{
1910 QCBOREncode_AddInt64(pCtx, nLabel);
1911 QCBOREncode_AddBytesLenOnly(pCtx, Bytes);
1912}
1913
1914static inline void QCBOREncode_AddBinaryUUID(QCBOREncodeContext *pCtx, UsefulBufC Bytes)
1915{
1916 QCBOREncode_AddTag(pCtx, CBOR_TAG_BIN_UUID);
1917 QCBOREncode_AddBytes(pCtx, Bytes);
1918}
1919
1920static inline void QCBOREncode_AddBinaryUUIDToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC Bytes)
1921{
1922 QCBOREncode_AddSZString(pCtx, szLabel);
1923 QCBOREncode_AddTag(pCtx, CBOR_TAG_BIN_UUID);
1924 QCBOREncode_AddBytes(pCtx, Bytes);
1925}
1926
1927static inline void QCBOREncode_AddBinaryUUIDToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC Bytes)
1928{
1929 QCBOREncode_AddInt64(pCtx, nLabel);
1930 QCBOREncode_AddTag(pCtx, CBOR_TAG_BIN_UUID);
1931 QCBOREncode_AddBytes(pCtx, Bytes);
1932}
1933
1934
1935static inline void QCBOREncode_AddPositiveBignum(QCBOREncodeContext *pCtx, UsefulBufC Bytes)
1936{
1937 QCBOREncode_AddTag(pCtx, CBOR_TAG_POS_BIGNUM);
1938 QCBOREncode_AddBytes(pCtx, Bytes);
1939}
1940
1941static inline void QCBOREncode_AddPositiveBignumToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC Bytes)
1942{
1943 QCBOREncode_AddSZString(pCtx, szLabel);
1944 QCBOREncode_AddTag(pCtx, CBOR_TAG_POS_BIGNUM);
1945 QCBOREncode_AddBytes(pCtx, Bytes);
1946}
1947
1948static inline void QCBOREncode_AddPositiveBignumToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC Bytes)
1949{
1950 QCBOREncode_AddInt64(pCtx, nLabel);
1951 QCBOREncode_AddTag(pCtx, CBOR_TAG_POS_BIGNUM);
1952 QCBOREncode_AddBytes(pCtx, Bytes);
1953}
1954
1955
1956static inline void QCBOREncode_AddNegativeBignum(QCBOREncodeContext *pCtx, UsefulBufC Bytes)
1957{
1958 QCBOREncode_AddTag(pCtx, CBOR_TAG_NEG_BIGNUM);
1959 QCBOREncode_AddBytes(pCtx, Bytes);
1960}
1961
1962static inline void QCBOREncode_AddNegativeBignumToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC Bytes)
1963{
1964 QCBOREncode_AddSZString(pCtx, szLabel);
1965 QCBOREncode_AddTag(pCtx, CBOR_TAG_NEG_BIGNUM);
1966 QCBOREncode_AddBytes(pCtx, Bytes);
1967}
1968
1969static inline void QCBOREncode_AddNegativeBignumToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC Bytes)
1970{
1971 QCBOREncode_AddInt64(pCtx, nLabel);
1972 QCBOREncode_AddTag(pCtx, CBOR_TAG_NEG_BIGNUM);
1973 QCBOREncode_AddBytes(pCtx, Bytes);
1974}
1975
1976
1977#ifndef QCBOR_CONFIG_DISABLE_EXP_AND_MANTISSA
1978
1979static inline void QCBOREncode_AddDecimalFraction(QCBOREncodeContext *pCtx,
1980 int64_t nMantissa,
1981 int64_t nBase10Exponent)
1982{
1983 QCBOREncode_AddExponentAndMantissa(pCtx,
1984 CBOR_TAG_DECIMAL_FRACTION,
1985 NULLUsefulBufC,
1986 false,
1987 nMantissa,
1988 nBase10Exponent);
1989}
1990
1991static inline void QCBOREncode_AddDecimalFractionToMap(QCBOREncodeContext *pCtx,
1992 const char *szLabel,
1993 int64_t nMantissa,
1994 int64_t nBase10Exponent)
1995{
1996 QCBOREncode_AddSZString(pCtx, szLabel);
1997 QCBOREncode_AddDecimalFraction(pCtx, nMantissa, nBase10Exponent);
1998}
1999
2000static inline void QCBOREncode_AddDecimalFractionToMapN(QCBOREncodeContext *pCtx,
2001 int64_t nLabel,
2002 int64_t nMantissa,
2003 int64_t nBase10Exponent)
2004{
2005 QCBOREncode_AddInt64(pCtx, nLabel);
2006 QCBOREncode_AddDecimalFraction(pCtx, nMantissa, nBase10Exponent);
2007}
2008
2009static inline void QCBOREncode_AddDecimalFractionBigNum(QCBOREncodeContext *pCtx,
2010 UsefulBufC Mantissa,
2011 bool bIsNegative,
2012 int64_t nBase10Exponent)
2013{
2014 QCBOREncode_AddExponentAndMantissa(pCtx,
2015 CBOR_TAG_DECIMAL_FRACTION,
2016 Mantissa, bIsNegative,
2017 0,
2018 nBase10Exponent);
2019}
2020
2021static inline void QCBOREncode_AddDecimalFractionBigNumToMap(QCBOREncodeContext *pCtx,
2022 const char *szLabel,
2023 UsefulBufC Mantissa,
2024 bool bIsNegative,
2025 int64_t nBase10Exponent)
2026{
2027 QCBOREncode_AddSZString(pCtx, szLabel);
2028 QCBOREncode_AddDecimalFractionBigNum(pCtx, Mantissa, bIsNegative, nBase10Exponent);
2029}
2030
2031static inline void QCBOREncode_AddDecimalFractionBigNumToMapN(QCBOREncodeContext *pCtx,
2032 int64_t nLabel,
2033 UsefulBufC Mantissa,
2034 bool bIsNegative,
2035 int64_t nBase2Exponent)
2036{
2037 QCBOREncode_AddInt64(pCtx, nLabel);
2038 QCBOREncode_AddDecimalFractionBigNum(pCtx, Mantissa, bIsNegative, nBase2Exponent);
2039}
2040
2041static inline void QCBOREncode_AddBigFloat(QCBOREncodeContext *pCtx,
2042 int64_t nMantissa,
2043 int64_t nBase2Exponent)
2044{
2045 QCBOREncode_AddExponentAndMantissa(pCtx, CBOR_TAG_BIGFLOAT, NULLUsefulBufC, false, nMantissa, nBase2Exponent);
2046}
2047
2048static inline void QCBOREncode_AddBigFloatToMap(QCBOREncodeContext *pCtx,
2049 const char *szLabel,
2050 int64_t nMantissa,
2051 int64_t nBase2Exponent)
2052{
2053 QCBOREncode_AddSZString(pCtx, szLabel);
2054 QCBOREncode_AddBigFloat(pCtx, nMantissa, nBase2Exponent);
2055}
2056
2057static inline void QCBOREncode_AddBigFloatToMapN(QCBOREncodeContext *pCtx,
2058 int64_t nLabel,
2059 int64_t nMantissa,
2060 int64_t nBase2Exponent)
2061{
2062 QCBOREncode_AddInt64(pCtx, nLabel);
2063 QCBOREncode_AddBigFloat(pCtx, nMantissa, nBase2Exponent);
2064}
2065
2066static inline void QCBOREncode_AddBigFloatBigNum(QCBOREncodeContext *pCtx,
2067 UsefulBufC Mantissa,
2068 bool bIsNegative,
2069 int64_t nBase2Exponent)
2070{
2071 QCBOREncode_AddExponentAndMantissa(pCtx, CBOR_TAG_BIGFLOAT, Mantissa, bIsNegative, 0, nBase2Exponent);
2072}
2073
2074static inline void QCBOREncode_AddBigFloatBigNumToMap(QCBOREncodeContext *pCtx,
2075 const char *szLabel,
2076 UsefulBufC Mantissa,
2077 bool bIsNegative,
2078 int64_t nBase2Exponent)
2079{
2080 QCBOREncode_AddSZString(pCtx, szLabel);
2081 QCBOREncode_AddBigFloatBigNum(pCtx, Mantissa, bIsNegative, nBase2Exponent);
2082}
2083
2084static inline void QCBOREncode_AddBigFloatBigNumToMapN(QCBOREncodeContext *pCtx,
2085 int64_t nLabel,
2086 UsefulBufC Mantissa,
2087 bool bIsNegative,
2088 int64_t nBase2Exponent)
2089{
2090 QCBOREncode_AddInt64(pCtx, nLabel);
2091 QCBOREncode_AddBigFloatBigNum(pCtx, Mantissa, bIsNegative, nBase2Exponent);
2092}
2093#endif /* QCBOR_CONFIG_DISABLE_EXP_AND_MANTISSA */
2094
2095
2096static inline void QCBOREncode_AddURI(QCBOREncodeContext *pCtx, UsefulBufC URI)
2097{
2098 QCBOREncode_AddTag(pCtx, CBOR_TAG_URI);
2099 QCBOREncode_AddText(pCtx, URI);
2100}
2101
2102static inline void QCBOREncode_AddURIToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC URI)
2103{
2104 QCBOREncode_AddSZString(pCtx, szLabel);
2105 QCBOREncode_AddTag(pCtx, CBOR_TAG_URI);
2106 QCBOREncode_AddText(pCtx, URI);
2107}
2108
2109static inline void QCBOREncode_AddURIToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC URI)
2110{
2111 QCBOREncode_AddInt64(pCtx, nLabel);
2112 QCBOREncode_AddTag(pCtx, CBOR_TAG_URI);
2113 QCBOREncode_AddText(pCtx, URI);
2114}
2115
2116
2117
2118static inline void QCBOREncode_AddB64Text(QCBOREncodeContext *pCtx, UsefulBufC B64Text)
2119{
2120 QCBOREncode_AddTag(pCtx, CBOR_TAG_B64);
2121 QCBOREncode_AddText(pCtx, B64Text);
2122}
2123
2124static inline void QCBOREncode_AddB64TextToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC B64Text)
2125{
2126 QCBOREncode_AddSZString(pCtx, szLabel);
2127 QCBOREncode_AddTag(pCtx, CBOR_TAG_B64);
2128 QCBOREncode_AddText(pCtx, B64Text);
2129}
2130
2131static inline void QCBOREncode_AddB64TextToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC B64Text)
2132{
2133 QCBOREncode_AddInt64(pCtx, nLabel);
2134 QCBOREncode_AddTag(pCtx, CBOR_TAG_B64);
2135 QCBOREncode_AddText(pCtx, B64Text);
2136}
2137
2138
2139static inline void QCBOREncode_AddB64URLText(QCBOREncodeContext *pCtx, UsefulBufC B64Text)
2140{
2141 QCBOREncode_AddTag(pCtx, CBOR_TAG_B64URL);
2142 QCBOREncode_AddText(pCtx, B64Text);
2143}
2144
2145static inline void QCBOREncode_AddB64URLTextToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC B64Text)
2146{
2147 QCBOREncode_AddSZString(pCtx, szLabel);
2148 QCBOREncode_AddTag(pCtx, CBOR_TAG_B64URL);
2149 QCBOREncode_AddText(pCtx, B64Text);
2150}
2151
2152static inline void QCBOREncode_AddB64URLTextToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC B64Text)
2153{
2154 QCBOREncode_AddInt64(pCtx, nLabel);
2155 QCBOREncode_AddTag(pCtx, CBOR_TAG_B64URL);
2156 QCBOREncode_AddText(pCtx, B64Text);
2157}
2158
2159
2160static inline void QCBOREncode_AddRegex(QCBOREncodeContext *pCtx, UsefulBufC Bytes)
2161{
2162 QCBOREncode_AddTag(pCtx, CBOR_TAG_REGEX);
2163 QCBOREncode_AddText(pCtx, Bytes);
2164}
2165
2166static inline void QCBOREncode_AddRegexToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC Bytes)
2167{
2168 QCBOREncode_AddSZString(pCtx, szLabel);
2169 QCBOREncode_AddTag(pCtx, CBOR_TAG_REGEX);
2170 QCBOREncode_AddText(pCtx, Bytes);
2171}
2172
2173static inline void QCBOREncode_AddRegexToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC Bytes)
2174{
2175 QCBOREncode_AddInt64(pCtx, nLabel);
2176 QCBOREncode_AddTag(pCtx, CBOR_TAG_REGEX);
2177 QCBOREncode_AddText(pCtx, Bytes);
2178}
2179
2180
2181static inline void QCBOREncode_AddMIMEData(QCBOREncodeContext *pCtx, UsefulBufC MIMEData)
2182{
2183 QCBOREncode_AddTag(pCtx, CBOR_TAG_MIME);
2184 QCBOREncode_AddText(pCtx, MIMEData);
2185}
2186
2187static inline void QCBOREncode_AddMIMEDataToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC MIMEData)
2188{
2189 QCBOREncode_AddSZString(pCtx, szLabel);
2190 QCBOREncode_AddTag(pCtx, CBOR_TAG_MIME);
2191 QCBOREncode_AddText(pCtx, MIMEData);
2192}
2193
2194static inline void QCBOREncode_AddMIMEDataToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC MIMEData)
2195{
2196 QCBOREncode_AddInt64(pCtx, nLabel);
2197 QCBOREncode_AddTag(pCtx, CBOR_TAG_MIME);
2198 QCBOREncode_AddText(pCtx, MIMEData);
2199}
2200
2201
2202static inline void QCBOREncode_AddDateString(QCBOREncodeContext *pCtx, const char *szDate)
2203{
2204 QCBOREncode_AddTag(pCtx, CBOR_TAG_DATE_STRING);
2205 QCBOREncode_AddSZString(pCtx, szDate);
2206}
2207
2208static inline void QCBOREncode_AddDateStringToMap(QCBOREncodeContext *pCtx, const char *szLabel, const char *szDate)
2209{
2210 QCBOREncode_AddSZString(pCtx, szLabel);
2211 QCBOREncode_AddTag(pCtx, CBOR_TAG_DATE_STRING);
2212 QCBOREncode_AddSZString(pCtx, szDate);
2213}
2214
2215static inline void QCBOREncode_AddDateStringToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, const char *szDate)
2216{
2217 QCBOREncode_AddInt64(pCtx, nLabel);
2218 QCBOREncode_AddTag(pCtx, CBOR_TAG_DATE_STRING);
2219 QCBOREncode_AddSZString(pCtx, szDate);
2220}
2221
2222
2223static inline void QCBOREncode_AddSimple(QCBOREncodeContext *pCtx, uint64_t uNum)
2224{
2225 QCBOREncode_AddType7(pCtx, 0, uNum);
2226}
2227
2228static inline void QCBOREncode_AddSimpleToMap(QCBOREncodeContext *pCtx, const char *szLabel, uint8_t uSimple)
2229{
2230 QCBOREncode_AddSZString(pCtx, szLabel);
2231 QCBOREncode_AddSimple(pCtx, uSimple);
2232}
2233
2234static inline void QCBOREncode_AddSimpleToMapN(QCBOREncodeContext *pCtx, int nLabel, uint8_t uSimple)
2235{
2236 QCBOREncode_AddInt64(pCtx, nLabel);
2237 QCBOREncode_AddSimple(pCtx, uSimple);
2238}
2239
2240
2241static inline void QCBOREncode_AddBool(QCBOREncodeContext *pCtx, bool b)
2242{
2243 uint8_t uSimple = CBOR_SIMPLEV_FALSE;
2244 if(b) {
2245 uSimple = CBOR_SIMPLEV_TRUE;
2246 }
2247 QCBOREncode_AddSimple(pCtx, uSimple);
2248}
2249
2250static inline void QCBOREncode_AddBoolToMap(QCBOREncodeContext *pCtx, const char *szLabel, bool b)
2251{
2252 QCBOREncode_AddSZString(pCtx, szLabel);
2253 QCBOREncode_AddBool(pCtx, b);
2254}
2255
2256static inline void QCBOREncode_AddBoolToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, bool b)
2257{
2258 QCBOREncode_AddInt64(pCtx, nLabel);
2259 QCBOREncode_AddBool(pCtx, b);
2260}
2261
2262
2263static inline void QCBOREncode_AddNULL(QCBOREncodeContext *pCtx)
2264{
2265 QCBOREncode_AddSimple(pCtx, CBOR_SIMPLEV_NULL);
2266}
2267
2268static inline void QCBOREncode_AddNULLToMap(QCBOREncodeContext *pCtx, const char *szLabel)
2269{
2270 QCBOREncode_AddSZString(pCtx, szLabel);
2271 QCBOREncode_AddNULL(pCtx);
2272}
2273
2274static inline void QCBOREncode_AddNULLToMapN(QCBOREncodeContext *pCtx, int64_t nLabel)
2275{
2276 QCBOREncode_AddInt64(pCtx, nLabel);
2277 QCBOREncode_AddNULL(pCtx);
2278}
2279
2280
2281static inline void QCBOREncode_AddUndef(QCBOREncodeContext *pCtx)
2282{
2283 QCBOREncode_AddSimple(pCtx, CBOR_SIMPLEV_UNDEF);
2284}
2285
2286static inline void QCBOREncode_AddUndefToMap(QCBOREncodeContext *pCtx, const char *szLabel)
2287{
2288 QCBOREncode_AddSZString(pCtx, szLabel);
2289 QCBOREncode_AddUndef(pCtx);
2290}
2291
2292static inline void QCBOREncode_AddUndefToMapN(QCBOREncodeContext *pCtx, int64_t nLabel)
2293{
2294 QCBOREncode_AddInt64(pCtx, nLabel);
2295 QCBOREncode_AddUndef(pCtx);
2296}
2297
2298
2299static inline void QCBOREncode_OpenArray(QCBOREncodeContext *pCtx)
2300{
2301 QCBOREncode_OpenMapOrArray(pCtx, CBOR_MAJOR_TYPE_ARRAY);
2302}
2303
2304static inline void QCBOREncode_OpenArrayInMap(QCBOREncodeContext *pCtx, const char *szLabel)
2305{
2306 QCBOREncode_AddSZString(pCtx, szLabel);
2307 QCBOREncode_OpenArray(pCtx);
2308}
2309
2310static inline void QCBOREncode_OpenArrayInMapN(QCBOREncodeContext *pCtx, int64_t nLabel)
2311{
2312 QCBOREncode_AddInt64(pCtx, nLabel);
2313 QCBOREncode_OpenArray(pCtx);
2314}
2315
2316static inline void QCBOREncode_CloseArray(QCBOREncodeContext *pCtx)
2317{
2318 QCBOREncode_CloseMapOrArray(pCtx, CBOR_MAJOR_TYPE_ARRAY);
2319}
2320
2321
2322static inline void QCBOREncode_OpenMap(QCBOREncodeContext *pCtx)
2323{
2324 QCBOREncode_OpenMapOrArray(pCtx, CBOR_MAJOR_TYPE_MAP);
2325}
2326
2327static inline void QCBOREncode_OpenMapInMap(QCBOREncodeContext *pCtx, const char *szLabel)
2328{
2329 QCBOREncode_AddSZString(pCtx, szLabel);
2330 QCBOREncode_OpenMap(pCtx);
2331}
2332
2333static inline void QCBOREncode_OpenMapInMapN(QCBOREncodeContext *pCtx, int64_t nLabel)
2334{
2335 QCBOREncode_AddInt64(pCtx, nLabel);
2336 QCBOREncode_OpenMap(pCtx);
2337}
2338
2339static inline void QCBOREncode_CloseMap(QCBOREncodeContext *pCtx)
2340{
2341 QCBOREncode_CloseMapOrArray(pCtx, CBOR_MAJOR_TYPE_MAP);
2342}
2343
2344static inline void QCBOREncode_OpenArrayIndefiniteLength(QCBOREncodeContext *pCtx)
2345{
2346 QCBOREncode_OpenMapOrArrayIndefiniteLength(pCtx, CBOR_MAJOR_NONE_TYPE_ARRAY_INDEFINITE_LEN);
2347}
2348
2349static inline void QCBOREncode_OpenArrayIndefiniteLengthInMap(QCBOREncodeContext *pCtx, const char *szLabel)
2350{
2351 QCBOREncode_AddSZString(pCtx, szLabel);
2352 QCBOREncode_OpenArrayIndefiniteLength(pCtx);
2353}
2354
2355static inline void QCBOREncode_OpenArrayIndefiniteLengthInMapN(QCBOREncodeContext *pCtx, int64_t nLabel)
2356{
2357 QCBOREncode_AddInt64(pCtx, nLabel);
2358 QCBOREncode_OpenArrayIndefiniteLength(pCtx);
2359}
2360
2361static inline void QCBOREncode_CloseArrayIndefiniteLength(QCBOREncodeContext *pCtx)
2362{
2363 QCBOREncode_CloseMapOrArrayIndefiniteLength(pCtx, CBOR_MAJOR_NONE_TYPE_ARRAY_INDEFINITE_LEN);
2364}
2365
2366
2367static inline void QCBOREncode_OpenMapIndefiniteLength(QCBOREncodeContext *pCtx)
2368{
2369 QCBOREncode_OpenMapOrArrayIndefiniteLength(pCtx, CBOR_MAJOR_NONE_TYPE_MAP_INDEFINITE_LEN);
2370}
2371
2372static inline void QCBOREncode_OpenMapIndefiniteLengthInMap(QCBOREncodeContext *pCtx, const char *szLabel)
2373{
2374 QCBOREncode_AddSZString(pCtx, szLabel);
2375 QCBOREncode_OpenMapIndefiniteLength(pCtx);
2376}
2377
2378static inline void QCBOREncode_OpenMapIndefiniteLengthInMapN(QCBOREncodeContext *pCtx, int64_t nLabel)
2379{
2380 QCBOREncode_AddInt64(pCtx, nLabel);
2381 QCBOREncode_OpenMapIndefiniteLength(pCtx);
2382}
2383
2384static inline void QCBOREncode_CloseMapIndefiniteLength(QCBOREncodeContext *pCtx)
2385{
2386 QCBOREncode_CloseMapOrArrayIndefiniteLength(pCtx, CBOR_MAJOR_NONE_TYPE_MAP_INDEFINITE_LEN);
2387}
2388
2389
2390static inline void QCBOREncode_BstrWrap(QCBOREncodeContext *pCtx)
2391{
2392 QCBOREncode_OpenMapOrArray(pCtx, CBOR_MAJOR_TYPE_BYTE_STRING);
2393}
2394
2395static inline void QCBOREncode_BstrWrapInMap(QCBOREncodeContext *pCtx, const char *szLabel)
2396{
2397 QCBOREncode_AddSZString(pCtx, szLabel);
2398 QCBOREncode_BstrWrap(pCtx);
2399}
2400
2401static inline void QCBOREncode_BstrWrapInMapN(QCBOREncodeContext *pCtx, int64_t nLabel)
2402{
2403 QCBOREncode_AddInt64(pCtx, nLabel);
2404 QCBOREncode_BstrWrap(pCtx);
2405}
2406
2407static inline void QCBOREncode_CloseBstrWrap(QCBOREncodeContext *pCtx, UsefulBufC *pWrappedCBOR)
2408{
2409 QCBOREncode_CloseBstrWrap2(pCtx, true, pWrappedCBOR);
2410}
2411
2412
2413static inline void QCBOREncode_AddEncoded(QCBOREncodeContext *pCtx, UsefulBufC Encoded)
2414{
2415 QCBOREncode_AddBuffer(pCtx, CBOR_MAJOR_NONE_TYPE_RAW, Encoded);
2416}
2417
2418static inline void QCBOREncode_AddEncodedToMap(QCBOREncodeContext *pCtx, const char *szLabel, UsefulBufC Encoded)
2419{
2420 QCBOREncode_AddSZString(pCtx, szLabel);
2421 QCBOREncode_AddEncoded(pCtx, Encoded);
2422}
2423
2424static inline void QCBOREncode_AddEncodedToMapN(QCBOREncodeContext *pCtx, int64_t nLabel, UsefulBufC Encoded)
2425{
2426 QCBOREncode_AddInt64(pCtx, nLabel);
2427 QCBOREncode_AddEncoded(pCtx, Encoded);
2428}
2429
2430
2431static inline int QCBOREncode_IsBufferNULL(QCBOREncodeContext *pCtx)
2432{
2433 return UsefulOutBuf_IsBufferNULL(&(pCtx->OutBuf));
2434}
2435
2436static inline QCBORError QCBOREncode_GetErrorState(QCBOREncodeContext *pCtx)
2437{
2438 if(UsefulOutBuf_GetError(&(pCtx->OutBuf))) {
2439 // Items didn't fit in the buffer.
2440 // This check catches this condition for all the appends and inserts
2441 // so checks aren't needed when the appends and inserts are performed.
2442 // And of course UsefulBuf will never overrun the input buffer given
2443 // to it. No complex analysis of the error handling in this file is
2444 // needed to know that is true. Just read the UsefulBuf code.
2445 pCtx->uError = QCBOR_ERR_BUFFER_TOO_SMALL;
2446 // QCBOR_ERR_BUFFER_TOO_SMALL masks other errors, but that is
2447 // OK. Once the caller fixes this, they'll be unmasked.
2448 }
2449
2450 return (QCBORError)pCtx->uError;
2451}
2452
2453
2454/* ===========================================================================
2455 END OF PRIVATE INLINE IMPLEMENTATION
2456
2457 =========================================================================== */
2458
2459#ifdef __cplusplus
2460}
2461#endif
2462
Laurence Lundblade844bb5c2020-03-01 17:27:25 -08002463#endif /* qcbor_encode_h */