Michael Eckel | 5c53133 | 2020-03-02 01:35:30 +0100 | [diff] [blame] | 1 | /*============================================================================ |
| 2 | Copyright (c) 2016-2018, The Linux Foundation. |
| 3 | Copyright (c) 2018-2020, Laurence Lundblade. |
| 4 | |
| 5 | Redistribution and use in source and binary forms, with or without |
| 6 | modification, are permitted provided that the following conditions are |
| 7 | met: |
| 8 | * Redistributions of source code must retain the above copyright |
| 9 | notice, this list of conditions and the following disclaimer. |
| 10 | * Redistributions in binary form must reproduce the above |
| 11 | copyright notice, this list of conditions and the following |
| 12 | disclaimer in the documentation and/or other materials provided |
| 13 | with the distribution. |
| 14 | * Neither the name of The Linux Foundation nor the names of its |
| 15 | contributors, nor the name "Laurence Lundblade" may be used to |
| 16 | endorse or promote products derived from this software without |
| 17 | specific prior written permission. |
| 18 | |
| 19 | THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED |
| 20 | WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| 21 | MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT |
| 22 | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS |
| 23 | BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 24 | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 25 | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
| 26 | BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| 27 | WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE |
| 28 | OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN |
| 29 | IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | =============================================================================*/ |
| 31 | |
| 32 | /*============================================================================ |
| 33 | FILE: UsefulBuf.h |
| 34 | |
| 35 | DESCRIPTION: General purpose input and output buffers |
| 36 | |
| 37 | EDIT HISTORY FOR FILE: |
| 38 | |
| 39 | This section contains comments describing changes made to the module. |
| 40 | Notice that changes are listed in reverse chronological order. |
| 41 | |
| 42 | when who what, where, why |
| 43 | -------- ---- -------------------------------------------------- |
| 44 | 1/25/2020 llundblade Add some casts so static anlyzers don't complain. |
| 45 | 5/21/2019 llundblade #define configs for efficient endianness handling. |
| 46 | 5/16/2019 llundblade Add UsefulOutBuf_IsBufferNULL(). |
| 47 | 3/23/2019 llundblade Big documentation & style update. No interface |
| 48 | change. |
| 49 | 3/6/2019 llundblade Add UsefulBuf_IsValue() |
| 50 | 12/17/2018 llundblade Remove const from UsefulBuf and UsefulBufC .len |
| 51 | 12/13/2018 llundblade Documentation improvements |
| 52 | 09/18/2018 llundblade Cleaner distinction between UsefulBuf and |
| 53 | UsefulBufC. |
| 54 | 02/02/18 llundbla Full support for integers in and out; fix pointer |
| 55 | alignment bug. Incompatible change: integers |
| 56 | in/out are now in network byte order. |
| 57 | 08/12/17 llundbla Added UsefulOutBuf_AtStart and UsefulBuf_Find |
| 58 | 06/27/17 llundbla Fix UsefulBuf_Compare() bug. Only affected |
| 59 | comparison for < or > for unequal length buffers. |
| 60 | Added UsefulBuf_Set() function. |
| 61 | 05/30/17 llundbla Functions for NULL UsefulBufs and const / unconst |
| 62 | 11/13/16 llundbla Initial Version. |
| 63 | |
| 64 | =============================================================================*/ |
| 65 | |
| 66 | #ifndef _UsefulBuf_h |
| 67 | #define _UsefulBuf_h |
| 68 | |
| 69 | |
| 70 | /* |
| 71 | Configuration Options |
| 72 | |
| 73 | This code is designed so it will work correctly and completely by |
| 74 | default. No configuration is necessary to make it work. None of the |
| 75 | following #defines need to be enabled. The code works and is very |
| 76 | portable with them all turned off. |
| 77 | |
| 78 | All configuration options (USEFULBUF_CONFIG_XXX) |
| 79 | 1) Reduce code size |
| 80 | 2) Improve efficiency |
| 81 | 3) Both of the above |
| 82 | |
| 83 | The efficiency improvements are not large, so the main reason really |
| 84 | is to reduce code size. |
| 85 | |
| 86 | */ |
| 87 | |
| 88 | |
| 89 | /* |
| 90 | Endianness Configuration |
| 91 | |
| 92 | By default, UsefulBuf does not need to know what the endianness of |
| 93 | the device is. All the code will run correctly on either big or |
| 94 | little endian CPUs. |
| 95 | |
| 96 | Here's the recipe for configuring the endianness-related #defines |
| 97 | to use more efficient CPU/OS/compiler dependent features to reduce |
| 98 | code size. Note these only affect the integer arrays (tagged |
| 99 | arrays) feature of QCBOR. All other endianness handling in |
| 100 | QCBOR is integrated with code that also handles alignment and |
| 101 | preferred encoding. |
| 102 | |
| 103 | The first option is to not define anything. This will work fine on |
| 104 | with all CPU's, OS's and compilers. The code for encoding |
| 105 | integers will be a little larger and slower. |
| 106 | |
| 107 | If your CPU is big-endian then define USEFULBUF_CONFIG_BIG_ENDIAN. This |
| 108 | will give the most efficient code for big-endian CPUs. It will be small |
| 109 | and efficient because there will be no byte swapping. |
| 110 | |
| 111 | Try defining USEFULBUF_CONFIG_HTON. This will work on most CPU's, |
| 112 | OS's and compilers, but not all. On big-endian CPUs this should give |
| 113 | the most efficient code, the same as USEFULBUF_CONFIG_BIG_ENDIAN |
| 114 | does. On little-endian CPUs it should call the system-defined byte |
| 115 | swapping method which is presumably implemented efficiently. In some |
| 116 | cases, this will be a dedicated byte swap instruction like Intel's |
| 117 | bswap. |
| 118 | |
| 119 | If USEFULBUF_CONFIG_HTON works and you know your CPU is |
| 120 | little-endian, it is also good to define |
| 121 | USEFULBUF_CONFIG_LITTLE_ENDIAN. |
| 122 | |
| 123 | if USEFULBUF_CONFIG_HTON doesn't work and you know your system is |
| 124 | little-endian, try defining both USEFULBUF_CONFIG_LITTLE_ENDIAN and |
| 125 | USEFULBUF_CONFIG_BSWAP. This should call the most efficient |
| 126 | system-defined byte swap method. However, note |
| 127 | https://hardwarebug.org/2010/01/14/beware-the-builtins/. Perhaps |
| 128 | this is fixed now. Often hton() and ntoh() will call the built-in |
| 129 | __builtin_bswapXX()() function, so this size issue could affect |
| 130 | USEFULBUF_CONFIG_HTON. |
| 131 | |
| 132 | Last, run the tests. They must all pass. |
| 133 | |
| 134 | These #define config options affect the inline implementation of |
| 135 | UsefulOutBuf_InsertUint64() and UsefulInputBuf_GetUint64(). They |
| 136 | also affect the 16-, 32-bit, float and double versions of these |
Laurence Lundblade | 4c0883e | 2020-04-21 18:33:39 -0700 | [diff] [blame] | 137 | instructions. Since they are inline, the size effect is not in the |
Michael Eckel | 5c53133 | 2020-03-02 01:35:30 +0100 | [diff] [blame] | 138 | UsefulBuf object code, but in the calling code. |
| 139 | |
| 140 | Summary: |
| 141 | USEFULBUF_CONFIG_BIG_ENDIAN -- Force configuration to big-endian. |
| 142 | USEFULBUF_CONFIG_LITTLE_ENDIAN -- Force to little-endian. |
| 143 | USEFULBUF_CONFIG_HTON -- Use hton(), htonl(), ntohl()... to |
| 144 | handle big and little-endian with system option. |
| 145 | USEFULBUF_CONFIG_BSWAP -- With USEFULBUF_CONFIG_LITTLE_ENDIAN, |
| 146 | use __builtin_bswapXX(). |
| 147 | */ |
| 148 | |
| 149 | #if defined(USEFULBUF_CONFIG_BIG_ENDIAN) && defined(USEFULBUF_CONFIG_LITTLE_ENDIAN) |
| 150 | #error "Cannot define both USEFULBUF_CONFIG_BIG_ENDIAN and USEFULBUF_CONFIG_LITTLE_ENDIAN" |
| 151 | #endif |
| 152 | |
| 153 | |
| 154 | #include <stdint.h> // for uint8_t, uint16_t.... |
| 155 | #include <string.h> // for strlen, memcpy, memmove, memset |
| 156 | #include <stddef.h> // for size_t |
| 157 | |
| 158 | |
| 159 | #ifdef USEFULBUF_CONFIG_HTON |
| 160 | #include <arpa/inet.h> // for htons, htonl, htonll, ntohs... |
| 161 | #endif |
| 162 | |
| 163 | #ifdef __cplusplus |
| 164 | extern "C" { |
Laurence Lundblade | 24d509a | 2020-06-06 18:43:15 -0700 | [diff] [blame] | 165 | #if 0 |
| 166 | } // Keep editor indention formatting happy |
| 167 | #endif |
Michael Eckel | 5c53133 | 2020-03-02 01:35:30 +0100 | [diff] [blame] | 168 | #endif |
| 169 | |
| 170 | /** |
| 171 | @file UsefulBuf.h |
| 172 | |
| 173 | The goal of this code is to make buffer and pointer manipulation |
| 174 | easier and safer when working with binary data. |
| 175 | |
| 176 | The @ref UsefulBuf, @ref UsefulOutBuf and @ref UsefulInputBuf |
| 177 | structures are used to represent buffers rather than ad hoc pointers and |
| 178 | lengths. |
| 179 | |
| 180 | With these it will often be possible to write code that does little |
| 181 | or no direct pointer manipulation for copying and formatting |
| 182 | data. For example, the QCBOR encoder was written using these and |
| 183 | has no less pointer manipulation. |
| 184 | |
| 185 | While it is true that object code using these functions will be a |
| 186 | little larger and slower than a white-knuckle clever use of pointers |
| 187 | might be, but not by that much or enough to have an effect for most |
| 188 | use cases. For security-oriented code this is highly |
| 189 | worthwhile. Clarity, simplicity, reviewability and are more |
| 190 | important. |
| 191 | |
| 192 | There are some extra sanity and double checks in this code to help |
| 193 | catch coding errors and simple memory corruption. They are helpful, |
| 194 | but not a substitute for proper code review, input validation and |
| 195 | such. |
| 196 | |
| 197 | This code consists of a lot of inline functions and a few that are |
| 198 | not. It should not generate very much object code, especially with |
| 199 | the optimizer turned up to @c -Os or @c -O3. |
| 200 | */ |
| 201 | |
| 202 | |
| 203 | /** |
| 204 | @ref UsefulBufC and @ref UsefulBuf are simple data structures to hold |
| 205 | a pointer and length for binary data. In C99 this data structure can |
| 206 | be passed on the stack making a lot of code cleaner than carrying |
| 207 | around a pointer and length as two parameters. |
| 208 | |
| 209 | This is also conducive to secure coding practice as the length is |
| 210 | always carried with the pointer and the convention for handling a |
| 211 | pointer and a length is clear. |
| 212 | |
| 213 | While it might be possible to write buffer and pointer code more |
| 214 | efficiently in some use cases, the thought is that unless there is an |
| 215 | extreme need for performance (e.g., you are building a |
| 216 | gigabit-per-second IP router), it is probably better to have cleaner |
| 217 | code you can be most certain about the security of. |
| 218 | |
| 219 | The non-const @ref UsefulBuf is usually used to refer a buffer to be |
| 220 | filled in. The length is the size of the buffer. |
| 221 | |
| 222 | The const @ref UsefulBufC is usually used to refer to some data that |
| 223 | has been filled in. The length is amount of valid data pointed to. |
| 224 | |
| 225 | A common use is to pass a @ref UsefulBuf to a function, the function |
| 226 | fills it in, the function returns a @ref UsefulBufC. The pointer is |
| 227 | the same in both. |
| 228 | |
| 229 | A @ref UsefulBuf is null, it has no value, when @c ptr in it is @c NULL. |
| 230 | |
| 231 | There are utility functions for the following: |
| 232 | - Initializing |
| 233 | - Create initialized const @ref UsefulBufC from compiler literals |
| 234 | - Create initialized const @ref UsefulBufC from NULL-terminated string |
| 235 | - Make an empty @ref UsefulBuf on the stack |
| 236 | - Checking whether a @ref UsefulBuf is null, empty or both |
| 237 | - Copying, copying with offset, copying head or tail |
| 238 | - Comparing and finding substrings |
| 239 | |
| 240 | See also @ref UsefulOutBuf. It is a richer structure that has both |
| 241 | the size of the valid data and the size of the buffer. |
| 242 | |
| 243 | @ref UsefulBuf is only 16 or 8 bytes on a 64- or 32-bit machine so it |
| 244 | can go on the stack and be a function parameter or return value. |
| 245 | |
| 246 | Another way to look at it is this. C has the NULL-terminated string |
| 247 | as a means for handling text strings, but no means or convention for |
| 248 | binary strings. Other languages do have such means, Rust, an |
| 249 | efficient compiled language, for example. |
| 250 | |
| 251 | @ref UsefulBuf is kind of like the Useful Pot Pooh gave Eeyore on his |
| 252 | birthday. Eeyore's balloon fits beautifully, "it goes in and out |
| 253 | like anything". |
| 254 | */ |
| 255 | typedef struct q_useful_buf_c { |
| 256 | const void *ptr; |
| 257 | size_t len; |
| 258 | } UsefulBufC; |
| 259 | |
| 260 | |
| 261 | /** |
| 262 | This non-const @ref UsefulBuf is typically used for some allocated |
| 263 | memory that is to be filled in. The @c len is the amount of memory, |
| 264 | not the length of the valid data in the buffer. |
| 265 | */ |
| 266 | typedef struct q_useful_buf { |
| 267 | void *ptr; |
| 268 | size_t len; |
| 269 | } UsefulBuf; |
| 270 | |
| 271 | |
| 272 | /** |
| 273 | A null @ref UsefulBufC is one that has no value in the same way a @c |
| 274 | NULL pointer has no value. A @ref UsefulBufC is @c NULL when the @c |
| 275 | ptr field is @c NULL. It doesn't matter what @c len is. See |
| 276 | UsefulBuf_IsEmpty() for the distinction between null and empty. |
| 277 | */ |
| 278 | #define NULLUsefulBufC ((UsefulBufC) {NULL, 0}) |
| 279 | |
| 280 | |
| 281 | /** |
| 282 | A null @ref UsefulBuf is one that has no memory associated the same |
| 283 | way @c NULL points to nothing. It does not matter what @c len is. |
| 284 | */ |
| 285 | #define NULLUsefulBuf ((UsefulBuf) {NULL, 0}) |
| 286 | |
| 287 | |
| 288 | /** |
| 289 | @brief Check if a @ref UsefulBuf is @ref NULLUsefulBuf or not. |
| 290 | |
| 291 | @param[in] UB The UsefulBuf to check. |
| 292 | |
| 293 | @return 1 if it is @ref NULLUsefulBuf, 0 if not. |
| 294 | */ |
| 295 | static inline int UsefulBuf_IsNULL(UsefulBuf UB); |
| 296 | |
| 297 | |
| 298 | /** |
| 299 | @brief Check if a @ref UsefulBufC is @ref NULLUsefulBufC or not. |
| 300 | |
| 301 | @param[in] UB The @ref UsefulBufC to check. |
| 302 | |
| 303 | @return 1 if it is @c NULLUsefulBufC, 0 if not. |
| 304 | */ |
| 305 | static inline int UsefulBuf_IsNULLC(UsefulBufC UB); |
| 306 | |
| 307 | |
| 308 | /** |
| 309 | @brief Check if a @ref UsefulBuf is empty or not. |
| 310 | |
| 311 | @param[in] UB The @ref UsefulBuf to check. |
| 312 | |
| 313 | @return 1 if it is empty, 0 if not. |
| 314 | |
| 315 | An "empty" @ref UsefulBuf is one that has a value and can be |
| 316 | considered to be set, but that value is of zero length. It is empty |
| 317 | when @c len is zero. It doesn't matter what the @c ptr is. |
| 318 | |
| 319 | A lot of uses will not need to clearly distinguish a @c NULL @ref |
| 320 | UsefulBuf from an empty one and can have the @c ptr @c NULL and the |
| 321 | @c len 0. However if a use of @ref UsefulBuf needs to make a |
| 322 | distinction then @c ptr should not be @c NULL when the @ref UsefulBuf |
| 323 | is considered empty, but not @c NULL. |
| 324 | */ |
| 325 | static inline int UsefulBuf_IsEmpty(UsefulBuf UB); |
| 326 | |
| 327 | |
| 328 | /** |
| 329 | @brief Check if a @ref UsefulBufC is empty or not. |
| 330 | |
| 331 | @param[in] UB The @ref UsefulBufC to check. |
| 332 | |
| 333 | @return 1 if it is empty, 0 if not. |
| 334 | */ |
| 335 | static inline int UsefulBuf_IsEmptyC(UsefulBufC UB); |
| 336 | |
| 337 | |
| 338 | /** |
| 339 | @brief Check if a @ref UsefulBuf is @ref NULLUsefulBuf or empty. |
| 340 | |
| 341 | @param[in] UB The @ref UsefulBuf to check. |
| 342 | |
| 343 | @return 1 if it is either @ref NULLUsefulBuf or empty, 0 if not. |
| 344 | */ |
| 345 | static inline int UsefulBuf_IsNULLOrEmpty(UsefulBuf UB); |
| 346 | |
| 347 | |
| 348 | /** |
| 349 | @brief Check if a @ref UsefulBufC is @ref NULLUsefulBufC or empty. |
| 350 | |
| 351 | @param[in] UB The @ref UsefulBufC to check. |
| 352 | |
| 353 | @return 1 if it is either @ref NULLUsefulBufC or empty, 0 if not. |
| 354 | */ |
| 355 | static inline int UsefulBuf_IsNULLOrEmptyC(UsefulBufC UB); |
| 356 | |
| 357 | |
| 358 | /** |
| 359 | @brief Convert a non-const @ref UsefulBuf to a const @ref UsefulBufC. |
| 360 | |
| 361 | @param[in] UB The @ref UsefulBuf to convert. |
| 362 | |
| 363 | @return A @ref UsefulBufC struct. |
| 364 | */ |
| 365 | static inline UsefulBufC UsefulBuf_Const(const UsefulBuf UB); |
| 366 | |
| 367 | |
| 368 | /** |
| 369 | @brief Convert a const @ref UsefulBufC to a non-const @ref UsefulBuf. |
| 370 | |
| 371 | @param[in] UBC The @ref UsefulBuf to convert. |
| 372 | |
| 373 | @return A non-const @ref UsefulBuf struct. |
| 374 | */ |
| 375 | static inline UsefulBuf UsefulBuf_Unconst(const UsefulBufC UBC); |
| 376 | |
| 377 | |
| 378 | /** |
| 379 | Convert a literal string to a @ref UsefulBufC. |
| 380 | |
| 381 | @c szString must be a literal string that @c sizeof() works on. This |
| 382 | is better for literal strings than UsefulBuf_FromSZ() because it |
| 383 | generates less code. It will not work on non-literal strings. |
| 384 | |
| 385 | The terminating \0 (NULL) is NOT included in the length! |
| 386 | */ |
| 387 | #define UsefulBuf_FROM_SZ_LITERAL(szString) \ |
| 388 | ((UsefulBufC) {(szString), sizeof(szString)-1}) |
| 389 | |
| 390 | |
| 391 | /** |
| 392 | Convert a literal byte array to a @ref UsefulBufC. |
| 393 | |
| 394 | @c pBytes must be a literal string that @c sizeof() works on. It |
| 395 | will not work on non-literal arrays. |
| 396 | */ |
| 397 | #define UsefulBuf_FROM_BYTE_ARRAY_LITERAL(pBytes) \ |
| 398 | ((UsefulBufC) {(pBytes), sizeof(pBytes)}) |
| 399 | |
| 400 | |
| 401 | /** |
| 402 | Make an automatic variable named @c name of type @ref UsefulBuf and |
| 403 | point it to a stack variable of the given @c size. |
| 404 | */ |
| 405 | #define UsefulBuf_MAKE_STACK_UB(name, size) \ |
| 406 | uint8_t __pBuf##name[(size)];\ |
| 407 | UsefulBuf name = {__pBuf##name , sizeof( __pBuf##name )} |
| 408 | |
| 409 | |
| 410 | /** |
| 411 | Make a byte array in to a @ref UsefulBuf. This is usually used on |
| 412 | stack variables or static variables. Also see @ref |
| 413 | UsefulBuf_MAKE_STACK_UB. |
| 414 | */ |
| 415 | #define UsefulBuf_FROM_BYTE_ARRAY(pBytes) \ |
| 416 | ((UsefulBuf) {(pBytes), sizeof(pBytes)}) |
| 417 | |
| 418 | |
| 419 | /** |
| 420 | @brief Convert a NULL-terminated string to a @ref UsefulBufC. |
| 421 | |
| 422 | @param[in] szString The string to convert. |
| 423 | |
| 424 | @return A @ref UsefulBufC struct. |
| 425 | |
| 426 | @c UsefulBufC.ptr points to the string so its lifetime must be |
| 427 | maintained. |
| 428 | |
| 429 | The terminating \0 (NULL) is NOT included in the length. |
| 430 | */ |
| 431 | static inline UsefulBufC UsefulBuf_FromSZ(const char *szString); |
| 432 | |
| 433 | |
| 434 | /** |
| 435 | @brief Copy one @ref UsefulBuf into another at an offset. |
| 436 | |
| 437 | @param[in] Dest Destination buffer to copy into. |
| 438 | @param[in] uOffset The byte offset in @c Dest at which to copy to. |
| 439 | @param[in] Src The bytes to copy. |
| 440 | |
| 441 | @return Pointer and length of the copy or @ref NULLUsefulBufC. |
| 442 | |
| 443 | This fails and returns @ref NULLUsefulBufC if @c offset is beyond the |
| 444 | size of @c Dest. |
| 445 | |
| 446 | This fails and returns @ref NULLUsefulBufC if the @c Src length plus |
| 447 | @c uOffset is greater than the length of @c Dest. |
| 448 | |
| 449 | The results are undefined if @c Dest and @c Src overlap. |
| 450 | |
| 451 | This assumes that there is valid data in @c Dest up to @c |
| 452 | uOffset. The @ref UsefulBufC returned starts at the beginning of @c |
| 453 | Dest and goes to @c Src.len @c + @c uOffset. |
| 454 | */ |
| 455 | UsefulBufC UsefulBuf_CopyOffset(UsefulBuf Dest, size_t uOffset, const UsefulBufC Src); |
| 456 | |
| 457 | |
| 458 | /** |
| 459 | @brief Copy one @ref UsefulBuf into another. |
| 460 | |
| 461 | @param[in] Dest The destination buffer to copy into. |
| 462 | @param[out] Src The source to copy from. |
| 463 | |
| 464 | @return Filled in @ref UsefulBufC on success, @ref NULLUsefulBufC |
| 465 | on failure. |
| 466 | |
| 467 | This fails if @c Src.len is greater than @c Dest.len. |
| 468 | |
| 469 | Note that like @c memcpy(), the pointers are not checked and this |
| 470 | will crash rather than return @ref NULLUsefulBufC if they are @c |
| 471 | NULL or invalid. |
| 472 | |
| 473 | The results are undefined if @c Dest and @c Src overlap. |
| 474 | */ |
| 475 | static inline UsefulBufC UsefulBuf_Copy(UsefulBuf Dest, const UsefulBufC Src); |
| 476 | |
| 477 | |
| 478 | /** |
| 479 | @brief Set all bytes in a @ref UsefulBuf to a value, for example to 0. |
| 480 | |
| 481 | @param[in] pDest The destination buffer to copy into. |
| 482 | @param[in] value The value to set the bytes to. |
| 483 | |
| 484 | Note that like @c memset(), the pointer in @c pDest is not checked |
| 485 | and this will crash if @c NULL or invalid. |
| 486 | */ |
| 487 | static inline UsefulBufC UsefulBuf_Set(UsefulBuf pDest, uint8_t value); |
| 488 | |
| 489 | |
| 490 | /** |
| 491 | @brief Copy a pointer into a @ref UsefulBuf. |
| 492 | |
| 493 | @param[in,out] Dest The destination buffer to copy into. |
| 494 | @param[in] ptr The source to copy from. |
| 495 | @param[in] uLen Length of the source; amount to copy. |
| 496 | |
| 497 | @return 0 on success, 1 on failure. |
| 498 | |
| 499 | This fails and returns @ref NULLUsefulBufC if @c uLen is greater than |
| 500 | @c pDest->len. |
| 501 | |
| 502 | Note that like @c memcpy(), the pointers are not checked and this |
| 503 | will crash, rather than return 1 if they are @c NULL or invalid. |
| 504 | */ |
| 505 | static inline UsefulBufC UsefulBuf_CopyPtr(UsefulBuf Dest, |
| 506 | const void *ptr, |
| 507 | size_t uLen); |
| 508 | |
| 509 | |
| 510 | /** |
| 511 | @brief Returns a truncation of a @ref UsefulBufC. |
| 512 | |
| 513 | @param[in] UB The buffer to get the head of. |
| 514 | @param[in] uAmount The number of bytes in the head. |
| 515 | |
| 516 | @return A @ref UsefulBufC that is the head of UB. |
| 517 | */ |
| 518 | static inline UsefulBufC UsefulBuf_Head(UsefulBufC UB, size_t uAmount); |
| 519 | |
| 520 | |
| 521 | /** |
| 522 | @brief Returns bytes from the end of a @ref UsefulBufC. |
| 523 | |
| 524 | @param[in] UB The buffer to get the tail of. |
| 525 | @param[in] uAmount The offset from the start where the tail is to begin. |
| 526 | |
| 527 | @return A @ref UsefulBufC that is the tail of @c UB or @ref NULLUsefulBufC |
| 528 | if @c uAmount is greater than the length of the @ref UsefulBufC. |
| 529 | |
| 530 | If @c UB.ptr is @c NULL, but @c UB.len is not zero, then the result will |
| 531 | be a @ref UsefulBufC with a @c NULL @c ptr and @c len with the length |
| 532 | of the tail. |
| 533 | */ |
| 534 | static inline UsefulBufC UsefulBuf_Tail(UsefulBufC UB, size_t uAmount); |
| 535 | |
| 536 | |
| 537 | /** |
| 538 | @brief Compare one @ref UsefulBufC to another. |
| 539 | |
| 540 | @param[in] UB1 The first buffer to compare. |
| 541 | @param[in] UB2 The second buffer to compare. |
| 542 | |
| 543 | @return 0, positive or negative value. |
| 544 | |
| 545 | Returns a negative value if @c UB1 if is less than @c UB2. @c UB1 is |
| 546 | less than @c UB2 if it is shorter or the first byte that is not the |
| 547 | same is less. |
| 548 | |
| 549 | Returns 0 if the inputs are the same. |
| 550 | |
| 551 | Returns a positive value if @c UB2 is less than @c UB1. |
| 552 | |
| 553 | All that is of significance is that the result is positive, negative |
| 554 | or 0. (This doesn't return the difference between the first |
| 555 | non-matching byte like @c memcmp() ). |
| 556 | */ |
| 557 | int UsefulBuf_Compare(const UsefulBufC UB1, const UsefulBufC UB2); |
| 558 | |
| 559 | |
| 560 | /** |
| 561 | @brief Find first byte that is not a particular byte value. |
| 562 | |
| 563 | @param[in] UB The destination buffer for byte comparison. |
| 564 | @param[in] uValue The byte value to compare to. |
| 565 | |
| 566 | @return Offset of first byte that isn't @c uValue or |
| 567 | @c SIZE_MAX if all bytes are @c uValue. |
| 568 | |
| 569 | Note that unlike most comparison functions, 0 |
| 570 | does not indicate a successful comparison, so the |
| 571 | test for match is: |
| 572 | |
| 573 | UsefulBuf_IsValue(...) == SIZE_MAX |
| 574 | |
| 575 | If @c UB is null or empty, there is no match |
| 576 | and 0 is returned. |
| 577 | */ |
| 578 | size_t UsefulBuf_IsValue(const UsefulBufC UB, uint8_t uValue); |
| 579 | |
| 580 | |
| 581 | /** |
| 582 | @brief Find one @ref UsefulBufC in another. |
| 583 | |
| 584 | @param[in] BytesToSearch Buffer to search through. |
| 585 | @param[in] BytesToFind Buffer with bytes to be found. |
| 586 | |
| 587 | @return Position of found bytes or @c SIZE_MAX if not found. |
| 588 | */ |
| 589 | size_t UsefulBuf_FindBytes(UsefulBufC BytesToSearch, UsefulBufC BytesToFind); |
| 590 | |
| 591 | |
| 592 | #if 1 // NOT_DEPRECATED |
| 593 | /** Deprecated macro; use @ref UsefulBuf_FROM_SZ_LITERAL instead */ |
| 594 | #define SZLiteralToUsefulBufC(szString) \ |
| 595 | ((UsefulBufC) {(szString), sizeof(szString)-1}) |
| 596 | |
| 597 | /** Deprecated macro; use UsefulBuf_MAKE_STACK_UB instead */ |
| 598 | #define MakeUsefulBufOnStack(name, size) \ |
| 599 | uint8_t __pBuf##name[(size)];\ |
| 600 | UsefulBuf name = {__pBuf##name , sizeof( __pBuf##name )} |
| 601 | |
| 602 | /** Deprecated macro; use @ref UsefulBuf_FROM_BYTE_ARRAY_LITERAL instead */ |
| 603 | #define ByteArrayLiteralToUsefulBufC(pBytes) \ |
| 604 | ((UsefulBufC) {(pBytes), sizeof(pBytes)}) |
| 605 | |
| 606 | /** Deprecated function; use UsefulBuf_Unconst() instead */ |
| 607 | static inline UsefulBuf UsefulBufC_Unconst(const UsefulBufC UBC) |
| 608 | { |
| 609 | return (UsefulBuf){(void *)UBC.ptr, UBC.len}; |
| 610 | } |
| 611 | #endif |
| 612 | |
| 613 | |
| 614 | |
| 615 | |
| 616 | /** |
| 617 | @brief Copy a @c float to a @c uint32_t. |
| 618 | |
| 619 | @param[in] f Float value to copy. |
| 620 | |
| 621 | @return A @c uint32_t with the float bits. |
| 622 | |
| 623 | Convenience function to avoid type punning, compiler warnings and |
| 624 | such. The optimizer usually reduces this to a simple assignment. This |
| 625 | is a crusty corner of C. |
| 626 | */ |
| 627 | static inline uint32_t UsefulBufUtil_CopyFloatToUint32(float f); |
| 628 | |
| 629 | |
| 630 | /** |
| 631 | @brief Copy a @c double to a @c uint64_t. |
| 632 | |
| 633 | @param[in] d Double value to copy. |
| 634 | |
| 635 | @return A @c uint64_t with the double bits. |
| 636 | |
| 637 | Convenience function to avoid type punning, compiler warnings and |
| 638 | such. The optimizer usually reduces this to a simple assignment. This |
| 639 | is a crusty corner of C. |
| 640 | */ |
| 641 | static inline uint64_t UsefulBufUtil_CopyDoubleToUint64(double d); |
| 642 | |
| 643 | |
| 644 | /** |
| 645 | @brief Copy a @c uint32_t to a @c float. |
| 646 | |
| 647 | @param[in] u32 Integer value to copy. |
| 648 | |
| 649 | @return The value as a @c float. |
| 650 | |
| 651 | Convenience function to avoid type punning, compiler warnings and |
| 652 | such. The optimizer usually reduces this to a simple assignment. This |
| 653 | is a crusty corner of C. |
| 654 | */ |
| 655 | static inline float UsefulBufUtil_CopyUint32ToFloat(uint32_t u32); |
| 656 | |
| 657 | |
| 658 | /** |
| 659 | @brief Copy a @c uint64_t to a @c double. |
| 660 | |
| 661 | @param[in] u64 Integer value to copy. |
| 662 | |
| 663 | @return The value as a @c double. |
| 664 | |
| 665 | Convenience function to avoid type punning, compiler warnings and |
| 666 | such. The optimizer usually reduces this to a simple assignment. This |
| 667 | is a crusty corner of C. |
| 668 | */ |
| 669 | static inline double UsefulBufUtil_CopyUint64ToDouble(uint64_t u64); |
| 670 | |
| 671 | |
| 672 | |
| 673 | |
| 674 | /** |
| 675 | UsefulOutBuf is a structure and functions (an object) for serializing |
| 676 | data into a buffer when encoding a network protocol or writing data |
| 677 | to file. |
| 678 | |
| 679 | The main idea is that all the pointer manipulation is performed by |
| 680 | @ref UsefulOutBuf functions so the caller doesn't have to do any |
| 681 | pointer manipulation. The pointer manipulation is centralized. This |
| 682 | code will have been reviewed and written carefully so it spares the |
| 683 | caller of much of this work and results in safer code with less work. |
| 684 | |
| 685 | The @ref UsefulOutBuf methods that add data to the output buffer |
| 686 | always check the length and will never write off the end of the |
| 687 | output buffer. If an attempt to add data that will not fit is made, |
| 688 | an internal error flag will be set and further attempts to add data |
| 689 | will not do anything. |
| 690 | |
| 691 | There is no way to ever write off the end of that buffer when calling |
| 692 | the @c UsefulOutBuf_AddXxx() and @c UsefulOutBuf_InsertXxx() |
| 693 | functions. |
| 694 | |
| 695 | The functions to add data do not return an error. The working model |
| 696 | is that all calls to add data are made without an error check. Errors |
| 697 | are just checked for once after all the data has been added before the |
| 698 | and before serialized data is to be used. This makes the calling code |
| 699 | cleaner. |
| 700 | |
| 701 | There is a utility function to get the error status anytime along the |
| 702 | way for a special circumstance. There are functions to see how much |
| 703 | room is left and see if some data will fit too, but their use is |
| 704 | generally not necessary. |
| 705 | |
| 706 | The general call flow is: |
| 707 | |
| 708 | - Initialize by calling @ref UsefulOutBuf_Init(). The output |
| 709 | buffer given to it can be from the heap, stack or |
| 710 | otherwise. @ref UsefulOutBuf_MakeOnStack is a convenience macro |
| 711 | that makes a buffer on the stack and initializes it. |
| 712 | |
| 713 | - Call methods like UsefulOutBuf_InsertString(), |
| 714 | UsefulOutBuf_AppendUint32() and UsefulOutBuf_InsertUsefulBuf() |
| 715 | to output data. The append calls add data to the end of the |
| 716 | valid data. The insert calls take a position argument. |
| 717 | |
| 718 | - Call UsefulOutBuf_OutUBuf() or UsefulOutBuf_CopyOut() to see |
| 719 | there were no errors and to get the serialized output bytes. |
| 720 | |
| 721 | @ref UsefulOutBuf can be used in a size calculation mode to calculate |
| 722 | the size of output that would be generated. This is useful to |
| 723 | calculate the size of a buffer that is to be allocated to hold the |
| 724 | output. To use @ref UsefulOutBuf in this mode, call |
| 725 | UsefulOutBuf_Init() with the @c Storage @ref UsefulBuf as |
| 726 | @c (UsefulBuf){NULL,MAX_UINT32}. Then call all the Insert and Add |
| 727 | functions. No attempt will made to actually copy data, so only the |
| 728 | lengths have to be valid for these calls. |
| 729 | |
| 730 | Methods like UsefulOutBuf_InsertUint64() always output in network |
| 731 | bytes order (big endian). |
| 732 | |
| 733 | The possible errors are: |
| 734 | - The @ref UsefulOutBuf was not initialized or was corrupted. |
| 735 | |
| 736 | - An attempt was made to add data that will not fit. |
| 737 | |
| 738 | - An attempt was made to insert data at a position beyond the end of |
| 739 | the buffer. |
| 740 | |
| 741 | - An attempt was made to insert data at a position beyond the valid |
| 742 | data in the buffer. |
| 743 | |
| 744 | Some inexpensive simple sanity checks are performed before every data |
| 745 | addition to guard against use of an uninitialized or corrupted |
| 746 | UsefulOutBuf. |
| 747 | |
| 748 | This has been used to create a CBOR encoder. The CBOR encoder has |
| 749 | almost no pointer manipulation in it, is easier to read, and easier |
| 750 | to review. |
| 751 | |
| 752 | A @ref UsefulOutBuf is small and can go on the stack: |
| 753 | - 32 bytes (27 bytes plus alignment padding) on a 64-bit machine |
| 754 | - 16 bytes (15 bytes plus alignment padding) on a 32-bit machines |
| 755 | */ |
| 756 | typedef struct useful_out_buf { |
| 757 | // PRIVATE DATA STRUCTURE |
| 758 | UsefulBuf UB; // Memory that is being output to |
| 759 | size_t data_len; // length of the data |
| 760 | uint16_t magic; // Used to detect corruption and lack of initialization |
| 761 | uint8_t err; |
| 762 | } UsefulOutBuf; |
| 763 | |
| 764 | |
| 765 | /** |
| 766 | @brief Initialize and supply the actual output buffer. |
| 767 | |
| 768 | @param[out] pUOutBuf The @ref UsefulOutBuf to initialize. |
| 769 | @param[in] Storage Buffer to output into. |
| 770 | |
| 771 | Initializes the @ref UsefulOutBuf with storage. Sets the current |
| 772 | position to the beginning of the buffer clears the error. |
| 773 | |
| 774 | This must be called before the @ref UsefulOutBuf is used. |
| 775 | */ |
| 776 | void UsefulOutBuf_Init(UsefulOutBuf *pUOutBuf, UsefulBuf Storage); |
| 777 | |
| 778 | |
| 779 | /** |
| 780 | Convenience macro to make a @ref UsefulOutBuf on the stack and |
| 781 | initialize it with a stack buffer of the given size. The variable |
| 782 | will be named @c name. |
| 783 | */ |
| 784 | #define UsefulOutBuf_MakeOnStack(name, size) \ |
| 785 | uint8_t __pBuf##name[(size)];\ |
| 786 | UsefulOutBuf name;\ |
| 787 | UsefulOutBuf_Init(&(name), (UsefulBuf){__pBuf##name, (size)}); |
| 788 | |
| 789 | |
| 790 | /** |
| 791 | @brief Reset a @ref UsefulOutBuf for re use |
| 792 | |
| 793 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf |
| 794 | |
| 795 | This sets the amount of data in the output buffer to none and clears |
| 796 | the error state. |
| 797 | |
| 798 | The output buffer is still the same one and size as from the |
| 799 | UsefulOutBuf_Init() call. |
| 800 | |
| 801 | This doesn't zero the data, just resets to 0 bytes of valid data. |
| 802 | */ |
| 803 | static inline void UsefulOutBuf_Reset(UsefulOutBuf *pUOutBuf); |
| 804 | |
| 805 | |
| 806 | /** |
| 807 | @brief Returns position of end of data in the @ref UsefulOutBuf. |
| 808 | |
| 809 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 810 | |
| 811 | @return position of end of data. |
| 812 | |
| 813 | On a freshly initialized @ref UsefulOutBuf with no data added, this |
| 814 | will return 0. After 10 bytes have been added, it will return 10 and |
| 815 | so on. |
| 816 | |
| 817 | Generally callers will not need this function for most uses of @ref |
| 818 | UsefulOutBuf. |
| 819 | */ |
| 820 | static inline size_t UsefulOutBuf_GetEndPosition(UsefulOutBuf *pUOutBuf); |
| 821 | |
| 822 | |
| 823 | /** |
| 824 | @brief Returns whether any data has been added to the @ref UsefulOutBuf. |
| 825 | |
| 826 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 827 | |
| 828 | @return 1 if output position is at start. |
| 829 | */ |
| 830 | static inline int UsefulOutBuf_AtStart(UsefulOutBuf *pUOutBuf); |
| 831 | |
| 832 | |
| 833 | /** |
| 834 | @brief Inserts bytes into the @ref UsefulOutBuf. |
| 835 | |
| 836 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 837 | @param[in] NewData The bytes to insert. |
| 838 | @param[in] uPos Index in output buffer at which to insert. |
| 839 | |
| 840 | @c NewData is the pointer and length for the bytes to be added to the |
| 841 | output buffer. There must be room in the output buffer for all of @c |
| 842 | NewData or an error will occur. |
| 843 | |
| 844 | The insertion point must be between 0 and the current valid data. If |
| 845 | not, an error will occur. Appending data to the output buffer is |
| 846 | achieved by inserting at the end of the valid data. This can be |
| 847 | retrieved by calling UsefulOutBuf_GetEndPosition(). |
| 848 | |
| 849 | When insertion is performed, the bytes between the insertion point |
| 850 | and the end of data previously added to the output buffer are slid to |
| 851 | the right to make room for the new data. |
| 852 | |
| 853 | Overlapping buffers are OK. @c NewData can point to data in the |
| 854 | output buffer. |
| 855 | |
| 856 | If an error occurs an error state is set in the @ref UsefulOutBuf. No |
| 857 | error is returned. All subsequent attempts to add data will do |
| 858 | nothing. |
| 859 | |
| 860 | The intended use is that all additions are made without checking for |
| 861 | an error. The error will be taken into account when |
| 862 | UsefulOutBuf_OutUBuf() returns @c NullUsefulBufC. |
| 863 | UsefulOutBuf_GetError() can also be called to check for an error. |
| 864 | */ |
| 865 | void UsefulOutBuf_InsertUsefulBuf(UsefulOutBuf *pUOutBuf, |
| 866 | UsefulBufC NewData, |
| 867 | size_t uPos); |
| 868 | |
| 869 | |
| 870 | /** |
| 871 | @brief Insert a data buffer into the @ref UsefulOutBuf. |
| 872 | |
| 873 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 874 | @param[in] pBytes Pointer to the bytes to insert |
| 875 | @param[in] uLen Length of the bytes to insert |
| 876 | @param[in] uPos Index in output buffer at which to insert |
| 877 | |
| 878 | See UsefulOutBuf_InsertUsefulBuf() for details. This is the same with |
| 879 | the difference being a pointer and length is passed in rather than an |
| 880 | @ref UsefulBufC. |
| 881 | */ |
| 882 | static inline void UsefulOutBuf_InsertData(UsefulOutBuf *pUOutBuf, |
| 883 | const void *pBytes, |
| 884 | size_t uLen, |
| 885 | size_t uPos); |
| 886 | |
| 887 | |
| 888 | /** |
| 889 | @brief Insert a NULL-terminated string into the UsefulOutBuf. |
| 890 | |
| 891 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 892 | @param[in] szString NULL-terminated string to insert. |
| 893 | @param[in] uPos Index in output buffer at which to insert. |
| 894 | */ |
| 895 | static inline void UsefulOutBuf_InsertString(UsefulOutBuf *pUOutBuf, |
| 896 | const char *szString, |
| 897 | size_t uPos); |
| 898 | |
| 899 | |
| 900 | /** |
| 901 | @brief Insert a byte into the @ref UsefulOutBuf. |
| 902 | |
| 903 | @param[in] pUOutBuf Pointer to the UsefulOutBuf. |
| 904 | @param[in] byte Bytes to insert. |
| 905 | @param[in] uPos Index in output buffer at which to insert. |
| 906 | |
| 907 | See UsefulOutBuf_InsertUsefulBuf() for details. This is the same with |
| 908 | the difference being a single byte is to be inserted. |
| 909 | */ |
| 910 | static inline void UsefulOutBuf_InsertByte(UsefulOutBuf *pUOutBuf, |
| 911 | uint8_t byte, |
| 912 | size_t uPos); |
| 913 | |
| 914 | |
| 915 | /** |
| 916 | @brief Insert a 16-bit integer into the @ref UsefulOutBuf. |
| 917 | |
| 918 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 919 | @param[in] uInteger16 Integer to insert. |
| 920 | @param[in] uPos Index in output buffer at which to insert. |
| 921 | |
| 922 | See UsefulOutBuf_InsertUsefulBuf() for details. This is the same with |
| 923 | the difference being a two-byte integer is to be inserted. |
| 924 | |
| 925 | The integer will be inserted in network byte order (big endian). |
| 926 | */ |
| 927 | static inline void UsefulOutBuf_InsertUint16(UsefulOutBuf *pUOutBuf, |
| 928 | uint16_t uInteger16, |
| 929 | size_t uPos); |
| 930 | |
| 931 | |
| 932 | /** |
| 933 | @brief Insert a 32-bit integer into the @ref UsefulOutBuf. |
| 934 | |
| 935 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 936 | @param[in] uInteger32 Integer to insert. |
| 937 | @param[in] uPos Index in output buffer at which to insert. |
| 938 | |
| 939 | See UsefulOutBuf_InsertUsefulBuf() for details. This is the same with |
| 940 | the difference being a four-byte integer is to be inserted. |
| 941 | |
| 942 | The integer will be inserted in network byte order (big endian). |
| 943 | */ |
| 944 | static inline void UsefulOutBuf_InsertUint32(UsefulOutBuf *pUOutBuf, |
| 945 | uint32_t uInteger32, |
| 946 | size_t uPos); |
| 947 | |
| 948 | |
| 949 | /** |
| 950 | @brief Insert a 64-bit integer into the @ref UsefulOutBuf. |
| 951 | |
| 952 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 953 | @param[in] uInteger64 Integer to insert. |
| 954 | @param[in] uPos Index in output buffer at which to insert. |
| 955 | |
| 956 | See UsefulOutBuf_InsertUsefulBuf() for details. This is the same with |
| 957 | the difference being an eight-byte integer is to be inserted. |
| 958 | |
| 959 | The integer will be inserted in network byte order (big endian). |
| 960 | */ |
| 961 | static inline void UsefulOutBuf_InsertUint64(UsefulOutBuf *pUOutBuf, |
| 962 | uint64_t uInteger64, |
| 963 | size_t uPos); |
| 964 | |
| 965 | |
| 966 | /** |
| 967 | @brief Insert a @c float into the @ref UsefulOutBuf. |
| 968 | |
| 969 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 970 | @param[in] f @c float to insert. |
| 971 | @param[in] uPos Index in output buffer at which to insert. |
| 972 | |
| 973 | See UsefulOutBuf_InsertUsefulBuf() for details. This is the same with |
| 974 | the difference being a @c float is to be inserted. |
| 975 | |
| 976 | The @c float will be inserted in network byte order (big endian). |
| 977 | */ |
| 978 | static inline void UsefulOutBuf_InsertFloat(UsefulOutBuf *pUOutBuf, |
| 979 | float f, |
| 980 | size_t uPos); |
| 981 | |
| 982 | |
| 983 | /** |
| 984 | @brief Insert a @c double into the @ref UsefulOutBuf. |
| 985 | |
| 986 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 987 | @param[in] d @c double to insert. |
| 988 | @param[in] uPos Index in output buffer at which to insert. |
| 989 | |
| 990 | See UsefulOutBuf_InsertUsefulBuf() for details. This is the same with |
| 991 | the difference being a @c double is to be inserted. |
| 992 | |
| 993 | The @c double will be inserted in network byte order (big endian). |
| 994 | */ |
| 995 | static inline void UsefulOutBuf_InsertDouble(UsefulOutBuf *pUOutBuf, |
| 996 | double d, |
| 997 | size_t uPos); |
| 998 | |
| 999 | |
| 1000 | /** |
| 1001 | @brief Append a @ref UsefulBuf into the @ref UsefulOutBuf. |
| 1002 | |
| 1003 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 1004 | @param[in] NewData The @ref UsefulBuf with the bytes to append. |
| 1005 | |
| 1006 | See UsefulOutBuf_InsertUsefulBuf() for details. This does the same |
| 1007 | with the insertion point at the end of the valid data. |
| 1008 | */ |
| 1009 | static inline void UsefulOutBuf_AppendUsefulBuf(UsefulOutBuf *pUOutBuf, |
| 1010 | UsefulBufC NewData); |
| 1011 | |
| 1012 | |
| 1013 | /** |
| 1014 | @brief Append bytes to the @ref UsefulOutBuf. |
| 1015 | |
| 1016 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 1017 | @param[in] pBytes Pointer to bytes to append. |
| 1018 | @param[in] uLen Length of @c pBytes to append. |
| 1019 | |
| 1020 | See UsefulOutBuf_InsertData() for details. This does the same |
| 1021 | with the insertion point at the end of the valid data. |
| 1022 | */ |
| 1023 | static inline void UsefulOutBuf_AppendData(UsefulOutBuf *pUOutBuf, |
| 1024 | const void *pBytes, |
| 1025 | size_t uLen); |
| 1026 | |
| 1027 | |
| 1028 | /** |
| 1029 | @brief Append a NULL-terminated string to the @ref UsefulOutBuf |
| 1030 | |
| 1031 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 1032 | @param[in] szString NULL-terminated string to append. |
| 1033 | */ |
| 1034 | static inline void UsefulOutBuf_AppendString(UsefulOutBuf *pUOutBuf, |
| 1035 | const char *szString); |
| 1036 | |
| 1037 | |
| 1038 | /** |
| 1039 | @brief Append a byte to the @ref UsefulOutBuf |
| 1040 | |
| 1041 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 1042 | @param[in] byte Bytes to append. |
| 1043 | |
| 1044 | See UsefulOutBuf_InsertByte() for details. This does the same |
| 1045 | with the insertion point at the end of the valid data. |
| 1046 | */ |
| 1047 | static inline void UsefulOutBuf_AppendByte(UsefulOutBuf *pUOutBuf, |
| 1048 | uint8_t byte); |
| 1049 | |
| 1050 | |
| 1051 | /** |
| 1052 | @brief Append an integer to the @ref UsefulOutBuf |
| 1053 | |
| 1054 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 1055 | @param[in] uInteger16 Integer to append. |
| 1056 | |
| 1057 | See UsefulOutBuf_InsertUint16() for details. This does the same |
| 1058 | with the insertion point at the end of the valid data. |
| 1059 | |
| 1060 | The integer will be appended in network byte order (big endian). |
| 1061 | */ |
| 1062 | static inline void UsefulOutBuf_AppendUint16(UsefulOutBuf *pUOutBuf, |
| 1063 | uint16_t uInteger16); |
| 1064 | |
| 1065 | |
| 1066 | /** |
| 1067 | @brief Append an integer to the @ref UsefulOutBuf |
| 1068 | |
| 1069 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 1070 | @param[in] uInteger32 Integer to append. |
| 1071 | |
| 1072 | See UsefulOutBuf_InsertUint32() for details. This does the same |
| 1073 | with the insertion point at the end of the valid data. |
| 1074 | |
| 1075 | The integer will be appended in network byte order (big endian). |
| 1076 | */ |
| 1077 | static inline void UsefulOutBuf_AppendUint32(UsefulOutBuf *pUOutBuf, |
| 1078 | uint32_t uInteger32); |
| 1079 | |
| 1080 | |
| 1081 | /** |
| 1082 | @brief Append an integer to the @ref UsefulOutBuf |
| 1083 | |
| 1084 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 1085 | @param[in] uInteger64 Integer to append. |
| 1086 | |
| 1087 | See UsefulOutBuf_InsertUint64() for details. This does the same |
| 1088 | with the insertion point at the end of the valid data. |
| 1089 | |
| 1090 | The integer will be appended in network byte order (big endian). |
| 1091 | */ |
| 1092 | static inline void UsefulOutBuf_AppendUint64(UsefulOutBuf *pUOutBuf, |
| 1093 | uint64_t uInteger64); |
| 1094 | |
| 1095 | |
| 1096 | /** |
| 1097 | @brief Append a @c float to the @ref UsefulOutBuf |
| 1098 | |
| 1099 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 1100 | @param[in] f @c float to append. |
| 1101 | |
| 1102 | See UsefulOutBuf_InsertFloat() for details. This does the same |
| 1103 | with the insertion point at the end of the valid data. |
| 1104 | |
| 1105 | The float will be appended in network byte order (big endian). |
| 1106 | */ |
| 1107 | static inline void UsefulOutBuf_AppendFloat(UsefulOutBuf *pUOutBuf, |
| 1108 | float f); |
| 1109 | |
| 1110 | |
| 1111 | /** |
| 1112 | @brief Append a @c double to the @ref UsefulOutBuf |
| 1113 | |
| 1114 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 1115 | @param[in] d @c double to append. |
| 1116 | |
| 1117 | See UsefulOutBuf_InsertDouble() for details. This does the same |
| 1118 | with the insertion point at the end of the valid data. |
| 1119 | |
| 1120 | The double will be appended in network byte order (big endian). |
| 1121 | */ |
| 1122 | static inline void UsefulOutBuf_AppendDouble(UsefulOutBuf *pUOutBuf, |
| 1123 | double d); |
| 1124 | |
| 1125 | |
| 1126 | /** |
| 1127 | @brief Returns the current error status. |
| 1128 | |
| 1129 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 1130 | |
| 1131 | @return 0 if all OK, 1 on error. |
| 1132 | |
| 1133 | This is the error status since the call to either |
| 1134 | UsefulOutBuf_Reset() of UsefulOutBuf_Init(). Once it goes into error |
| 1135 | state it will stay until one of those functions is called. |
| 1136 | |
| 1137 | Possible error conditions are: |
| 1138 | - bytes to be inserted will not fit |
| 1139 | - insertion point is out of buffer or past valid data |
| 1140 | - current position is off end of buffer (probably corrupted or uninitialized) |
| 1141 | - detect corruption / uninitialized by bad magic number |
| 1142 | */ |
| 1143 | static inline int UsefulOutBuf_GetError(UsefulOutBuf *pUOutBuf); |
| 1144 | |
| 1145 | |
| 1146 | /** |
| 1147 | @brief Returns number of bytes unused used in the output buffer. |
| 1148 | |
| 1149 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 1150 | |
| 1151 | @return Number of unused bytes or zero. |
| 1152 | |
| 1153 | Because of the error handling strategy and checks in |
| 1154 | UsefulOutBuf_InsertUsefulBuf() it is usually not necessary to use |
| 1155 | this. |
| 1156 | */ |
| 1157 | static inline size_t UsefulOutBuf_RoomLeft(UsefulOutBuf *pUOutBuf); |
| 1158 | |
| 1159 | |
| 1160 | /** |
| 1161 | @brief Returns 1 if some number of bytes will fit in the @ref UsefulOutBuf. |
| 1162 | |
| 1163 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf |
| 1164 | @param[in] uLen Number of bytes for which to check |
| 1165 | |
| 1166 | @return 1 if @c uLen bytes will fit, 0 if not. |
| 1167 | |
| 1168 | Because of the error handling strategy and checks in |
| 1169 | UsefulOutBuf_InsertUsefulBuf() it is usually not necessary to use |
| 1170 | this. |
| 1171 | */ |
| 1172 | static inline int UsefulOutBuf_WillItFit(UsefulOutBuf *pUOutBuf, size_t uLen); |
| 1173 | |
| 1174 | |
| 1175 | /** |
| 1176 | @brief Returns 1 if buffer given to UsefulOutBuf_Init() was @c NULL. |
| 1177 | |
| 1178 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf |
| 1179 | |
| 1180 | @return 1 if buffer given to UsefulOutBuf_Init() was @c NULL. |
| 1181 | |
| 1182 | Giving a @c NULL output buffer to UsefulOutBuf_Init() is used |
| 1183 | when just calculating the length of the encoded data. |
| 1184 | */ |
| 1185 | static inline int UsefulOutBuf_IsBufferNULL(UsefulOutBuf *pUOutBuf); |
| 1186 | |
| 1187 | |
| 1188 | /** |
| 1189 | @brief Returns the resulting valid data in a UsefulOutBuf |
| 1190 | |
| 1191 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 1192 | |
| 1193 | @return The valid data in @ref UsefulOutBuf or |
| 1194 | @ref NULLUsefulBufC if there was an error adding data. |
| 1195 | |
| 1196 | The storage for the returned data is the @c Storage parameter passed |
| 1197 | to UsefulOutBuf_Init(). See also UsefulOutBuf_CopyOut(). |
| 1198 | |
| 1199 | This can be called anytime and many times to get intermediate |
| 1200 | results. It doesn't change the data or reset the current position |
| 1201 | so you can keep adding data. |
| 1202 | */ |
| 1203 | UsefulBufC UsefulOutBuf_OutUBuf(UsefulOutBuf *pUOutBuf); |
| 1204 | |
| 1205 | |
| 1206 | /** |
| 1207 | @brief Copies the valid data into a supplied buffer |
| 1208 | |
| 1209 | @param[in] pUOutBuf Pointer to the @ref UsefulOutBuf. |
| 1210 | @param[out] Dest The destination buffer to copy into. |
| 1211 | |
| 1212 | @return Pointer and length of copied data or @c NULLUsefulBufC |
| 1213 | if it will not fit in the @c Dest buffer. |
| 1214 | |
| 1215 | This is the same as UsefulOutBuf_OutUBuf() except it copies the data |
| 1216 | to @c Dest. |
| 1217 | */ |
| 1218 | UsefulBufC UsefulOutBuf_CopyOut(UsefulOutBuf *pUOutBuf, UsefulBuf Dest); |
| 1219 | |
| 1220 | |
| 1221 | |
| 1222 | |
| 1223 | /** |
| 1224 | @ref UsefulInputBuf is the counterpart to @ref UsefulOutBuf and is |
| 1225 | for parsing data read or received. Initialize it with the data from |
| 1226 | the network. Then use the functions here to get data chunks of |
| 1227 | various types. A position cursor is maintained internally. |
| 1228 | |
| 1229 | As long as the functions here are used, there will never be a |
| 1230 | reference off the end of the given buffer. This is true even if they |
| 1231 | care called incorrectly, an attempt is made to seek of the end of the |
| 1232 | buffer, etc. This makes it easier to write safe and correct code. |
| 1233 | For example, the QCBOR decoder implementation is safer and easier to |
| 1234 | review through its use of @ref UsefulInputBuf. |
| 1235 | |
| 1236 | @ref UsefulInputBuf maintains an internal error state. The |
| 1237 | intended use is that data chunks can be fetched without error |
| 1238 | checking until the end. Once data has been requested off the end of |
| 1239 | the buffer, the error state is entered. In the error state the |
| 1240 | @c UsefulInputBuf_GetXxxx() functions return 0, or @c NULL or |
| 1241 | @ref NULLUsefulBufC. As long as null are not dereferenced, the |
| 1242 | error check can be put off until the end, simplifying the calling |
| 1243 | code. |
| 1244 | |
| 1245 | The integer and float parsing expects network byte order (big |
| 1246 | endian). Network byte order is what is used by TCP/IP, CBOR and most |
| 1247 | internet protocols. |
| 1248 | |
| 1249 | Lots of inline functions are used to keep code size down. The code |
| 1250 | optimizer, particularly with the @c -Os or @c -O3, also reduces code |
| 1251 | size a lot. The only non-inline code is UsefulInputBuf_GetBytes() |
| 1252 | which is less than 100 bytes so use of @ref UsefulInputBuf doesn't |
| 1253 | add much code for all the messy hard-to-get right issues with parsing |
| 1254 | in C that is solves. |
| 1255 | |
| 1256 | The parse context size is: |
| 1257 | - 64-bit machine: 16 + 8 + 2 + 1 (5 bytes padding to align) = 32 bytes |
| 1258 | - 32-bit machine: 8 + 4 + 2 + 1 (1 byte padding to align) = 16 bytes |
| 1259 | */ |
| 1260 | typedef struct useful_input_buf { |
| 1261 | // PRIVATE DATA STRUCTURE |
| 1262 | UsefulBufC UB; // Data being parsed |
| 1263 | size_t cursor; // Current offset in data being parse |
| 1264 | uint16_t magic; // Check for corrupted or uninitialized UsefulInputBuf |
| 1265 | uint8_t err; // Set request goes off end or magic number is bad |
| 1266 | } UsefulInputBuf; |
| 1267 | |
| 1268 | #define UIB_MAGIC (0xB00F) |
| 1269 | |
| 1270 | |
| 1271 | /** |
| 1272 | @brief Initialize the UsefulInputBuf structure before use. |
| 1273 | |
| 1274 | @param[in] pUInBuf Pointer to the UsefulInputBuf instance. |
| 1275 | @param[in] UB The data to parse. |
| 1276 | */ |
| 1277 | static inline void UsefulInputBuf_Init(UsefulInputBuf *pUInBuf, UsefulBufC UB); |
| 1278 | |
| 1279 | |
| 1280 | /** |
| 1281 | @brief Returns current position in input buffer. |
| 1282 | |
| 1283 | @param[in] pUInBuf Pointer to the UsefulInputBuf. |
| 1284 | |
| 1285 | @return Integer position of the cursor. |
| 1286 | |
| 1287 | The position that the next bytes will be returned from. |
| 1288 | */ |
| 1289 | static size_t UsefulInputBuf_Tell(UsefulInputBuf *pUInBuf); |
| 1290 | |
| 1291 | |
| 1292 | /** |
| 1293 | @brief Sets the current position in input buffer. |
| 1294 | |
| 1295 | @param[in] pUInBuf Pointer to the UsefulInputBuf. |
| 1296 | @param[in] uPos Position to set to. |
| 1297 | |
| 1298 | If the position is off the end of the input buffer, the error state |
| 1299 | is entered, and all functions will do nothing. |
| 1300 | |
| 1301 | Seeking to a valid position in the buffer will not reset the error |
| 1302 | state. Only re initialization will do that. |
| 1303 | */ |
| 1304 | static void UsefulInputBuf_Seek(UsefulInputBuf *pUInBuf, size_t uPos); |
| 1305 | |
| 1306 | |
| 1307 | /** |
| 1308 | @brief Returns the number of bytes from the cursor to the end of the buffer, |
| 1309 | the unconsumed bytes. |
| 1310 | |
| 1311 | @param[in] pUInBuf Pointer to the UsefulInputBuf. |
| 1312 | |
| 1313 | @return Number of bytes unconsumed or 0 on error. |
| 1314 | |
| 1315 | This is a critical function for input length validation. |
| 1316 | |
| 1317 | Returns 0 if the cursor it invalid or corruption of the structure is |
| 1318 | detected. |
| 1319 | */ |
| 1320 | static size_t UsefulInputBuf_BytesUnconsumed(UsefulInputBuf *pUInBuf); |
| 1321 | |
| 1322 | |
| 1323 | /** |
| 1324 | @brief Check if there are any unconsumed bytes. |
| 1325 | |
| 1326 | @param[in] pUInBuf Pointer to the UsefulInputBuf. |
| 1327 | @param[in] uLen Number of bytes to check availability for. |
| 1328 | |
| 1329 | @return 1 if @c uLen bytes are available after the cursor, and 0 if not. |
| 1330 | */ |
| 1331 | static int UsefulInputBuf_BytesAvailable(UsefulInputBuf *pUInBuf, size_t uLen); |
| 1332 | |
| 1333 | |
| 1334 | /** |
| 1335 | @brief Get pointer to bytes out of the input buffer. |
| 1336 | |
| 1337 | @param[in] pUInBuf Pointer to the UsefulInputBuf. |
| 1338 | @param[in] uNum Number of bytes to get. |
| 1339 | |
| 1340 | @return Pointer to bytes. |
| 1341 | |
| 1342 | This consumes @c uNum bytes from the input buffer. It returns a |
| 1343 | pointer to the start of the @c uNum bytes. |
| 1344 | |
| 1345 | If there are not @c uNum bytes in the input buffer, @c NULL will be |
| 1346 | returned and an error will be set. |
| 1347 | |
| 1348 | It advances the current position by @c uNum bytes. |
| 1349 | */ |
| 1350 | const void * UsefulInputBuf_GetBytes(UsefulInputBuf *pUInBuf, size_t uNum); |
| 1351 | |
| 1352 | |
| 1353 | /** |
| 1354 | @brief Get @ref UsefulBuf out of the input buffer. |
| 1355 | |
| 1356 | @param[in] pUInBuf Pointer to the UsefulInputBuf. |
| 1357 | @param[in] uNum Number of bytes to get. |
| 1358 | |
| 1359 | @return A @ref UsefulBufC with ptr and length of bytes consumed. |
| 1360 | |
| 1361 | This consumes @c uNum bytes from the input buffer and returns the |
| 1362 | pointer and length for them as a @ref UsefulBufC. The length returned |
| 1363 | will always be @c uNum. |
| 1364 | |
| 1365 | If there are not @c uNum bytes in the input buffer, @ref NULLUsefulBufC |
| 1366 | will be returned and the error state is set. |
| 1367 | |
| 1368 | It advances the current position by @c uNum bytes. |
| 1369 | */ |
| 1370 | static inline UsefulBufC UsefulInputBuf_GetUsefulBuf(UsefulInputBuf *pUInBuf, size_t uNum); |
| 1371 | |
| 1372 | |
| 1373 | /** |
| 1374 | @brief Get a byte out of the input buffer. |
| 1375 | |
| 1376 | @param[in] pUInBuf Pointer to the @ref UsefulInputBuf. |
| 1377 | |
| 1378 | @return The byte. |
| 1379 | |
| 1380 | This consumes 1 byte from the input buffer. It returns the byte. |
| 1381 | |
| 1382 | If there is not 1 byte in the buffer, 0 will be returned for the byte |
| 1383 | and an error set internally. You must check the error at some point |
| 1384 | to know whether the 0 was the real value or just returned in error, |
| 1385 | but you may not have to do that right away. Check the error state |
| 1386 | with UsefulInputBuf_GetError(). You can also know you are in the |
| 1387 | error state if UsefulInputBuf_GetBytes() returns @c NULL or the @c |
| 1388 | ptr from UsefulInputBuf_GetUsefulBuf() is @c NULL. |
| 1389 | |
| 1390 | It advances the current position by 1 byte. |
| 1391 | */ |
| 1392 | static inline uint8_t UsefulInputBuf_GetByte(UsefulInputBuf *pUInBuf); |
| 1393 | |
| 1394 | |
| 1395 | /** |
| 1396 | @brief Get a @c uint16_t out of the input buffer. |
| 1397 | |
| 1398 | @param[in] pUInBuf Pointer to the UsefulInputBuf. |
| 1399 | |
| 1400 | @return The @c uint16_t. |
| 1401 | |
| 1402 | See UsefulInputBuf_GetByte(). This works the same, except it returns |
| 1403 | a @c uint16_t and two bytes are consumed. |
| 1404 | |
| 1405 | The input bytes must be in network order (big endian). |
| 1406 | */ |
| 1407 | static inline uint16_t UsefulInputBuf_GetUint16(UsefulInputBuf *pUInBuf); |
| 1408 | |
| 1409 | |
| 1410 | /** |
| 1411 | @brief Get a uint32_t out of the input buffer. |
| 1412 | |
| 1413 | @param[in] pUInBuf Pointer to the UsefulInputBuf. |
| 1414 | |
| 1415 | @return The @c uint32_t. |
| 1416 | |
| 1417 | See UsefulInputBuf_GetByte(). This works the same, except it returns |
| 1418 | a @c uint32_t and four bytes are consumed. |
| 1419 | |
| 1420 | The input bytes must be in network order (big endian). |
| 1421 | */ |
| 1422 | static uint32_t UsefulInputBuf_GetUint32(UsefulInputBuf *pUInBuf); |
| 1423 | |
| 1424 | |
| 1425 | /** |
| 1426 | @brief Get a uint64_t out of the input buffer. |
| 1427 | |
| 1428 | @param[in] pUInBuf Pointer to the UsefulInputBuf. |
| 1429 | |
| 1430 | @return The uint64_t. |
| 1431 | |
| 1432 | See UsefulInputBuf_GetByte(). This works the same, except it returns |
| 1433 | a @c uint64_t and eight bytes are consumed. |
| 1434 | |
| 1435 | The input bytes must be in network order (big endian). |
| 1436 | */ |
| 1437 | static uint64_t UsefulInputBuf_GetUint64(UsefulInputBuf *pUInBuf); |
| 1438 | |
| 1439 | |
| 1440 | /** |
| 1441 | @brief Get a float out of the input buffer. |
| 1442 | |
| 1443 | @param[in] pUInBuf Pointer to the UsefulInputBuf. |
| 1444 | |
| 1445 | @return The float. |
| 1446 | |
| 1447 | See UsefulInputBuf_GetByte(). This works the same, except it returns |
| 1448 | a float and four bytes are consumed. |
| 1449 | |
| 1450 | The input bytes must be in network order (big endian). |
| 1451 | */ |
| 1452 | static float UsefulInputBuf_GetFloat(UsefulInputBuf *pUInBuf); |
| 1453 | |
| 1454 | |
| 1455 | /** |
| 1456 | @brief Get a double out of the input buffer. |
| 1457 | |
| 1458 | @param[in] pUInBuf Pointer to the UsefulInputBuf. |
| 1459 | |
| 1460 | @return The double. |
| 1461 | |
| 1462 | See UsefulInputBuf_GetByte(). This works the same, except it returns |
| 1463 | a double and eight bytes are consumed. |
| 1464 | |
| 1465 | The input bytes must be in network order (big endian). |
| 1466 | */ |
| 1467 | static double UsefulInputBuf_GetDouble(UsefulInputBuf *pUInBuf); |
| 1468 | |
| 1469 | |
| 1470 | /** |
| 1471 | @brief Get the error status. |
| 1472 | |
| 1473 | @param[in] pUInBuf Pointer to the @ref UsefulInputBuf. |
| 1474 | |
| 1475 | @return 0 if there is no error, 1 if there is. |
| 1476 | |
| 1477 | The error state is entered for one of these reasons: |
| 1478 | - Attempt to fetch data past the end of the buffer |
| 1479 | - Attempt to seek to a position past the end of the buffer |
| 1480 | - Attempt to get data from an uninitialized or corrupt instance |
| 1481 | of @ref UsefulInputBuf |
| 1482 | |
| 1483 | Once in the error state, it can only be cleared by calling |
| 1484 | UsefulInputBuf_Init(). |
| 1485 | |
| 1486 | You may be able to only check the error state at the end after all |
| 1487 | the UsefulInputBuf_GetXxxx() calls have been made, but if what you |
| 1488 | get later depends on what you get sooner you cannot. For example, |
| 1489 | if you get a length or count of following items you will have to |
| 1490 | check the error. |
| 1491 | */ |
| 1492 | static int UsefulInputBuf_GetError(UsefulInputBuf *pUInBuf); |
| 1493 | |
| 1494 | |
Laurence Lundblade | 24d509a | 2020-06-06 18:43:15 -0700 | [diff] [blame] | 1495 | /** |
| 1496 | @brief Sets the input buffer length (use with caution) |
| 1497 | |
| 1498 | @param[in] pUInBuf Pointer to the @ref UsefulInputBuf. |
| 1499 | |
| 1500 | This changes the internal remembered length of the input buffer |
| 1501 | set when UsefulInputBuf_Init() was called. It is used by QCBOR |
| 1502 | to handle CBOR that is wrapped and embedded in CBOR. |
| 1503 | |
| 1504 | Since this allows setting the length beyond the length of the |
| 1505 | original input buffer it allows the overall safety to |
| 1506 | be undermined. |
| 1507 | |
| 1508 | The new length given here should always be equal to or less than |
| 1509 | the length given when UsefulInputBuf_Init() was called. |
| 1510 | |
| 1511 | */ |
| 1512 | static void UsefulInputBuf_SetBufferLen(UsefulInputBuf *pUInBuf, size_t uNewLen); |
Michael Eckel | 5c53133 | 2020-03-02 01:35:30 +0100 | [diff] [blame] | 1513 | |
| 1514 | |
| 1515 | /*---------------------------------------------------------- |
| 1516 | Inline implementations. |
| 1517 | */ |
| 1518 | static inline int UsefulBuf_IsNULL(UsefulBuf UB) |
| 1519 | { |
| 1520 | return !UB.ptr; |
| 1521 | } |
| 1522 | |
| 1523 | |
| 1524 | static inline int UsefulBuf_IsNULLC(UsefulBufC UB) |
| 1525 | { |
| 1526 | return !UB.ptr; |
| 1527 | } |
| 1528 | |
| 1529 | |
| 1530 | static inline int UsefulBuf_IsEmpty(UsefulBuf UB) |
| 1531 | { |
| 1532 | return !UB.len; |
| 1533 | } |
| 1534 | |
| 1535 | |
| 1536 | static inline int UsefulBuf_IsEmptyC(UsefulBufC UB) |
| 1537 | { |
| 1538 | return !UB.len; |
| 1539 | } |
| 1540 | |
| 1541 | |
| 1542 | static inline int UsefulBuf_IsNULLOrEmpty(UsefulBuf UB) |
| 1543 | { |
| 1544 | return UsefulBuf_IsEmpty(UB) || UsefulBuf_IsNULL(UB); |
| 1545 | } |
| 1546 | |
| 1547 | |
| 1548 | static inline int UsefulBuf_IsNULLOrEmptyC(UsefulBufC UB) |
| 1549 | { |
| 1550 | return UsefulBuf_IsEmptyC(UB) || UsefulBuf_IsNULLC(UB); |
| 1551 | } |
| 1552 | |
| 1553 | |
| 1554 | static inline UsefulBufC UsefulBuf_Const(const UsefulBuf UB) |
| 1555 | { |
| 1556 | return (UsefulBufC){UB.ptr, UB.len}; |
| 1557 | } |
| 1558 | |
| 1559 | |
| 1560 | static inline UsefulBuf UsefulBuf_Unconst(const UsefulBufC UBC) |
| 1561 | { |
| 1562 | return (UsefulBuf){(void *)UBC.ptr, UBC.len}; |
| 1563 | } |
| 1564 | |
| 1565 | |
| 1566 | static inline UsefulBufC UsefulBuf_FromSZ(const char *szString) |
| 1567 | { |
| 1568 | return ((UsefulBufC) {szString, strlen(szString)}); |
| 1569 | } |
| 1570 | |
| 1571 | |
| 1572 | static inline UsefulBufC UsefulBuf_Copy(UsefulBuf Dest, const UsefulBufC Src) |
| 1573 | { |
| 1574 | return UsefulBuf_CopyOffset(Dest, 0, Src); |
| 1575 | } |
| 1576 | |
| 1577 | |
| 1578 | static inline UsefulBufC UsefulBuf_Set(UsefulBuf pDest, uint8_t value) |
| 1579 | { |
| 1580 | memset(pDest.ptr, value, pDest.len); |
| 1581 | return (UsefulBufC){pDest.ptr, pDest.len}; |
| 1582 | } |
| 1583 | |
| 1584 | |
| 1585 | static inline UsefulBufC UsefulBuf_CopyPtr(UsefulBuf Dest, const void *ptr, size_t len) |
| 1586 | { |
| 1587 | return UsefulBuf_Copy(Dest, (UsefulBufC){ptr, len}); |
| 1588 | } |
| 1589 | |
| 1590 | |
| 1591 | static inline UsefulBufC UsefulBuf_Head(UsefulBufC UB, size_t uAmount) |
| 1592 | { |
| 1593 | if(uAmount > UB.len) { |
| 1594 | return NULLUsefulBufC; |
| 1595 | } |
| 1596 | return (UsefulBufC){UB.ptr, uAmount}; |
| 1597 | } |
| 1598 | |
| 1599 | |
| 1600 | static inline UsefulBufC UsefulBuf_Tail(UsefulBufC UB, size_t uAmount) |
| 1601 | { |
| 1602 | UsefulBufC ReturnValue; |
| 1603 | |
| 1604 | if(uAmount > UB.len) { |
| 1605 | ReturnValue = NULLUsefulBufC; |
| 1606 | } else if(UB.ptr == NULL) { |
| 1607 | ReturnValue = (UsefulBufC){NULL, UB.len - uAmount}; |
| 1608 | } else { |
| 1609 | ReturnValue = (UsefulBufC){(uint8_t *)UB.ptr + uAmount, UB.len - uAmount}; |
| 1610 | } |
| 1611 | |
| 1612 | return ReturnValue; |
| 1613 | } |
| 1614 | |
| 1615 | |
| 1616 | |
| 1617 | static inline uint32_t UsefulBufUtil_CopyFloatToUint32(float f) |
| 1618 | { |
| 1619 | uint32_t u32; |
| 1620 | memcpy(&u32, &f, sizeof(uint32_t)); |
| 1621 | return u32; |
| 1622 | } |
| 1623 | |
| 1624 | static inline uint64_t UsefulBufUtil_CopyDoubleToUint64(double d) |
| 1625 | { |
| 1626 | uint64_t u64; |
| 1627 | memcpy(&u64, &d, sizeof(uint64_t)); |
| 1628 | return u64; |
| 1629 | } |
| 1630 | |
| 1631 | static inline double UsefulBufUtil_CopyUint64ToDouble(uint64_t u64) |
| 1632 | { |
| 1633 | double d; |
| 1634 | memcpy(&d, &u64, sizeof(uint64_t)); |
| 1635 | return d; |
| 1636 | } |
| 1637 | |
| 1638 | static inline float UsefulBufUtil_CopyUint32ToFloat(uint32_t u32) |
| 1639 | { |
| 1640 | float f; |
| 1641 | memcpy(&f, &u32, sizeof(uint32_t)); |
| 1642 | return f; |
| 1643 | } |
| 1644 | |
| 1645 | |
| 1646 | |
| 1647 | |
| 1648 | static inline void UsefulOutBuf_Reset(UsefulOutBuf *pMe) |
| 1649 | { |
| 1650 | pMe->data_len = 0; |
| 1651 | pMe->err = 0; |
| 1652 | } |
| 1653 | |
| 1654 | |
| 1655 | static inline size_t UsefulOutBuf_GetEndPosition(UsefulOutBuf *pMe) |
| 1656 | { |
| 1657 | return pMe->data_len; |
| 1658 | } |
| 1659 | |
| 1660 | |
| 1661 | static inline int UsefulOutBuf_AtStart(UsefulOutBuf *pMe) |
| 1662 | { |
| 1663 | return 0 == pMe->data_len; |
| 1664 | } |
| 1665 | |
| 1666 | |
| 1667 | static inline void UsefulOutBuf_InsertData(UsefulOutBuf *pMe, |
| 1668 | const void *pBytes, |
| 1669 | size_t uLen, |
| 1670 | size_t uPos) |
| 1671 | { |
| 1672 | UsefulBufC Data = {pBytes, uLen}; |
| 1673 | UsefulOutBuf_InsertUsefulBuf(pMe, Data, uPos); |
| 1674 | } |
| 1675 | |
| 1676 | |
| 1677 | static inline void UsefulOutBuf_InsertString(UsefulOutBuf *pMe, |
| 1678 | const char *szString, |
| 1679 | size_t uPos) |
| 1680 | { |
| 1681 | UsefulOutBuf_InsertUsefulBuf(pMe, |
| 1682 | (UsefulBufC){szString, strlen(szString)}, |
| 1683 | uPos); |
| 1684 | } |
| 1685 | |
| 1686 | |
| 1687 | static inline void UsefulOutBuf_InsertByte(UsefulOutBuf *me, |
| 1688 | uint8_t byte, |
| 1689 | size_t uPos) |
| 1690 | { |
| 1691 | UsefulOutBuf_InsertData(me, &byte, 1, uPos); |
| 1692 | } |
| 1693 | |
| 1694 | |
| 1695 | static inline void UsefulOutBuf_InsertUint16(UsefulOutBuf *me, |
| 1696 | uint16_t uInteger16, |
| 1697 | size_t uPos) |
| 1698 | { |
| 1699 | // See UsefulOutBuf_InsertUint64() for comments on this code |
| 1700 | |
| 1701 | const void *pBytes; |
| 1702 | |
| 1703 | #if defined(USEFULBUF_CONFIG_BIG_ENDIAN) |
| 1704 | pBytes = &uInteger16; |
| 1705 | |
| 1706 | #elif defined(USEFULBUF_CONFIG_HTON) |
| 1707 | uint16_t uTmp = htons(uInteger16); |
| 1708 | pBytes = &uTmp; |
| 1709 | |
| 1710 | #elif defined(USEFULBUF_CONFIG_LITTLE_ENDIAN) && defined(USEFULBUF_CONFIG_BSWAP) |
| 1711 | uint16_t uTmp = __builtin_bswap16(uInteger16); |
| 1712 | pBytes = &uTmp; |
| 1713 | |
| 1714 | #else |
| 1715 | uint8_t aTmp[2]; |
| 1716 | |
| 1717 | aTmp[0] = (uint8_t)((uInteger16 & 0xff00) >> 8); |
| 1718 | aTmp[1] = (uint8_t)(uInteger16 & 0xff); |
| 1719 | |
| 1720 | pBytes = aTmp; |
| 1721 | #endif |
| 1722 | |
| 1723 | UsefulOutBuf_InsertData(me, pBytes, 2, uPos); |
| 1724 | } |
| 1725 | |
| 1726 | |
| 1727 | static inline void UsefulOutBuf_InsertUint32(UsefulOutBuf *pMe, |
| 1728 | uint32_t uInteger32, |
| 1729 | size_t uPos) |
| 1730 | { |
| 1731 | // See UsefulOutBuf_InsertUint64() for comments on this code |
| 1732 | |
| 1733 | const void *pBytes; |
| 1734 | |
| 1735 | #if defined(USEFULBUF_CONFIG_BIG_ENDIAN) |
| 1736 | pBytes = &uInteger32; |
| 1737 | |
| 1738 | #elif defined(USEFULBUF_CONFIG_HTON) |
| 1739 | uint32_t uTmp = htonl(uInteger32); |
| 1740 | pBytes = &uTmp; |
| 1741 | |
| 1742 | #elif defined(USEFULBUF_CONFIG_LITTLE_ENDIAN) && defined(USEFULBUF_CONFIG_BSWAP) |
| 1743 | uint32_t uTmp = __builtin_bswap32(uInteger32); |
| 1744 | |
| 1745 | pBytes = &uTmp; |
| 1746 | |
| 1747 | #else |
| 1748 | uint8_t aTmp[4]; |
| 1749 | |
| 1750 | aTmp[0] = (uint8_t)((uInteger32 & 0xff000000) >> 24); |
| 1751 | aTmp[1] = (uint8_t)((uInteger32 & 0xff0000) >> 16); |
| 1752 | aTmp[2] = (uint8_t)((uInteger32 & 0xff00) >> 8); |
| 1753 | aTmp[3] = (uint8_t)(uInteger32 & 0xff); |
| 1754 | |
| 1755 | pBytes = aTmp; |
| 1756 | #endif |
| 1757 | |
| 1758 | UsefulOutBuf_InsertData(pMe, pBytes, 4, uPos); |
| 1759 | } |
| 1760 | |
| 1761 | static inline void UsefulOutBuf_InsertUint64(UsefulOutBuf *pMe, |
| 1762 | uint64_t uInteger64, |
| 1763 | size_t uPos) |
| 1764 | { |
| 1765 | const void *pBytes; |
| 1766 | |
| 1767 | #if defined(USEFULBUF_CONFIG_BIG_ENDIAN) |
| 1768 | // We have been told explicitly we are running on a big-endian |
| 1769 | // machine. Network byte order is big endian, so just copy. There |
| 1770 | // is no issue with alignment here because uInter64 is always |
| 1771 | // aligned (and it doesn't matter if pBytes is aligned). |
| 1772 | pBytes = &uInteger64; |
| 1773 | |
| 1774 | #elif defined(USEFULBUF_CONFIG_HTON) |
| 1775 | // Use system function to handle big- and little-endian. This works |
| 1776 | // on both big- and little-endian machines, but hton() is not |
| 1777 | // always available or in a standard place so it is not used by |
| 1778 | // default. With some compilers and CPUs the code for this is very |
| 1779 | // compact through use of a special swap instruction and on |
| 1780 | // big-endian machines hton() will reduce to nothing. |
| 1781 | uint64_t uTmp = htonll(uInteger64); |
| 1782 | |
| 1783 | pBytes = &uTmp; |
| 1784 | |
| 1785 | #elif defined(USEFULBUF_CONFIG_LITTLE_ENDIAN) && defined(USEFULBUF_CONFIG_BSWAP) |
| 1786 | // Use built-in function for byte swapping. This usually compiles |
| 1787 | // to an efficient special byte swap instruction. Unlike hton() it |
| 1788 | // does not do this conditionally on the CPU endianness, so this |
| 1789 | // code is also conditional on USEFULBUF_CONFIG_LITTLE_ENDIAN |
| 1790 | uint64_t uTmp = __builtin_bswap64(uInteger64); |
| 1791 | |
| 1792 | pBytes = &uTmp; |
| 1793 | |
| 1794 | #else |
| 1795 | // Default which works on every CPU with no dependency on anything |
| 1796 | // from the CPU, compiler, libraries or OS. This always works, but |
| 1797 | // it is usually a little larger and slower than hton(). |
| 1798 | uint8_t aTmp[8]; |
| 1799 | |
| 1800 | aTmp[0] = (uint8_t)((uInteger64 & 0xff00000000000000) >> 56); |
| 1801 | aTmp[1] = (uint8_t)((uInteger64 & 0xff000000000000) >> 48); |
| 1802 | aTmp[2] = (uint8_t)((uInteger64 & 0xff0000000000) >> 40); |
| 1803 | aTmp[3] = (uint8_t)((uInteger64 & 0xff00000000) >> 32); |
| 1804 | aTmp[4] = (uint8_t)((uInteger64 & 0xff000000) >> 24); |
| 1805 | aTmp[5] = (uint8_t)((uInteger64 & 0xff0000) >> 16); |
| 1806 | aTmp[6] = (uint8_t)((uInteger64 & 0xff00) >> 8); |
| 1807 | aTmp[7] = (uint8_t)(uInteger64 & 0xff); |
| 1808 | |
| 1809 | pBytes = aTmp; |
| 1810 | #endif |
| 1811 | |
| 1812 | // Do the insert |
| 1813 | UsefulOutBuf_InsertData(pMe, pBytes, sizeof(uint64_t), uPos); |
| 1814 | } |
| 1815 | |
| 1816 | |
| 1817 | static inline void UsefulOutBuf_InsertFloat(UsefulOutBuf *pMe, |
| 1818 | float f, |
| 1819 | size_t uPos) |
| 1820 | { |
| 1821 | UsefulOutBuf_InsertUint32(pMe, UsefulBufUtil_CopyFloatToUint32(f), uPos); |
| 1822 | } |
| 1823 | |
| 1824 | |
| 1825 | static inline void UsefulOutBuf_InsertDouble(UsefulOutBuf *pMe, |
| 1826 | double d, |
| 1827 | size_t uPos) |
| 1828 | { |
| 1829 | UsefulOutBuf_InsertUint64(pMe, UsefulBufUtil_CopyDoubleToUint64(d), uPos); |
| 1830 | } |
| 1831 | |
| 1832 | |
| 1833 | static inline void UsefulOutBuf_AppendUsefulBuf(UsefulOutBuf *pMe, |
| 1834 | UsefulBufC NewData) |
| 1835 | { |
| 1836 | // An append is just a insert at the end |
| 1837 | UsefulOutBuf_InsertUsefulBuf(pMe, NewData, UsefulOutBuf_GetEndPosition(pMe)); |
| 1838 | } |
| 1839 | |
| 1840 | |
| 1841 | static inline void UsefulOutBuf_AppendData(UsefulOutBuf *pMe, |
| 1842 | const void *pBytes, |
| 1843 | size_t uLen) |
| 1844 | { |
| 1845 | UsefulBufC Data = {pBytes, uLen}; |
| 1846 | UsefulOutBuf_AppendUsefulBuf(pMe, Data); |
| 1847 | } |
| 1848 | |
| 1849 | |
| 1850 | static inline void UsefulOutBuf_AppendString(UsefulOutBuf *pMe, |
| 1851 | const char *szString) |
| 1852 | { |
| 1853 | UsefulOutBuf_AppendUsefulBuf(pMe, (UsefulBufC){szString, strlen(szString)}); |
| 1854 | } |
| 1855 | |
| 1856 | |
| 1857 | static inline void UsefulOutBuf_AppendByte(UsefulOutBuf *pMe, |
| 1858 | uint8_t byte) |
| 1859 | { |
| 1860 | UsefulOutBuf_AppendData(pMe, &byte, 1); |
| 1861 | } |
| 1862 | |
| 1863 | |
| 1864 | static inline void UsefulOutBuf_AppendUint16(UsefulOutBuf *pMe, |
| 1865 | uint16_t uInteger16) |
| 1866 | { |
| 1867 | UsefulOutBuf_InsertUint16(pMe, uInteger16, UsefulOutBuf_GetEndPosition(pMe)); |
| 1868 | } |
| 1869 | |
| 1870 | static inline void UsefulOutBuf_AppendUint32(UsefulOutBuf *pMe, |
| 1871 | uint32_t uInteger32) |
| 1872 | { |
| 1873 | UsefulOutBuf_InsertUint32(pMe, uInteger32, UsefulOutBuf_GetEndPosition(pMe)); |
| 1874 | } |
| 1875 | |
| 1876 | |
| 1877 | static inline void UsefulOutBuf_AppendUint64(UsefulOutBuf *pMe, |
| 1878 | uint64_t uInteger64) |
| 1879 | { |
| 1880 | UsefulOutBuf_InsertUint64(pMe, uInteger64, UsefulOutBuf_GetEndPosition(pMe)); |
| 1881 | } |
| 1882 | |
| 1883 | |
| 1884 | static inline void UsefulOutBuf_AppendFloat(UsefulOutBuf *pMe, |
| 1885 | float f) |
| 1886 | { |
| 1887 | UsefulOutBuf_InsertFloat(pMe, f, UsefulOutBuf_GetEndPosition(pMe)); |
| 1888 | } |
| 1889 | |
| 1890 | |
| 1891 | static inline void UsefulOutBuf_AppendDouble(UsefulOutBuf *pMe, |
| 1892 | double d) |
| 1893 | { |
| 1894 | UsefulOutBuf_InsertDouble(pMe, d, UsefulOutBuf_GetEndPosition(pMe)); |
| 1895 | } |
| 1896 | |
| 1897 | |
| 1898 | static inline int UsefulOutBuf_GetError(UsefulOutBuf *pMe) |
| 1899 | { |
| 1900 | return pMe->err; |
| 1901 | } |
| 1902 | |
| 1903 | |
| 1904 | static inline size_t UsefulOutBuf_RoomLeft(UsefulOutBuf *pMe) |
| 1905 | { |
| 1906 | return pMe->UB.len - pMe->data_len; |
| 1907 | } |
| 1908 | |
| 1909 | |
| 1910 | static inline int UsefulOutBuf_WillItFit(UsefulOutBuf *pMe, size_t uLen) |
| 1911 | { |
| 1912 | return uLen <= UsefulOutBuf_RoomLeft(pMe); |
| 1913 | } |
| 1914 | |
| 1915 | |
| 1916 | static inline int UsefulOutBuf_IsBufferNULL(UsefulOutBuf *pMe) |
| 1917 | { |
| 1918 | return pMe->UB.ptr == NULL; |
| 1919 | } |
| 1920 | |
| 1921 | |
| 1922 | |
| 1923 | static inline void UsefulInputBuf_Init(UsefulInputBuf *pMe, UsefulBufC UB) |
| 1924 | { |
| 1925 | pMe->cursor = 0; |
| 1926 | pMe->err = 0; |
| 1927 | pMe->magic = UIB_MAGIC; |
| 1928 | pMe->UB = UB; |
| 1929 | } |
| 1930 | |
| 1931 | static inline size_t UsefulInputBuf_Tell(UsefulInputBuf *pMe) |
| 1932 | { |
| 1933 | return pMe->cursor; |
| 1934 | } |
| 1935 | |
| 1936 | |
Laurence Lundblade | 0750fc4 | 2020-06-20 21:02:34 -0700 | [diff] [blame] | 1937 | static inline size_t UsefulInputBuf_GetLength(UsefulInputBuf *pMe) |
| 1938 | { |
| 1939 | return pMe->UB.len; |
| 1940 | } |
| 1941 | |
| 1942 | |
Michael Eckel | 5c53133 | 2020-03-02 01:35:30 +0100 | [diff] [blame] | 1943 | static inline void UsefulInputBuf_Seek(UsefulInputBuf *pMe, size_t uPos) |
| 1944 | { |
| 1945 | if(uPos > pMe->UB.len) { |
| 1946 | pMe->err = 1; |
| 1947 | } else { |
| 1948 | pMe->cursor = uPos; |
| 1949 | } |
| 1950 | } |
| 1951 | |
| 1952 | |
| 1953 | static inline size_t UsefulInputBuf_BytesUnconsumed(UsefulInputBuf *pMe) |
| 1954 | { |
| 1955 | // Code Reviewers: THIS FUNCTION DOES POINTER MATH |
| 1956 | |
| 1957 | // Magic number is messed up. Either the structure got overwritten |
| 1958 | // or was never initialized. |
| 1959 | if(pMe->magic != UIB_MAGIC) { |
| 1960 | return 0; |
| 1961 | } |
| 1962 | |
| 1963 | // The cursor is off the end of the input buffer given. |
| 1964 | // Presuming there are no bugs in this code, this should never happen. |
| 1965 | // If it so, the struct was corrupted. The check is retained as |
| 1966 | // as a defense in case there is a bug in this code or the struct is |
| 1967 | // corrupted. |
| 1968 | if(pMe->cursor > pMe->UB.len) { |
| 1969 | return 0; |
| 1970 | } |
| 1971 | |
Laurence Lundblade | bfbf494 | 2020-09-16 23:31:00 -0700 | [diff] [blame] | 1972 | // subtraction can't go negative because of check above |
Michael Eckel | 5c53133 | 2020-03-02 01:35:30 +0100 | [diff] [blame] | 1973 | return pMe->UB.len - pMe->cursor; |
| 1974 | } |
| 1975 | |
| 1976 | |
| 1977 | static inline int UsefulInputBuf_BytesAvailable(UsefulInputBuf *pMe, size_t uLen) |
| 1978 | { |
| 1979 | return UsefulInputBuf_BytesUnconsumed(pMe) >= uLen ? 1 : 0; |
| 1980 | } |
| 1981 | |
| 1982 | |
| 1983 | static inline UsefulBufC UsefulInputBuf_GetUsefulBuf(UsefulInputBuf *pMe, size_t uNum) |
| 1984 | { |
| 1985 | const void *pResult = UsefulInputBuf_GetBytes(pMe, uNum); |
| 1986 | if(!pResult) { |
| 1987 | return NULLUsefulBufC; |
| 1988 | } else { |
| 1989 | return (UsefulBufC){pResult, uNum}; |
| 1990 | } |
| 1991 | } |
| 1992 | |
| 1993 | |
| 1994 | static inline uint8_t UsefulInputBuf_GetByte(UsefulInputBuf *pMe) |
| 1995 | { |
| 1996 | const void *pResult = UsefulInputBuf_GetBytes(pMe, sizeof(uint8_t)); |
| 1997 | |
| 1998 | // The ternery operator is subject to integer promotion, because the |
| 1999 | // operands are smaller than int, so cast back to uint8_t is needed |
| 2000 | // to be completely explicit about types (for static analyzers) |
| 2001 | return (uint8_t)(pResult ? *(uint8_t *)pResult : 0); |
| 2002 | } |
| 2003 | |
| 2004 | static inline uint16_t UsefulInputBuf_GetUint16(UsefulInputBuf *pMe) |
| 2005 | { |
| 2006 | const uint8_t *pResult = (const uint8_t *)UsefulInputBuf_GetBytes(pMe, sizeof(uint16_t)); |
| 2007 | |
| 2008 | if(!pResult) { |
| 2009 | return 0; |
| 2010 | } |
| 2011 | |
| 2012 | // See UsefulInputBuf_GetUint64() for comments on this code |
| 2013 | #if defined(USEFULBUF_CONFIG_BIG_ENDIAN) || defined(USEFULBUF_CONFIG_HTON) || defined(USEFULBUF_CONFIG_BSWAP) |
| 2014 | uint16_t uTmp; |
| 2015 | memcpy(&uTmp, pResult, sizeof(uint16_t)); |
| 2016 | |
| 2017 | #if defined(USEFULBUF_CONFIG_BIG_ENDIAN) |
| 2018 | return uTmp; |
| 2019 | |
| 2020 | #elif defined(USEFULBUF_CONFIG_HTON) |
| 2021 | return ntohs(uTmp); |
| 2022 | |
| 2023 | #else |
| 2024 | return __builtin_bswap16(uTmp); |
| 2025 | |
| 2026 | #endif |
| 2027 | |
| 2028 | #else |
| 2029 | |
| 2030 | // The operations here are subject to integer promotion because the |
| 2031 | // operands are smaller than int. They will be promoted to unsigned |
| 2032 | // int for the shift and addition. The cast back to uint16_t is is needed |
| 2033 | // to be completely explicit about types (for static analyzers) |
| 2034 | return (uint16_t)((pResult[0] << 8) + pResult[1]); |
| 2035 | |
| 2036 | #endif |
| 2037 | } |
| 2038 | |
| 2039 | |
| 2040 | static inline uint32_t UsefulInputBuf_GetUint32(UsefulInputBuf *pMe) |
| 2041 | { |
| 2042 | const uint8_t *pResult = (const uint8_t *)UsefulInputBuf_GetBytes(pMe, sizeof(uint32_t)); |
| 2043 | |
| 2044 | if(!pResult) { |
| 2045 | return 0; |
| 2046 | } |
| 2047 | |
| 2048 | // See UsefulInputBuf_GetUint64() for comments on this code |
| 2049 | #if defined(USEFULBUF_CONFIG_BIG_ENDIAN) || defined(USEFULBUF_CONFIG_HTON) || defined(USEFULBUF_CONFIG_BSWAP) |
| 2050 | uint32_t uTmp; |
| 2051 | memcpy(&uTmp, pResult, sizeof(uint32_t)); |
| 2052 | |
| 2053 | #if defined(USEFULBUF_CONFIG_BIG_ENDIAN) |
| 2054 | return uTmp; |
| 2055 | |
| 2056 | #elif defined(USEFULBUF_CONFIG_HTON) |
| 2057 | return ntohl(uTmp); |
| 2058 | |
| 2059 | #else |
| 2060 | return __builtin_bswap32(uTmp); |
| 2061 | |
| 2062 | #endif |
| 2063 | |
| 2064 | #else |
| 2065 | return ((uint32_t)pResult[0]<<24) + |
| 2066 | ((uint32_t)pResult[1]<<16) + |
| 2067 | ((uint32_t)pResult[2]<<8) + |
| 2068 | (uint32_t)pResult[3]; |
| 2069 | #endif |
| 2070 | } |
| 2071 | |
| 2072 | |
| 2073 | static inline uint64_t UsefulInputBuf_GetUint64(UsefulInputBuf *pMe) |
| 2074 | { |
| 2075 | const uint8_t *pResult = (const uint8_t *)UsefulInputBuf_GetBytes(pMe, sizeof(uint64_t)); |
| 2076 | |
| 2077 | if(!pResult) { |
| 2078 | return 0; |
| 2079 | } |
| 2080 | |
| 2081 | #if defined(USEFULBUF_CONFIG_BIG_ENDIAN) || defined(USEFULBUF_CONFIG_HTON) || defined(USEFULBUF_CONFIG_BSWAP) |
| 2082 | // pResult will probably not be aligned. This memcpy() moves the |
| 2083 | // bytes into a temp variable safely for CPUs that can or can't do |
| 2084 | // unaligned memory access. Many compilers will optimize the |
| 2085 | // memcpy() into a simple move instruction. |
| 2086 | uint64_t uTmp; |
| 2087 | memcpy(&uTmp, pResult, sizeof(uint64_t)); |
| 2088 | |
| 2089 | #if defined(USEFULBUF_CONFIG_BIG_ENDIAN) |
| 2090 | // We have been told expliclity this is a big-endian CPU. Since |
| 2091 | // network byte order is big-endian, there is nothing to do. |
| 2092 | |
| 2093 | return uTmp; |
| 2094 | |
| 2095 | #elif defined(USEFULBUF_CONFIG_HTON) |
| 2096 | // We have been told to use ntoh(), the system function to handle |
| 2097 | // big- and little-endian. This works on both big- and |
| 2098 | // little-endian machines, but ntoh() is not always available or in |
| 2099 | // a standard place so it is not used by default. On some CPUs the |
| 2100 | // code for this is very compact through use of a special swap |
| 2101 | // instruction. |
| 2102 | |
| 2103 | return ntohll(uTmp); |
| 2104 | |
| 2105 | #else |
| 2106 | // Little-endian (since it is not USEFULBUF_CONFIG_BIG_ENDIAN) and |
| 2107 | // USEFULBUF_CONFIG_BSWAP (since it is not USEFULBUF_CONFIG_HTON). |
| 2108 | // __builtin_bswap64() and friends are not conditional on CPU |
| 2109 | // endianness so this must only be used on little-endian machines. |
| 2110 | |
| 2111 | return __builtin_bswap64(uTmp); |
| 2112 | |
| 2113 | |
| 2114 | #endif |
| 2115 | |
| 2116 | #else |
| 2117 | // This is the default code that works on every CPU and every |
| 2118 | // endianness with no dependency on ntoh(). This works on CPUs |
| 2119 | // that either allow or do not allow unaligned access. It will |
| 2120 | // always work, but usually is a little less efficient than ntoh(). |
| 2121 | |
| 2122 | return ((uint64_t)pResult[0]<<56) + |
| 2123 | ((uint64_t)pResult[1]<<48) + |
| 2124 | ((uint64_t)pResult[2]<<40) + |
| 2125 | ((uint64_t)pResult[3]<<32) + |
| 2126 | ((uint64_t)pResult[4]<<24) + |
| 2127 | ((uint64_t)pResult[5]<<16) + |
| 2128 | ((uint64_t)pResult[6]<<8) + |
| 2129 | (uint64_t)pResult[7]; |
| 2130 | #endif |
| 2131 | } |
| 2132 | |
| 2133 | |
| 2134 | static inline float UsefulInputBuf_GetFloat(UsefulInputBuf *pMe) |
| 2135 | { |
| 2136 | uint32_t uResult = UsefulInputBuf_GetUint32(pMe); |
| 2137 | |
| 2138 | return uResult ? UsefulBufUtil_CopyUint32ToFloat(uResult) : 0; |
| 2139 | } |
| 2140 | |
| 2141 | |
| 2142 | static inline double UsefulInputBuf_GetDouble(UsefulInputBuf *pMe) |
| 2143 | { |
| 2144 | uint64_t uResult = UsefulInputBuf_GetUint64(pMe); |
| 2145 | |
| 2146 | return uResult ? UsefulBufUtil_CopyUint64ToDouble(uResult) : 0; |
| 2147 | } |
| 2148 | |
| 2149 | |
| 2150 | static inline int UsefulInputBuf_GetError(UsefulInputBuf *pMe) |
| 2151 | { |
| 2152 | return pMe->err; |
| 2153 | } |
| 2154 | |
Laurence Lundblade | 24d509a | 2020-06-06 18:43:15 -0700 | [diff] [blame] | 2155 | |
| 2156 | static inline void UsefulInputBuf_SetBufferLen(UsefulInputBuf *pMe, size_t uNewLen) |
| 2157 | { |
| 2158 | pMe->UB.len = uNewLen; |
| 2159 | } |
| 2160 | |
| 2161 | |
Michael Eckel | 5c53133 | 2020-03-02 01:35:30 +0100 | [diff] [blame] | 2162 | #ifdef __cplusplus |
| 2163 | } |
| 2164 | #endif |
| 2165 | |
| 2166 | #endif // _UsefulBuf_h |
| 2167 | |
| 2168 | |