blob: 3a075c40368d2fda43b2c9178a22db57da131a9c [file] [log] [blame]
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +01001/*
2 * Elliptic curves over GF(p)
3 *
Paul Bakkercf4365f2013-01-16 17:00:43 +01004 * Copyright (C) 2006-2013, Brainspark B.V.
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +01005 *
6 * This file is part of PolarSSL (http://www.polarssl.org)
7 * Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
8 *
9 * All rights reserved.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 */
25
26/*
27 * References:
28 *
Manuel Pégourié-Gonnard883f3132012-11-02 09:40:25 +010029 * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +010030 * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +010031 * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
Manuel Pégourié-Gonnard1a967282013-02-09 17:03:58 +010032 * RFC 4492 for the related TLS structures and constants
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +020033 *
34 * [1] OKEYA, Katsuyuki and TAKAGI, Tsuyoshi. The width-w NAF method provides
35 * small memory and fast elliptic scalar multiplications secure against
36 * side channel attacks. In : Topics in Cryptology—CT-RSA 2003. Springer
37 * Berlin Heidelberg, 2003. p. 328-343.
38 * <http://rd.springer.com/chapter/10.1007/3-540-36563-X_23>.
39 *
40 * [2] CORON, Jean-Sébastien. Resistance against differential power analysis
41 * for elliptic curve cryptosystems. In : Cryptographic Hardware and
42 * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
43 * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +010044 */
45
46#include "polarssl/config.h"
47
48#if defined(POLARSSL_ECP_C)
49
50#include "polarssl/ecp.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020051
52#if defined(POLARSSL_MEMORY_C)
53#include "polarssl/memory.h"
54#else
55#define polarssl_malloc malloc
56#define polarssl_free free
57#endif
58
Manuel Pégourié-Gonnard84338242012-11-11 20:45:18 +010059#include <limits.h>
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +010060#include <stdlib.h>
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +010061
Paul Bakker6a6087e2013-10-28 18:53:08 +010062#if defined(_MSC_VER) && !defined(inline)
63#define inline _inline
64#else
65#if defined(__ARMCC_VERSION) && !defined(inline)
66#define inline __inline
67#endif /* __ARMCC_VERSION */
68#endif /*_MSC_VER */
69
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +010070#if defined(POLARSSL_SELF_TEST)
71/*
72 * Counts of point addition and doubling operations.
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +020073 * Used to test resistance of point multiplication to simple timing attacks.
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +010074 */
75unsigned long add_count, dbl_count;
76#endif
77
Manuel Pégourié-Gonnard1e8c8ec2012-10-31 19:24:21 +010078/*
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +020079 * List of supported curves:
80 * - internal ID
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +020081 * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2)
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +020082 * - size in bits
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +020083 * - readable name
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +020084 */
Manuel Pégourié-Gonnarda79d1232013-09-17 15:42:35 +020085const ecp_curve_info ecp_supported_curves[] =
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +020086{
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +020087#if defined(POLARSSL_ECP_DP_BP512R1_ENABLED)
88 { POLARSSL_ECP_DP_BP512R1, 28, 512, "brainpool512r1" },
89#endif
90#if defined(POLARSSL_ECP_DP_BP384R1_ENABLED)
91 { POLARSSL_ECP_DP_BP384R1, 27, 384, "brainpool384r1" },
92#endif
93#if defined(POLARSSL_ECP_DP_BP256R1_ENABLED)
94 { POLARSSL_ECP_DP_BP256R1, 26, 256, "brainpool256r1" },
95#endif
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +020096#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +020097 { POLARSSL_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +020098#endif
99#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +0200100 { POLARSSL_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200101#endif
102#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +0200103 { POLARSSL_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200104#endif
105#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +0200106 { POLARSSL_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200107#endif
108#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +0200109 { POLARSSL_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200110#endif
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +0200111 { POLARSSL_ECP_DP_NONE, 0, 0, NULL },
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200112};
113
114/*
Manuel Pégourié-Gonnardda179e42013-09-18 15:31:24 +0200115 * List of supported curves and associated info
116 */
117const ecp_curve_info *ecp_curve_list( void )
118{
119 return ecp_supported_curves;
120}
121
122/*
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200123 * Get the curve info for the internal identifer
124 */
125const ecp_curve_info *ecp_curve_info_from_grp_id( ecp_group_id grp_id )
126{
127 const ecp_curve_info *curve_info;
128
129 for( curve_info = ecp_curve_list();
130 curve_info->grp_id != POLARSSL_ECP_DP_NONE;
131 curve_info++ )
132 {
133 if( curve_info->grp_id == grp_id )
134 return( curve_info );
135 }
136
137 return( NULL );
138}
139
140/*
141 * Get the curve info from the TLS identifier
142 */
143const ecp_curve_info *ecp_curve_info_from_tls_id( uint16_t tls_id )
144{
145 const ecp_curve_info *curve_info;
146
147 for( curve_info = ecp_curve_list();
148 curve_info->grp_id != POLARSSL_ECP_DP_NONE;
149 curve_info++ )
150 {
151 if( curve_info->tls_id == tls_id )
152 return( curve_info );
153 }
154
155 return( NULL );
156}
157
158/*
Manuel Pégourié-Gonnardb505c272012-11-05 17:27:54 +0100159 * Initialize (the components of) a point
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100160 */
161void ecp_point_init( ecp_point *pt )
162{
163 if( pt == NULL )
164 return;
165
Manuel Pégourié-Gonnardb505c272012-11-05 17:27:54 +0100166 mpi_init( &pt->X );
167 mpi_init( &pt->Y );
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100168 mpi_init( &pt->Z );
Manuel Pégourié-Gonnardb505c272012-11-05 17:27:54 +0100169}
170
171/*
172 * Initialize (the components of) a group
173 */
174void ecp_group_init( ecp_group *grp )
175{
176 if( grp == NULL )
177 return;
178
Manuel Pégourié-Gonnardc9727702013-09-16 18:56:28 +0200179 memset( grp, 0, sizeof( ecp_group ) );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100180}
181
182/*
Manuel Pégourié-Gonnardb8c6e0e2013-07-01 13:40:52 +0200183 * Initialize (the components of) a key pair
184 */
185void ecp_keypair_init( ecp_keypair *key )
186{
187 if ( key == NULL )
188 return;
189
190 ecp_group_init( &key->grp );
191 mpi_init( &key->d );
192 ecp_point_init( &key->Q );
Manuel Pégourié-Gonnardb8c6e0e2013-07-01 13:40:52 +0200193}
194
195/*
Manuel Pégourié-Gonnard1e8c8ec2012-10-31 19:24:21 +0100196 * Unallocate (the components of) a point
197 */
198void ecp_point_free( ecp_point *pt )
199{
200 if( pt == NULL )
201 return;
202
203 mpi_free( &( pt->X ) );
204 mpi_free( &( pt->Y ) );
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100205 mpi_free( &( pt->Z ) );
Manuel Pégourié-Gonnard1e8c8ec2012-10-31 19:24:21 +0100206}
207
208/*
209 * Unallocate (the components of) a group
210 */
211void ecp_group_free( ecp_group *grp )
212{
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +0200213 size_t i;
214
Manuel Pégourié-Gonnard1e8c8ec2012-10-31 19:24:21 +0100215 if( grp == NULL )
216 return;
217
Manuel Pégourié-Gonnard883f3132012-11-02 09:40:25 +0100218 mpi_free( &grp->P );
Manuel Pégourié-Gonnarda070ada2013-10-08 12:04:56 +0200219 mpi_free( &grp->A );
Manuel Pégourié-Gonnard883f3132012-11-02 09:40:25 +0100220 mpi_free( &grp->B );
221 ecp_point_free( &grp->G );
222 mpi_free( &grp->N );
Manuel Pégourié-Gonnardc9727702013-09-16 18:56:28 +0200223
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +0200224 if( grp->T != NULL )
225 {
226 for( i = 0; i < grp->T_size; i++ )
227 ecp_point_free( &grp->T[i] );
228 polarssl_free( grp->T );
229 }
230
Manuel Pégourié-Gonnardc9727702013-09-16 18:56:28 +0200231 memset( grp, 0, sizeof( ecp_group ) );
Manuel Pégourié-Gonnard1e8c8ec2012-10-31 19:24:21 +0100232}
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +0100233
Manuel Pégourié-Gonnard883f3132012-11-02 09:40:25 +0100234/*
Manuel Pégourié-Gonnardb8c6e0e2013-07-01 13:40:52 +0200235 * Unallocate (the components of) a key pair
236 */
237void ecp_keypair_free( ecp_keypair *key )
238{
239 if ( key == NULL )
240 return;
241
242 ecp_group_free( &key->grp );
243 mpi_free( &key->d );
244 ecp_point_free( &key->Q );
Manuel Pégourié-Gonnardb8c6e0e2013-07-01 13:40:52 +0200245}
246
247/*
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200248 * Copy the contents of a point
249 */
250int ecp_copy( ecp_point *P, const ecp_point *Q )
251{
252 int ret;
253
254 MPI_CHK( mpi_copy( &P->X, &Q->X ) );
255 MPI_CHK( mpi_copy( &P->Y, &Q->Y ) );
256 MPI_CHK( mpi_copy( &P->Z, &Q->Z ) );
257
258cleanup:
259 return( ret );
260}
261
262/*
263 * Copy the contents of a group object
264 */
265int ecp_group_copy( ecp_group *dst, const ecp_group *src )
266{
267 return ecp_use_known_dp( dst, src->id );
268}
269
270/*
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100271 * Set point to zero
272 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100273int ecp_set_zero( ecp_point *pt )
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100274{
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100275 int ret;
276
277 MPI_CHK( mpi_lset( &pt->X , 1 ) );
278 MPI_CHK( mpi_lset( &pt->Y , 1 ) );
279 MPI_CHK( mpi_lset( &pt->Z , 0 ) );
280
281cleanup:
282 return( ret );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100283}
284
285/*
Manuel Pégourié-Gonnard6545ca72013-01-26 16:05:22 +0100286 * Tell if a point is zero
287 */
288int ecp_is_zero( ecp_point *pt )
289{
290 return( mpi_cmp_int( &pt->Z, 0 ) == 0 );
291}
292
293/*
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100294 * Import a non-zero point from ASCII strings
295 */
296int ecp_point_read_string( ecp_point *P, int radix,
297 const char *x, const char *y )
298{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100299 int ret;
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100300
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100301 MPI_CHK( mpi_read_string( &P->X, radix, x ) );
302 MPI_CHK( mpi_read_string( &P->Y, radix, y ) );
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100303 MPI_CHK( mpi_lset( &P->Z, 1 ) );
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100304
305cleanup:
306 return( ret );
307}
308
309/*
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100310 * Export a point into unsigned binary data (SEC1 2.3.3)
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100311 */
Manuel Pégourié-Gonnard7e860252013-02-10 10:58:48 +0100312int ecp_point_write_binary( const ecp_group *grp, const ecp_point *P,
Manuel Pégourié-Gonnard420f1eb2013-02-10 12:22:46 +0100313 int format, size_t *olen,
Manuel Pégourié-Gonnard7e860252013-02-10 10:58:48 +0100314 unsigned char *buf, size_t buflen )
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100315{
Paul Bakkera280d0f2013-04-08 13:40:17 +0200316 int ret = 0;
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100317 size_t plen;
318
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100319 if( format != POLARSSL_ECP_PF_UNCOMPRESSED &&
320 format != POLARSSL_ECP_PF_COMPRESSED )
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100321 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100322
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100323 /*
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100324 * Common case: P == 0
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100325 */
326 if( mpi_cmp_int( &P->Z, 0 ) == 0 )
327 {
328 if( buflen < 1 )
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100329 return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100330
331 buf[0] = 0x00;
332 *olen = 1;
333
334 return( 0 );
335 }
336
337 plen = mpi_size( &grp->P );
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100338
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100339 if( format == POLARSSL_ECP_PF_UNCOMPRESSED )
340 {
341 *olen = 2 * plen + 1;
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100342
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100343 if( buflen < *olen )
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100344 return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100345
346 buf[0] = 0x04;
347 MPI_CHK( mpi_write_binary( &P->X, buf + 1, plen ) );
348 MPI_CHK( mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );
349 }
350 else if( format == POLARSSL_ECP_PF_COMPRESSED )
351 {
352 *olen = plen + 1;
353
354 if( buflen < *olen )
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100355 return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100356
357 buf[0] = 0x02 + mpi_get_bit( &P->Y, 0 );
358 MPI_CHK( mpi_write_binary( &P->X, buf + 1, plen ) );
359 }
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100360
361cleanup:
362 return( ret );
363}
364
365/*
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100366 * Import a point from unsigned binary data (SEC1 2.3.4)
367 */
Manuel Pégourié-Gonnard7e860252013-02-10 10:58:48 +0100368int ecp_point_read_binary( const ecp_group *grp, ecp_point *pt,
369 const unsigned char *buf, size_t ilen ) {
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100370 int ret;
371 size_t plen;
372
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100373 if( ilen == 1 && buf[0] == 0x00 )
Manuel Pégourié-Gonnardd84895d2013-02-10 10:53:04 +0100374 return( ecp_set_zero( pt ) );
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100375
Manuel Pégourié-Gonnardd84895d2013-02-10 10:53:04 +0100376 plen = mpi_size( &grp->P );
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100377
378 if( ilen != 2 * plen + 1 || buf[0] != 0x04 )
Manuel Pégourié-Gonnardd84895d2013-02-10 10:53:04 +0100379 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100380
Manuel Pégourié-Gonnardd84895d2013-02-10 10:53:04 +0100381 MPI_CHK( mpi_read_binary( &pt->X, buf + 1, plen ) );
382 MPI_CHK( mpi_read_binary( &pt->Y, buf + 1 + plen, plen ) );
383 MPI_CHK( mpi_lset( &pt->Z, 1 ) );
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100384
385cleanup:
386 return( ret );
387}
388
389/*
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100390 * Import a point from a TLS ECPoint record (RFC 4492)
391 * struct {
392 * opaque point <1..2^8-1>;
393 * } ECPoint;
394 */
395int ecp_tls_read_point( const ecp_group *grp, ecp_point *pt,
Manuel Pégourié-Gonnard98f51812013-02-10 13:38:29 +0100396 const unsigned char **buf, size_t buf_len )
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100397{
398 unsigned char data_len;
Manuel Pégourié-Gonnard98f51812013-02-10 13:38:29 +0100399 const unsigned char *buf_start;
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100400
401 /*
402 * We must have at least two bytes (1 for length, at least of for data)
403 */
404 if( buf_len < 2 )
405 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
406
Manuel Pégourié-Gonnard98f51812013-02-10 13:38:29 +0100407 data_len = *(*buf)++;
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100408 if( data_len < 1 || data_len > buf_len - 1 )
409 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
410
Manuel Pégourié-Gonnard98f51812013-02-10 13:38:29 +0100411 /*
412 * Save buffer start for read_binary and update buf
413 */
414 buf_start = *buf;
415 *buf += data_len;
416
417 return ecp_point_read_binary( grp, pt, buf_start, data_len );
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100418}
419
420/*
421 * Export a point as a TLS ECPoint record (RFC 4492)
422 * struct {
423 * opaque point <1..2^8-1>;
424 * } ECPoint;
425 */
426int ecp_tls_write_point( const ecp_group *grp, const ecp_point *pt,
Manuel Pégourié-Gonnard420f1eb2013-02-10 12:22:46 +0100427 int format, size_t *olen,
428 unsigned char *buf, size_t blen )
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100429{
Manuel Pégourié-Gonnard420f1eb2013-02-10 12:22:46 +0100430 int ret;
431
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100432 /*
Manuel Pégourié-Gonnard420f1eb2013-02-10 12:22:46 +0100433 * buffer length must be at least one, for our length byte
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100434 */
Manuel Pégourié-Gonnard420f1eb2013-02-10 12:22:46 +0100435 if( blen < 1 )
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100436 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
437
Manuel Pégourié-Gonnard420f1eb2013-02-10 12:22:46 +0100438 if( ( ret = ecp_point_write_binary( grp, pt, format,
439 olen, buf + 1, blen - 1) ) != 0 )
440 return( ret );
441
442 /*
443 * write length to the first byte and update total length
444 */
Paul Bakkerb9cfaa02013-10-11 18:58:55 +0200445 buf[0] = (unsigned char) *olen;
Manuel Pégourié-Gonnard420f1eb2013-02-10 12:22:46 +0100446 ++*olen;
447
448 return 0;
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100449}
450
451/*
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200452 * Import an ECP group from ASCII strings, general case (A used)
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100453 */
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200454static int ecp_group_read_string_gen( ecp_group *grp, int radix,
455 const char *p, const char *a, const char *b,
456 const char *gx, const char *gy, const char *n)
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100457{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100458 int ret;
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100459
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200460 MPI_CHK( mpi_read_string( &grp->P, radix, p ) );
461 MPI_CHK( mpi_read_string( &grp->A, radix, a ) );
462 MPI_CHK( mpi_read_string( &grp->B, radix, b ) );
463 MPI_CHK( ecp_point_read_string( &grp->G, radix, gx, gy ) );
464 MPI_CHK( mpi_read_string( &grp->N, radix, n ) );
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100465
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200466 grp->pbits = mpi_msb( &grp->P );
467 grp->nbits = mpi_msb( &grp->N );
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100468
469cleanup:
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200470 if( ret != 0 )
471 ecp_group_free( grp );
472
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100473 return( ret );
474}
475
Manuel Pégourié-Gonnard210b4582013-10-23 14:03:00 +0200476/*
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200477 * Import an ECP group from ASCII strings, case A == -3
Manuel Pégourié-Gonnard210b4582013-10-23 14:03:00 +0200478 */
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200479int ecp_group_read_string( ecp_group *grp, int radix,
480 const char *p, const char *b,
481 const char *gx, const char *gy, const char *n)
Manuel Pégourié-Gonnard84338242012-11-11 20:45:18 +0100482{
483 int ret;
Manuel Pégourié-Gonnard84338242012-11-11 20:45:18 +0100484
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200485 MPI_CHK( ecp_group_read_string_gen( grp, radix, p, "00", b, gx, gy, n ) );
486 MPI_CHK( mpi_add_int( &grp->A, &grp->P, -3 ) );
Manuel Pégourié-Gonnard84338242012-11-11 20:45:18 +0100487
488cleanup:
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200489 if( ret != 0 )
490 ecp_group_free( grp );
Manuel Pégourié-Gonnarde783f062013-10-21 14:52:21 +0200491
492 return( ret );
493}
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200494
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100495/*
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100496 * Domain parameters for secp192r1
497 */
498#define SECP192R1_P \
499 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF"
500#define SECP192R1_B \
501 "64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1"
502#define SECP192R1_GX \
503 "188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012"
504#define SECP192R1_GY \
505 "07192B95FFC8DA78631011ED6B24CDD573F977A11E794811"
506#define SECP192R1_N \
507 "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831"
508
509/*
510 * Domain parameters for secp224r1
511 */
512#define SECP224R1_P \
513 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001"
514#define SECP224R1_B \
515 "B4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4"
516#define SECP224R1_GX \
517 "B70E0CBD6BB4BF7F321390B94A03C1D356C21122343280D6115C1D21"
518#define SECP224R1_GY \
519 "BD376388B5F723FB4C22DFE6CD4375A05A07476444D5819985007E34"
520#define SECP224R1_N \
521 "FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D"
522
523/*
524 * Domain parameters for secp256r1
525 */
526#define SECP256R1_P \
527 "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF"
528#define SECP256R1_B \
529 "5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B"
530#define SECP256R1_GX \
531 "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296"
532#define SECP256R1_GY \
533 "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5"
534#define SECP256R1_N \
535 "FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551"
536
537/*
538 * Domain parameters for secp384r1
539 */
540#define SECP384R1_P \
541 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
542 "FFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF"
543#define SECP384R1_B \
544 "B3312FA7E23EE7E4988E056BE3F82D19181D9C6EFE814112" \
545 "0314088F5013875AC656398D8A2ED19D2A85C8EDD3EC2AEF"
546#define SECP384R1_GX \
547 "AA87CA22BE8B05378EB1C71EF320AD746E1D3B628BA79B98" \
548 "59F741E082542A385502F25DBF55296C3A545E3872760AB7"
549#define SECP384R1_GY \
550 "3617DE4A96262C6F5D9E98BF9292DC29F8F41DBD289A147C" \
551 "E9DA3113B5F0B8C00A60B1CE1D7E819D7A431D7C90EA0E5F"
552#define SECP384R1_N \
553 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
554 "C7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973"
555
556/*
557 * Domain parameters for secp521r1
558 */
559#define SECP521R1_P \
560 "000001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
561 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
562 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
563#define SECP521R1_B \
564 "00000051953EB9618E1C9A1F929A21A0B68540EEA2DA725B" \
565 "99B315F3B8B489918EF109E156193951EC7E937B1652C0BD" \
566 "3BB1BF073573DF883D2C34F1EF451FD46B503F00"
567#define SECP521R1_GX \
568 "000000C6858E06B70404E9CD9E3ECB662395B4429C648139" \
569 "053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127" \
570 "A2FFA8DE3348B3C1856A429BF97E7E31C2E5BD66"
571#define SECP521R1_GY \
572 "0000011839296A789A3BC0045C8A5FB42C7D1BD998F54449" \
573 "579B446817AFBD17273E662C97EE72995EF42640C550B901" \
574 "3FAD0761353C7086A272C24088BE94769FD16650"
575#define SECP521R1_N \
576 "000001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
577 "FFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148" \
578 "F709A5D03BB5C9B8899C47AEBB6FB71E91386409"
579
580/*
Manuel Pégourié-Gonnardcec4a532013-10-07 19:52:27 +0200581 * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
582 */
583#define BP256R1_P \
584 "A9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377"
585#define BP256R1_A \
586 "7D5A0975FC2C3057EEF67530417AFFE7FB8055C126DC5C6CE94A4B44F330B5D9"
587#define BP256R1_B \
588 "26DC5C6CE94A4B44F330B5D9BBD77CBF958416295CF7E1CE6BCCDC18FF8C07B6"
589#define BP256R1_GX \
590 "8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1E3BD23C23A4453BD9ACE3262"
591#define BP256R1_GY \
592 "547EF835C3DAC4FD97F8461A14611DC9C27745132DED8E545C1D54C72F046997"
593#define BP256R1_N \
594 "A9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7"
595
596/*
597 * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
598 */
599#define BP384R1_P \
600 "8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB711" \
601 "23ACD3A729901D1A71874700133107EC53"
602#define BP384R1_A \
603 "7BC382C63D8C150C3C72080ACE05AFA0C2BEA28E4FB22787139165EFBA91F9" \
604 "0F8AA5814A503AD4EB04A8C7DD22CE2826"
605#define BP384R1_B \
606 "04A8C7DD22CE28268B39B55416F0447C2FB77DE107DCD2A62E880EA53EEB62" \
607 "D57CB4390295DBC9943AB78696FA504C11"
608#define BP384R1_GX \
609 "1D1C64F068CF45FFA2A63A81B7C13F6B8847A3E77EF14FE3DB7FCAFE0CBD10" \
610 "E8E826E03436D646AAEF87B2E247D4AF1E"
611#define BP384R1_GY \
612 "8ABE1D7520F9C2A45CB1EB8E95CFD55262B70B29FEEC5864E19C054FF99129" \
613 "280E4646217791811142820341263C5315"
614#define BP384R1_N \
615 "8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B31F166E6CAC0425" \
616 "A7CF3AB6AF6B7FC3103B883202E9046565"
617
618/*
619 * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
620 */
621#define BP512R1_P \
622 "AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308" \
623 "717D4D9B009BC66842AECDA12AE6A380E62881FF2F2D82C68528AA6056583A48F3"
624#define BP512R1_A \
625 "7830A3318B603B89E2327145AC234CC594CBDD8D3DF91610A83441CAEA9863" \
626 "BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CA"
627#define BP512R1_B \
628 "3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117" \
629 "A72BF2C7B9E7C1AC4D77FC94CADC083E67984050B75EBAE5DD2809BD638016F723"
630#define BP512R1_GX \
631 "81AEE4BDD82ED9645A21322E9C4C6A9385ED9F70B5D916C1B43B62EEF4D009" \
632 "8EFF3B1F78E2D0D48D50D1687B93B97D5F7C6D5047406A5E688B352209BCB9F822"
633#define BP512R1_GY \
634 "7DDE385D566332ECC0EABFA9CF7822FDF209F70024A57B1AA000C55B881F81" \
635 "11B2DCDE494A5F485E5BCA4BD88A2763AED1CA2B2FA8F0540678CD1E0F3AD80892"
636#define BP512R1_N \
637 "AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308" \
638 "70553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90069"
639
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200640#if defined(POLARSSL_ECP_NIST_OPTIM)
641/* Forward declarations */
642static int ecp_mod_p192( mpi * );
643static int ecp_mod_p224( mpi * );
644static int ecp_mod_p256( mpi * );
645static int ecp_mod_p384( mpi * );
646static int ecp_mod_p521( mpi * );
647#endif
648
Manuel Pégourié-Gonnardcec4a532013-10-07 19:52:27 +0200649/*
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100650 * Set a group using well-known domain parameters
651 */
Manuel Pégourié-Gonnardb3258872013-02-10 12:06:19 +0100652int ecp_use_known_dp( ecp_group *grp, ecp_group_id id )
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100653{
Manuel Pégourié-Gonnardb3258872013-02-10 12:06:19 +0100654 grp->id = id;
655
656 switch( id )
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100657 {
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200658#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100659 case POLARSSL_ECP_DP_SECP192R1:
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200660#if defined(POLARSSL_ECP_NIST_OPTIM)
Manuel Pégourié-Gonnard84338242012-11-11 20:45:18 +0100661 grp->modp = ecp_mod_p192;
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200662#endif
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100663 return( ecp_group_read_string( grp, 16,
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100664 SECP192R1_P, SECP192R1_B,
665 SECP192R1_GX, SECP192R1_GY, SECP192R1_N ) );
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200666#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100667
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200668#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100669 case POLARSSL_ECP_DP_SECP224R1:
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200670#if defined(POLARSSL_ECP_NIST_OPTIM)
Manuel Pégourié-Gonnarde783f062013-10-21 14:52:21 +0200671 grp->modp = ecp_mod_p224;
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200672#endif
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100673 return( ecp_group_read_string( grp, 16,
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100674 SECP224R1_P, SECP224R1_B,
675 SECP224R1_GX, SECP224R1_GY, SECP224R1_N ) );
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200676#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100677
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200678#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100679 case POLARSSL_ECP_DP_SECP256R1:
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200680#if defined(POLARSSL_ECP_NIST_OPTIM)
Manuel Pégourié-Gonnardec655c92013-10-23 14:50:39 +0200681 grp->modp = ecp_mod_p256;
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200682#endif
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100683 return( ecp_group_read_string( grp, 16,
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100684 SECP256R1_P, SECP256R1_B,
685 SECP256R1_GX, SECP256R1_GY, SECP256R1_N ) );
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200686#endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100687
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200688#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100689 case POLARSSL_ECP_DP_SECP384R1:
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200690#if defined(POLARSSL_ECP_NIST_OPTIM)
Manuel Pégourié-Gonnard0f9149c2013-10-23 15:06:37 +0200691 grp->modp = ecp_mod_p384;
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200692#endif
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100693 return( ecp_group_read_string( grp, 16,
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100694 SECP384R1_P, SECP384R1_B,
695 SECP384R1_GX, SECP384R1_GY, SECP384R1_N ) );
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200696#endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100697
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200698#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100699 case POLARSSL_ECP_DP_SECP521R1:
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200700#if defined(POLARSSL_ECP_NIST_OPTIM)
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100701 grp->modp = ecp_mod_p521;
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200702#endif
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100703 return( ecp_group_read_string( grp, 16,
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100704 SECP521R1_P, SECP521R1_B,
705 SECP521R1_GX, SECP521R1_GY, SECP521R1_N ) );
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200706#endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100707
Manuel Pégourié-Gonnarda070ada2013-10-08 12:04:56 +0200708#if defined(POLARSSL_ECP_DP_BP256R1_ENABLED)
709 case POLARSSL_ECP_DP_BP256R1:
710 return( ecp_group_read_string_gen( grp, 16,
711 BP256R1_P, BP256R1_A, BP256R1_B,
712 BP256R1_GX, BP256R1_GY, BP256R1_N ) );
713#endif /* POLARSSL_ECP_DP_BP256R1_ENABLED */
714
715#if defined(POLARSSL_ECP_DP_BP384R1_ENABLED)
716 case POLARSSL_ECP_DP_BP384R1:
717 return( ecp_group_read_string_gen( grp, 16,
718 BP384R1_P, BP384R1_A, BP384R1_B,
719 BP384R1_GX, BP384R1_GY, BP384R1_N ) );
720#endif /* POLARSSL_ECP_DP_BP384R1_ENABLED */
721
722#if defined(POLARSSL_ECP_DP_BP512R1_ENABLED)
723 case POLARSSL_ECP_DP_BP512R1:
724 return( ecp_group_read_string_gen( grp, 16,
725 BP512R1_P, BP512R1_A, BP512R1_B,
726 BP512R1_GX, BP512R1_GY, BP512R1_N ) );
727#endif /* POLARSSL_ECP_DP_BP512R1_ENABLED */
728
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200729 default:
Manuel Pégourié-Gonnarda070ada2013-10-08 12:04:56 +0200730 ecp_group_free( grp );
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200731 return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
732 }
Manuel Pégourié-Gonnard1a967282013-02-09 17:03:58 +0100733}
734
735/*
736 * Set a group from an ECParameters record (RFC 4492)
737 */
Manuel Pégourié-Gonnard7c145c62013-02-10 13:20:52 +0100738int ecp_tls_read_group( ecp_group *grp, const unsigned char **buf, size_t len )
Manuel Pégourié-Gonnard1a967282013-02-09 17:03:58 +0100739{
Manuel Pégourié-Gonnardf24b4a72013-09-23 18:14:50 +0200740 uint16_t tls_id;
741 const ecp_curve_info *curve_info;
Manuel Pégourié-Gonnard1a967282013-02-09 17:03:58 +0100742
743 /*
744 * We expect at least three bytes (see below)
745 */
746 if( len < 3 )
747 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
748
749 /*
750 * First byte is curve_type; only named_curve is handled
751 */
Manuel Pégourié-Gonnard7c145c62013-02-10 13:20:52 +0100752 if( *(*buf)++ != POLARSSL_ECP_TLS_NAMED_CURVE )
Manuel Pégourié-Gonnard1a967282013-02-09 17:03:58 +0100753 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
754
755 /*
Manuel Pégourié-Gonnardb3258872013-02-10 12:06:19 +0100756 * Next two bytes are the namedcurve value
Manuel Pégourié-Gonnard1a967282013-02-09 17:03:58 +0100757 */
Manuel Pégourié-Gonnardf24b4a72013-09-23 18:14:50 +0200758 tls_id = *(*buf)++;
759 tls_id <<= 8;
760 tls_id |= *(*buf)++;
761
762 if( ( curve_info = ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
763 return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
764
765 return ecp_use_known_dp( grp, curve_info->grp_id );
Manuel Pégourié-Gonnardb3258872013-02-10 12:06:19 +0100766}
767
768/*
769 * Write the ECParameters record corresponding to a group (RFC 4492)
770 */
771int ecp_tls_write_group( const ecp_group *grp, size_t *olen,
772 unsigned char *buf, size_t blen )
773{
Manuel Pégourié-Gonnardf24b4a72013-09-23 18:14:50 +0200774 const ecp_curve_info *curve_info;
775
776 if( ( curve_info = ecp_curve_info_from_grp_id( grp->id ) ) == NULL )
777 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200778
Manuel Pégourié-Gonnardb3258872013-02-10 12:06:19 +0100779 /*
780 * We are going to write 3 bytes (see below)
781 */
782 *olen = 3;
783 if( blen < *olen )
784 return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
785
786 /*
787 * First byte is curve_type, always named_curve
788 */
789 *buf++ = POLARSSL_ECP_TLS_NAMED_CURVE;
790
791 /*
792 * Next two bytes are the namedcurve value
793 */
Manuel Pégourié-Gonnardf24b4a72013-09-23 18:14:50 +0200794 buf[0] = curve_info->tls_id >> 8;
795 buf[1] = curve_info->tls_id & 0xFF;
Manuel Pégourié-Gonnardb3258872013-02-10 12:06:19 +0100796
797 return 0;
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100798}
Manuel Pégourié-Gonnardab38b702012-11-05 17:34:55 +0100799
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200800/*
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200801 * Wrapper around fast quasi-modp functions, with fall-back to mpi_mod_mpi.
802 * See the documentation of struct ecp_group.
803 *
804 * This function is in the critial loop for ecp_mul, so pay attention to perf.
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200805 */
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200806static int ecp_modp( mpi *N, const ecp_group *grp )
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200807{
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200808 int ret;
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200809
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200810 if( grp->modp == NULL )
811 return( mpi_mod_mpi( N, N, &grp->P ) );
812
813 /* N->s < 0 is a much faster test, which fails only if N is 0 */
814 if( ( N->s < 0 && mpi_cmp_int( N, 0 ) != 0 ) ||
815 mpi_msb( N ) > 2 * grp->pbits )
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200816 {
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200817 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200818 }
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200819
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200820 MPI_CHK( grp->modp( N ) );
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200821
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200822 /* N->s < 0 is a much faster test, which fails only if N is 0 */
823 while( N->s < 0 && mpi_cmp_int( N, 0 ) != 0 )
824 MPI_CHK( mpi_add_mpi( N, N, &grp->P ) );
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200825
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200826 while( mpi_cmp_mpi( N, &grp->P ) >= 0 )
827 /* we known P, N and the result are positive */
828 MPI_CHK( mpi_sub_abs( N, N, &grp->P ) );
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200829
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200830cleanup:
831 return( ret );
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200832}
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200833
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100834/*
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100835 * Fast mod-p functions expect their argument to be in the 0..p^2 range.
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100836 *
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100837 * In order to guarantee that, we need to ensure that operands of
838 * mpi_mul_mpi are in the 0..p range. So, after each operation we will
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100839 * bring the result back to this range.
840 *
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100841 * The following macros are shortcuts for doing that.
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100842 */
843
844/*
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100845 * Reduce a mpi mod p in-place, general case, to use after mpi_mul_mpi
846 */
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100847#define MOD_MUL( N ) MPI_CHK( ecp_modp( &N, grp ) )
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100848
849/*
850 * Reduce a mpi mod p in-place, to use after mpi_sub_mpi
Manuel Pégourié-Gonnardc9e387c2013-10-17 17:15:35 +0200851 * N->s < 0 is a very fast test, which fails only if N is 0
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100852 */
853#define MOD_SUB( N ) \
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200854 while( N.s < 0 && mpi_cmp_int( &N, 0 ) != 0 ) \
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100855 MPI_CHK( mpi_add_mpi( &N, &N, &grp->P ) )
856
857/*
Manuel Pégourié-Gonnardc9e387c2013-10-17 17:15:35 +0200858 * Reduce a mpi mod p in-place, to use after mpi_add_mpi and mpi_mul_int.
859 * We known P, N and the result are positive, so sub_abs is correct, and
860 * a bit faster.
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100861 */
862#define MOD_ADD( N ) \
863 while( mpi_cmp_mpi( &N, &grp->P ) >= 0 ) \
Manuel Pégourié-Gonnardc9e387c2013-10-17 17:15:35 +0200864 MPI_CHK( mpi_sub_abs( &N, &N, &grp->P ) )
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100865
866/*
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100867 * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100868 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100869static int ecp_normalize( const ecp_group *grp, ecp_point *pt )
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100870{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100871 int ret;
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100872 mpi Zi, ZZi;
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100873
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100874 if( mpi_cmp_int( &pt->Z, 0 ) == 0 )
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100875 return( 0 );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100876
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100877 mpi_init( &Zi ); mpi_init( &ZZi );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100878
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100879 /*
880 * X = X / Z^2 mod p
881 */
882 MPI_CHK( mpi_inv_mod( &Zi, &pt->Z, &grp->P ) );
883 MPI_CHK( mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
884 MPI_CHK( mpi_mul_mpi( &pt->X, &pt->X, &ZZi ) ); MOD_MUL( pt->X );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100885
886 /*
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100887 * Y = Y / Z^3 mod p
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100888 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100889 MPI_CHK( mpi_mul_mpi( &pt->Y, &pt->Y, &ZZi ) ); MOD_MUL( pt->Y );
890 MPI_CHK( mpi_mul_mpi( &pt->Y, &pt->Y, &Zi ) ); MOD_MUL( pt->Y );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100891
892 /*
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100893 * Z = 1
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100894 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100895 MPI_CHK( mpi_lset( &pt->Z, 1 ) );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100896
897cleanup:
898
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100899 mpi_free( &Zi ); mpi_free( &ZZi );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100900
901 return( ret );
902}
903
904/*
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100905 * Normalize jacobian coordinates of an array of points,
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +0100906 * using Montgomery's trick to perform only one inversion mod P.
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100907 * (See for example Cohen's "A Course in Computational Algebraic Number
908 * Theory", Algorithm 10.3.4.)
909 *
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +0200910 * Warning: fails (returning an error) if one of the points is zero!
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +0100911 * This should never happen, see choice of w in ecp_mul().
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100912 */
913static int ecp_normalize_many( const ecp_group *grp,
914 ecp_point T[], size_t t_len )
915{
916 int ret;
917 size_t i;
918 mpi *c, u, Zi, ZZi;
919
920 if( t_len < 2 )
921 return( ecp_normalize( grp, T ) );
922
Paul Bakker6e339b52013-07-03 13:37:05 +0200923 if( ( c = (mpi *) polarssl_malloc( t_len * sizeof( mpi ) ) ) == NULL )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +0200924 return( POLARSSL_ERR_ECP_MALLOC_FAILED );
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100925
926 mpi_init( &u ); mpi_init( &Zi ); mpi_init( &ZZi );
927 for( i = 0; i < t_len; i++ )
928 mpi_init( &c[i] );
929
930 /*
931 * c[i] = Z_0 * ... * Z_i
932 */
933 MPI_CHK( mpi_copy( &c[0], &T[0].Z ) );
934 for( i = 1; i < t_len; i++ )
935 {
936 MPI_CHK( mpi_mul_mpi( &c[i], &c[i-1], &T[i].Z ) );
937 MOD_MUL( c[i] );
938 }
939
940 /*
941 * u = 1 / (Z_0 * ... * Z_n) mod P
942 */
943 MPI_CHK( mpi_inv_mod( &u, &c[t_len-1], &grp->P ) );
944
945 for( i = t_len - 1; ; i-- )
946 {
947 /*
948 * Zi = 1 / Z_i mod p
949 * u = 1 / (Z_0 * ... * Z_i) mod P
950 */
951 if( i == 0 ) {
952 MPI_CHK( mpi_copy( &Zi, &u ) );
953 }
954 else
955 {
956 MPI_CHK( mpi_mul_mpi( &Zi, &u, &c[i-1] ) ); MOD_MUL( Zi );
957 MPI_CHK( mpi_mul_mpi( &u, &u, &T[i].Z ) ); MOD_MUL( u );
958 }
959
960 /*
961 * proceed as in normalize()
962 */
963 MPI_CHK( mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
964 MPI_CHK( mpi_mul_mpi( &T[i].X, &T[i].X, &ZZi ) ); MOD_MUL( T[i].X );
965 MPI_CHK( mpi_mul_mpi( &T[i].Y, &T[i].Y, &ZZi ) ); MOD_MUL( T[i].Y );
966 MPI_CHK( mpi_mul_mpi( &T[i].Y, &T[i].Y, &Zi ) ); MOD_MUL( T[i].Y );
967 MPI_CHK( mpi_lset( &T[i].Z, 1 ) );
968
969 if( i == 0 )
970 break;
971 }
972
973cleanup:
974
975 mpi_free( &u ); mpi_free( &Zi ); mpi_free( &ZZi );
976 for( i = 0; i < t_len; i++ )
977 mpi_free( &c[i] );
Paul Bakker6e339b52013-07-03 13:37:05 +0200978 polarssl_free( c );
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100979
980 return( ret );
981}
982
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100983/*
Manuel Pégourié-Gonnard0cd6f982013-10-10 15:55:39 +0200984 * Point doubling R = 2 P, Jacobian coordinates
Manuel Pégourié-Gonnard0ace4b32013-10-10 12:44:27 +0200985 *
Manuel Pégourié-Gonnard1c4aa242013-10-09 16:09:46 +0200986 * http://www.hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian/doubling/dbl-2007-bl.op3
Manuel Pégourié-Gonnard0ace4b32013-10-10 12:44:27 +0200987 * with heavy variable renaming, some reordering and one minor modification
988 * (a = 2 * b, c = d - 2a replaced with c = d, c = c - b, c = c - b)
989 * in order to use a lot less intermediate variables (6 vs 25).
Manuel Pégourié-Gonnard1c4aa242013-10-09 16:09:46 +0200990 */
Manuel Pégourié-Gonnard0cd6f982013-10-10 15:55:39 +0200991static int ecp_double_jac( const ecp_group *grp, ecp_point *R,
992 const ecp_point *P )
Manuel Pégourié-Gonnard1c4aa242013-10-09 16:09:46 +0200993{
994 int ret;
Manuel Pégourié-Gonnard0ace4b32013-10-10 12:44:27 +0200995 mpi T1, T2, T3, X3, Y3, Z3;
Manuel Pégourié-Gonnard1c4aa242013-10-09 16:09:46 +0200996
Manuel Pégourié-Gonnard0cd6f982013-10-10 15:55:39 +0200997#if defined(POLARSSL_SELF_TEST)
998 dbl_count++;
999#endif
1000
Manuel Pégourié-Gonnard0ace4b32013-10-10 12:44:27 +02001001 mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 );
1002 mpi_init( &X3 ); mpi_init( &Y3 ); mpi_init( &Z3 );
Manuel Pégourié-Gonnard1c4aa242013-10-09 16:09:46 +02001003
Manuel Pégourié-Gonnard0ace4b32013-10-10 12:44:27 +02001004 MPI_CHK( mpi_mul_mpi( &T3, &P->X, &P->X ) ); MOD_MUL( T3 );
1005 MPI_CHK( mpi_mul_mpi( &T2, &P->Y, &P->Y ) ); MOD_MUL( T2 );
1006 MPI_CHK( mpi_mul_mpi( &Y3, &T2, &T2 ) ); MOD_MUL( Y3 );
1007 MPI_CHK( mpi_add_mpi( &X3, &P->X, &T2 ) ); MOD_ADD( X3 );
1008 MPI_CHK( mpi_mul_mpi( &X3, &X3, &X3 ) ); MOD_MUL( X3 );
1009 MPI_CHK( mpi_sub_mpi( &X3, &X3, &Y3 ) ); MOD_SUB( X3 );
1010 MPI_CHK( mpi_sub_mpi( &X3, &X3, &T3 ) ); MOD_SUB( X3 );
1011 MPI_CHK( mpi_mul_int( &T1, &X3, 2 ) ); MOD_ADD( T1 );
1012 MPI_CHK( mpi_mul_mpi( &Z3, &P->Z, &P->Z ) ); MOD_MUL( Z3 );
1013 MPI_CHK( mpi_mul_mpi( &X3, &Z3, &Z3 ) ); MOD_MUL( X3 );
1014 MPI_CHK( mpi_mul_int( &T3, &T3, 3 ) ); MOD_ADD( T3 );
1015 MPI_CHK( mpi_mul_mpi( &X3, &X3, &grp->A ) ); MOD_MUL( X3 );
1016 MPI_CHK( mpi_add_mpi( &T3, &T3, &X3 ) ); MOD_ADD( T3 );
1017 MPI_CHK( mpi_mul_mpi( &X3, &T3, &T3 ) ); MOD_MUL( X3 );
1018 MPI_CHK( mpi_sub_mpi( &X3, &X3, &T1 ) ); MOD_SUB( X3 );
1019 MPI_CHK( mpi_sub_mpi( &X3, &X3, &T1 ) ); MOD_SUB( X3 );
1020 MPI_CHK( mpi_sub_mpi( &T1, &T1, &X3 ) ); MOD_SUB( T1 );
1021 MPI_CHK( mpi_mul_mpi( &T1, &T3, &T1 ) ); MOD_MUL( T1 );
1022 MPI_CHK( mpi_mul_int( &T3, &Y3, 8 ) ); MOD_ADD( T3 );
1023 MPI_CHK( mpi_sub_mpi( &Y3, &T1, &T3 ) ); MOD_SUB( Y3 );
1024 MPI_CHK( mpi_add_mpi( &T1, &P->Y, &P->Z ) ); MOD_ADD( T1 );
1025 MPI_CHK( mpi_mul_mpi( &T1, &T1, &T1 ) ); MOD_MUL( T1 );
1026 MPI_CHK( mpi_sub_mpi( &T1, &T1, &T2 ) ); MOD_SUB( T1 );
1027 MPI_CHK( mpi_sub_mpi( &Z3, &T1, &Z3 ) ); MOD_SUB( Z3 );
Manuel Pégourié-Gonnard1c4aa242013-10-09 16:09:46 +02001028
1029 MPI_CHK( mpi_copy( &R->X, &X3 ) );
1030 MPI_CHK( mpi_copy( &R->Y, &Y3 ) );
1031 MPI_CHK( mpi_copy( &R->Z, &Z3 ) );
1032
1033cleanup:
Manuel Pégourié-Gonnard0ace4b32013-10-10 12:44:27 +02001034 mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 );
1035 mpi_free( &X3 ); mpi_free( &Y3 ); mpi_free( &Z3 );
Manuel Pégourié-Gonnard1c4aa242013-10-09 16:09:46 +02001036
1037 return( ret );
1038}
1039
1040/*
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001041 * Addition or subtraction: R = P + Q or R = P - Q,
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +01001042 * mixed affine-Jacobian coordinates (GECC 3.22)
1043 *
1044 * The coordinates of Q must be normalized (= affine),
1045 * but those of P don't need to. R is not normalized.
1046 *
1047 * If sign >= 0, perform addition, otherwise perform subtraction,
1048 * taking advantage of the fact that, for Q != 0, we have
1049 * -Q = (Q.X, -Q.Y, Q.Z)
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001050 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +01001051static int ecp_add_mixed( const ecp_group *grp, ecp_point *R,
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +01001052 const ecp_point *P, const ecp_point *Q,
1053 signed char sign )
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001054{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +01001055 int ret;
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001056 mpi T1, T2, T3, T4, X, Y, Z;
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001057
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01001058#if defined(POLARSSL_SELF_TEST)
1059 add_count++;
1060#endif
1061
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001062 /*
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001063 * Trivial cases: P == 0 or Q == 0
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +01001064 * (Check Q first, so that we know Q != 0 when we compute -Q.)
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001065 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +01001066 if( mpi_cmp_int( &Q->Z, 0 ) == 0 )
1067 return( ecp_copy( R, P ) );
1068
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +01001069 if( mpi_cmp_int( &P->Z, 0 ) == 0 )
1070 {
1071 ret = ecp_copy( R, Q );
1072
1073 /*
1074 * -R.Y mod P = P - R.Y unless R.Y == 0
1075 */
1076 if( ret == 0 && sign < 0)
1077 if( mpi_cmp_int( &R->Y, 0 ) != 0 )
1078 ret = mpi_sub_mpi( &R->Y, &grp->P, &R->Y );
1079
1080 return( ret );
1081 }
1082
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +01001083 /*
1084 * Make sure Q coordinates are normalized
1085 */
1086 if( mpi_cmp_int( &Q->Z, 1 ) != 0 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001087 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001088
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001089 mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 ); mpi_init( &T4 );
1090 mpi_init( &X ); mpi_init( &Y ); mpi_init( &Z );
Manuel Pégourié-Gonnardab38b702012-11-05 17:34:55 +01001091
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +01001092 MPI_CHK( mpi_mul_mpi( &T1, &P->Z, &P->Z ) ); MOD_MUL( T1 );
1093 MPI_CHK( mpi_mul_mpi( &T2, &T1, &P->Z ) ); MOD_MUL( T2 );
1094 MPI_CHK( mpi_mul_mpi( &T1, &T1, &Q->X ) ); MOD_MUL( T1 );
1095 MPI_CHK( mpi_mul_mpi( &T2, &T2, &Q->Y ) ); MOD_MUL( T2 );
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +01001096
1097 /*
1098 * For subtraction, -Q.Y should have been used instead of Q.Y,
1099 * so we replace T2 by -T2, which is P - T2 mod P
1100 */
1101 if( sign < 0 )
1102 {
1103 MPI_CHK( mpi_sub_mpi( &T2, &grp->P, &T2 ) );
1104 MOD_SUB( T2 );
1105 }
1106
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +01001107 MPI_CHK( mpi_sub_mpi( &T1, &T1, &P->X ) ); MOD_SUB( T1 );
1108 MPI_CHK( mpi_sub_mpi( &T2, &T2, &P->Y ) ); MOD_SUB( T2 );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001109
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001110 if( mpi_cmp_int( &T1, 0 ) == 0 )
1111 {
1112 if( mpi_cmp_int( &T2, 0 ) == 0 )
1113 {
1114 ret = ecp_double_jac( grp, R, P );
1115 goto cleanup;
1116 }
1117 else
1118 {
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +01001119 ret = ecp_set_zero( R );
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001120 goto cleanup;
1121 }
1122 }
1123
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +01001124 MPI_CHK( mpi_mul_mpi( &Z, &P->Z, &T1 ) ); MOD_MUL( Z );
1125 MPI_CHK( mpi_mul_mpi( &T3, &T1, &T1 ) ); MOD_MUL( T3 );
1126 MPI_CHK( mpi_mul_mpi( &T4, &T3, &T1 ) ); MOD_MUL( T4 );
1127 MPI_CHK( mpi_mul_mpi( &T3, &T3, &P->X ) ); MOD_MUL( T3 );
1128 MPI_CHK( mpi_mul_int( &T1, &T3, 2 ) ); MOD_ADD( T1 );
1129 MPI_CHK( mpi_mul_mpi( &X, &T2, &T2 ) ); MOD_MUL( X );
1130 MPI_CHK( mpi_sub_mpi( &X, &X, &T1 ) ); MOD_SUB( X );
1131 MPI_CHK( mpi_sub_mpi( &X, &X, &T4 ) ); MOD_SUB( X );
1132 MPI_CHK( mpi_sub_mpi( &T3, &T3, &X ) ); MOD_SUB( T3 );
1133 MPI_CHK( mpi_mul_mpi( &T3, &T3, &T2 ) ); MOD_MUL( T3 );
1134 MPI_CHK( mpi_mul_mpi( &T4, &T4, &P->Y ) ); MOD_MUL( T4 );
1135 MPI_CHK( mpi_sub_mpi( &Y, &T3, &T4 ) ); MOD_SUB( Y );
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001136
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +01001137 MPI_CHK( mpi_copy( &R->X, &X ) );
1138 MPI_CHK( mpi_copy( &R->Y, &Y ) );
1139 MPI_CHK( mpi_copy( &R->Z, &Z ) );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001140
1141cleanup:
1142
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001143 mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 ); mpi_free( &T4 );
1144 mpi_free( &X ); mpi_free( &Y ); mpi_free( &Z );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001145
1146 return( ret );
1147}
1148
1149/*
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +01001150 * Addition: R = P + Q, result's coordinates normalized
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001151 */
1152int ecp_add( const ecp_group *grp, ecp_point *R,
1153 const ecp_point *P, const ecp_point *Q )
1154{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +01001155 int ret;
Manuel Pégourié-Gonnard989c32b2012-11-08 22:02:42 +01001156
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +01001157 MPI_CHK( ecp_add_mixed( grp, R, P, Q , 1 ) );
1158 MPI_CHK( ecp_normalize( grp, R ) );
1159
1160cleanup:
1161 return( ret );
1162}
1163
1164/*
1165 * Subtraction: R = P - Q, result's coordinates normalized
1166 */
1167int ecp_sub( const ecp_group *grp, ecp_point *R,
1168 const ecp_point *P, const ecp_point *Q )
1169{
1170 int ret;
1171
1172 MPI_CHK( ecp_add_mixed( grp, R, P, Q, -1 ) );
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +01001173 MPI_CHK( ecp_normalize( grp, R ) );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001174
Manuel Pégourié-Gonnard989c32b2012-11-08 22:02:42 +01001175cleanup:
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001176 return( ret );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001177}
1178
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001179/*
Manuel Pégourié-Gonnard85556072012-11-17 19:54:20 +01001180 * Compute a modified width-w non-adjacent form (NAF) of a number,
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +02001181 * with a fixed pattern for resistance to simple timing attacks (even SPA),
1182 * see [1]. (The resulting multiplication algorithm can also been seen as a
1183 * modification of 2^w-ary multiplication, with signed coefficients, all of
1184 * them odd.)
Manuel Pégourié-Gonnard85556072012-11-17 19:54:20 +01001185 *
1186 * Input:
1187 * m must be an odd positive mpi less than w * k bits long
1188 * x must be an array of k elements
1189 * w must be less than a certain maximum (currently 8)
1190 *
1191 * The result is a sequence x[0], ..., x[k-1] with x[i] in the range
1192 * - 2^(width - 1) .. 2^(width - 1) - 1 such that
1193 * m = (2 * x[0] + 1) + 2^width * (2 * x[1] + 1) + ...
1194 * + 2^((k-1) * width) * (2 * x[k-1] + 1)
1195 *
1196 * Compared to "Algorithm SPA-resistant Width-w NAF with Odd Scalar"
1197 * p. 335 of the cited reference, here we return only u, not d_w since
1198 * it is known that the other d_w[j] will be 0. Moreover, the returned
1199 * string doesn't actually store u_i but x_i = u_i / 2 since it is known
1200 * that u_i is odd. Also, since we always select a positive value for d
1201 * mod 2^w, we don't need to check the sign of u[i-1] when the reference
1202 * does. Finally, there is an off-by-one error in the reference: the
1203 * last index should be k-1, not k.
1204 */
Manuel Pégourié-Gonnard7652a592012-11-21 10:00:45 +01001205static int ecp_w_naf_fixed( signed char x[], size_t k,
1206 unsigned char w, const mpi *m )
Manuel Pégourié-Gonnard85556072012-11-17 19:54:20 +01001207{
1208 int ret;
1209 unsigned int i, u, mask, carry;
1210 mpi M;
1211
1212 mpi_init( &M );
1213
1214 MPI_CHK( mpi_copy( &M, m ) );
1215 mask = ( 1 << w ) - 1;
1216 carry = 1 << ( w - 1 );
1217
1218 for( i = 0; i < k; i++ )
1219 {
1220 u = M.p[0] & mask;
1221
1222 if( ( u & 1 ) == 0 && i > 0 )
1223 x[i - 1] -= carry;
1224
1225 x[i] = u >> 1;
1226 mpi_shift_r( &M, w );
1227 }
1228
1229 /*
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001230 * We should have consumed all bits, unless the input value was too big
Manuel Pégourié-Gonnard85556072012-11-17 19:54:20 +01001231 */
1232 if( mpi_cmp_int( &M, 0 ) != 0 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001233 ret = POLARSSL_ERR_ECP_BAD_INPUT_DATA;
Manuel Pégourié-Gonnard85556072012-11-17 19:54:20 +01001234
1235cleanup:
1236
1237 mpi_free( &M );
1238
1239 return( ret );
1240}
1241
1242/*
Manuel Pégourié-Gonnard7652a592012-11-21 10:00:45 +01001243 * Precompute odd multiples of P up to (2 * t_len - 1) P.
1244 * The table is filled with T[i] = (2 * i + 1) P.
1245 */
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001246static int ecp_precompute( const ecp_group *grp,
1247 ecp_point T[], size_t t_len,
1248 const ecp_point *P )
Manuel Pégourié-Gonnard7652a592012-11-21 10:00:45 +01001249{
1250 int ret;
1251 size_t i;
1252 ecp_point PP;
1253
1254 ecp_point_init( &PP );
1255
1256 MPI_CHK( ecp_add( grp, &PP, P, P ) );
1257
1258 MPI_CHK( ecp_copy( &T[0], P ) );
1259
Manuel Pégourié-Gonnard7652a592012-11-21 10:00:45 +01001260 for( i = 1; i < t_len; i++ )
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +01001261 MPI_CHK( ecp_add_mixed( grp, &T[i], &T[i-1], &PP, +1 ) );
1262
1263 /*
1264 * T[0] = P already has normalized coordinates
1265 */
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +01001266 MPI_CHK( ecp_normalize_many( grp, T + 1, t_len - 1 ) );
Manuel Pégourié-Gonnard7652a592012-11-21 10:00:45 +01001267
1268cleanup:
1269
1270 ecp_point_free( &PP );
1271
1272 return( ret );
1273}
1274
1275/*
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +02001276 * Randomize jacobian coordinates:
1277 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1278 * This is sort of the reverse operation of ecp_normalize().
1279 */
1280static int ecp_randomize_coordinates( const ecp_group *grp, ecp_point *pt,
1281 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1282{
1283 int ret;
1284 mpi l, ll;
1285 size_t p_size = (grp->pbits + 7) / 8;
1286 int count = 0;
1287
1288 mpi_init( &l ); mpi_init( &ll );
1289
1290 /* Generate l such that 1 < l < p */
1291 do
1292 {
1293 mpi_fill_random( &l, p_size, f_rng, p_rng );
1294
1295 while( mpi_cmp_mpi( &l, &grp->P ) >= 0 )
1296 mpi_shift_r( &l, 1 );
1297
1298 if( count++ > 10 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001299 return( POLARSSL_ERR_ECP_RANDOM_FAILED );
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +02001300 }
1301 while( mpi_cmp_int( &l, 1 ) <= 0 );
1302
1303 /* Z = l * Z */
1304 MPI_CHK( mpi_mul_mpi( &pt->Z, &pt->Z, &l ) ); MOD_MUL( pt->Z );
1305
1306 /* X = l^2 * X */
1307 MPI_CHK( mpi_mul_mpi( &ll, &l, &l ) ); MOD_MUL( ll );
1308 MPI_CHK( mpi_mul_mpi( &pt->X, &pt->X, &ll ) ); MOD_MUL( pt->X );
1309
1310 /* Y = l^3 * Y */
1311 MPI_CHK( mpi_mul_mpi( &ll, &ll, &l ) ); MOD_MUL( ll );
1312 MPI_CHK( mpi_mul_mpi( &pt->Y, &pt->Y, &ll ) ); MOD_MUL( pt->Y );
1313
1314cleanup:
1315 mpi_free( &l ); mpi_free( &ll );
1316
1317 return( ret );
1318}
1319
1320/*
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001321 * Maximum length of the precomputed table
1322 */
1323#define MAX_PRE_LEN ( 1 << (POLARSSL_ECP_WINDOW_SIZE - 1) )
1324
1325/*
1326 * Maximum length of the NAF: ceil( grp->nbits + 1 ) / w
1327 * (that is: grp->nbits / w + 1)
1328 * Allow p_bits + 1 bits in case M = grp->N + 1 is one bit longer than N.
1329 */
Manuel Pégourié-Gonnardb694b482013-08-08 13:30:57 +02001330#define MAX_NAF_LEN ( POLARSSL_ECP_MAX_BITS / 2 + 1 )
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001331
1332/*
1333 * Integer multiplication: R = m * P
1334 *
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +02001335 * Based on fixed-pattern width-w NAF, see comments of ecp_w_naf_fixed().
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001336 *
1337 * This function executes a fixed number of operations for
1338 * random m in the range 0 .. 2^nbits - 1.
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +02001339 *
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001340 * As an additional countermeasure against potential timing attacks,
1341 * we randomize coordinates before each addition. This was suggested as a
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +02001342 * countermeasure against DPA in 5.3 of [2] (with the obvious adaptation that
1343 * we use jacobian coordinates, not standard projective coordinates).
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001344 */
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001345int ecp_mul( ecp_group *grp, ecp_point *R,
Manuel Pégourié-Gonnarde09d2f82013-09-02 14:29:09 +02001346 const mpi *m, const ecp_point *P,
1347 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001348{
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001349 int ret;
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001350 unsigned char w, m_is_odd, p_eq_g;
Paul Bakkerb9cfaa02013-10-11 18:58:55 +02001351 size_t pre_len = 1, naf_len, i, j;
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001352 signed char naf[ MAX_NAF_LEN ];
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001353 ecp_point Q, *T = NULL, S[2];
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001354 mpi M;
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001355
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001356 if( mpi_cmp_int( m, 0 ) < 0 || mpi_msb( m ) > grp->nbits )
Manuel Pégourié-Gonnarde09d2f82013-09-02 14:29:09 +02001357 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
Manuel Pégourié-Gonnard4bdd47d2012-11-11 14:33:59 +01001358
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001359 mpi_init( &M );
1360 ecp_point_init( &Q );
1361 ecp_point_init( &S[0] );
1362 ecp_point_init( &S[1] );
1363
1364 /*
1365 * Check if P == G
1366 */
1367 p_eq_g = ( mpi_cmp_int( &P->Z, 1 ) == 0 &&
1368 mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
1369 mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
1370
1371 /*
1372 * If P == G, pre-compute a lot of points: this will be re-used later,
1373 * otherwise, choose window size depending on curve size
1374 */
1375 if( p_eq_g )
1376 w = POLARSSL_ECP_WINDOW_SIZE;
1377 else
1378 w = grp->nbits >= 512 ? 6 :
1379 grp->nbits >= 224 ? 5 :
1380 4;
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001381
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +01001382 /*
1383 * Make sure w is within the limits.
1384 * The last test ensures that none of the precomputed points is zero,
1385 * which wouldn't be handled correctly by ecp_normalize_many().
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001386 * It is only useful for very small curves as used in the test suite.
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +01001387 */
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001388 if( w > POLARSSL_ECP_WINDOW_SIZE )
1389 w = POLARSSL_ECP_WINDOW_SIZE;
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +01001390 if( w < 2 || w >= grp->nbits )
1391 w = 2;
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001392
Paul Bakkerb9cfaa02013-10-11 18:58:55 +02001393 pre_len <<= ( w - 1 );
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001394 naf_len = grp->nbits / w + 1;
1395
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001396 /*
1397 * Prepare precomputed points: if P == G we want to
1398 * use grp->T if already initialized, or initiliaze it.
1399 */
1400 if( ! p_eq_g || grp->T == NULL )
1401 {
Paul Bakkerb9cfaa02013-10-11 18:58:55 +02001402 T = (ecp_point *) polarssl_malloc( pre_len * sizeof( ecp_point ) );
1403 if( T == NULL )
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001404 {
1405 ret = POLARSSL_ERR_ECP_MALLOC_FAILED;
1406 goto cleanup;
1407 }
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001408
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001409 for( i = 0; i < pre_len; i++ )
1410 ecp_point_init( &T[i] );
1411
1412 MPI_CHK( ecp_precompute( grp, T, pre_len, P ) );
1413
1414 if( p_eq_g )
1415 {
1416 grp->T = T;
1417 grp->T_size = pre_len;
1418 }
1419 }
1420 else
1421 {
1422 T = grp->T;
1423
1424 /* Should never happen, but we want to be extra sure */
1425 if( pre_len != grp->T_size )
1426 {
1427 ret = POLARSSL_ERR_ECP_BAD_INPUT_DATA;
1428 goto cleanup;
1429 }
1430 }
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001431
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001432 /*
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001433 * Make sure M is odd (M = m + 1 or M = m + 2)
1434 * later we'll get m * P by subtracting P or 2 * P to M * P.
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001435 */
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001436 m_is_odd = ( mpi_get_bit( m, 0 ) == 1 );
1437
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001438 MPI_CHK( mpi_copy( &M, m ) );
1439 MPI_CHK( mpi_add_int( &M, &M, 1 + m_is_odd ) );
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001440
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001441 /*
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001442 * Compute the fixed-pattern NAF of M
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001443 */
1444 MPI_CHK( ecp_w_naf_fixed( naf, naf_len, w, &M ) );
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +01001445
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001446 /*
1447 * Compute M * P, using a variant of left-to-right 2^w-ary multiplication:
1448 * at each step we add (2 * naf[i] + 1) P, then multiply by 2^w.
1449 *
1450 * If naf[i] >= 0, we have (2 * naf[i] + 1) P == T[ naf[i] ]
1451 * Otherwise, (2 * naf[i] + 1) P == - ( 2 * ( - naf[i] - 1 ) + 1) P
1452 * == T[ - naf[i] - 1 ]
1453 */
1454 MPI_CHK( ecp_set_zero( &Q ) );
1455 i = naf_len - 1;
1456 while( 1 )
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001457 {
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001458 /* Countermeasure (see comments above) */
1459 if( f_rng != NULL )
1460 ecp_randomize_coordinates( grp, &Q, f_rng, p_rng );
1461
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001462 if( naf[i] < 0 )
1463 {
1464 MPI_CHK( ecp_add_mixed( grp, &Q, &Q, &T[ - naf[i] - 1 ], -1 ) );
1465 }
1466 else
1467 {
1468 MPI_CHK( ecp_add_mixed( grp, &Q, &Q, &T[ naf[i] ], +1 ) );
1469 }
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001470
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001471 if( i == 0 )
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001472 break;
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001473 i--;
1474
1475 for( j = 0; j < w; j++ )
1476 {
1477 MPI_CHK( ecp_double_jac( grp, &Q, &Q ) );
1478 }
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001479 }
1480
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001481 /*
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001482 * Now get m * P from M * P
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001483 */
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001484 MPI_CHK( ecp_copy( &S[0], P ) );
1485 MPI_CHK( ecp_add( grp, &S[1], P, P ) );
1486 MPI_CHK( ecp_sub( grp, R, &Q, &S[m_is_odd] ) );
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001487
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +01001488
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001489cleanup:
1490
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001491 if( T != NULL && ! p_eq_g )
1492 {
1493 for( i = 0; i < pre_len; i++ )
1494 ecp_point_free( &T[i] );
1495 polarssl_free( T );
1496 }
1497
1498 ecp_point_free( &S[1] );
1499 ecp_point_free( &S[0] );
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001500 ecp_point_free( &Q );
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001501 mpi_free( &M );
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001502
1503 return( ret );
1504}
1505
Manuel Pégourié-Gonnard45a035a2013-01-26 14:42:45 +01001506/*
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001507 * Check that a point is valid as a public key (SEC1 3.2.3.1)
1508 */
1509int ecp_check_pubkey( const ecp_group *grp, const ecp_point *pt )
1510{
1511 int ret;
1512 mpi YY, RHS;
1513
1514 if( mpi_cmp_int( &pt->Z, 0 ) == 0 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001515 return( POLARSSL_ERR_ECP_INVALID_KEY );
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001516
1517 /*
1518 * pt coordinates must be normalized for our checks
1519 */
1520 if( mpi_cmp_int( &pt->Z, 1 ) != 0 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001521 return( POLARSSL_ERR_ECP_INVALID_KEY );
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001522
1523 if( mpi_cmp_int( &pt->X, 0 ) < 0 ||
1524 mpi_cmp_int( &pt->Y, 0 ) < 0 ||
1525 mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||
1526 mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001527 return( POLARSSL_ERR_ECP_INVALID_KEY );
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001528
1529 mpi_init( &YY ); mpi_init( &RHS );
1530
1531 /*
1532 * YY = Y^2
Manuel Pégourié-Gonnardcd7458a2013-10-08 13:11:30 +02001533 * RHS = X (X^2 + A) + B = X^3 + A X + B
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001534 */
Manuel Pégourié-Gonnardcd7458a2013-10-08 13:11:30 +02001535 MPI_CHK( mpi_mul_mpi( &YY, &pt->Y, &pt->Y ) ); MOD_MUL( YY );
1536 MPI_CHK( mpi_mul_mpi( &RHS, &pt->X, &pt->X ) ); MOD_MUL( RHS );
Manuel Pégourié-Gonnard0cd6f982013-10-10 15:55:39 +02001537 MPI_CHK( mpi_add_mpi( &RHS, &RHS, &grp->A ) ); MOD_ADD( RHS );
Manuel Pégourié-Gonnardcd7458a2013-10-08 13:11:30 +02001538 MPI_CHK( mpi_mul_mpi( &RHS, &RHS, &pt->X ) ); MOD_MUL( RHS );
1539 MPI_CHK( mpi_add_mpi( &RHS, &RHS, &grp->B ) ); MOD_ADD( RHS );
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001540
1541 if( mpi_cmp_mpi( &YY, &RHS ) != 0 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001542 ret = POLARSSL_ERR_ECP_INVALID_KEY;
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001543
1544cleanup:
1545
1546 mpi_free( &YY ); mpi_free( &RHS );
1547
1548 return( ret );
1549}
1550
1551/*
1552 * Check that an mpi is valid as a private key (SEC1 3.2)
1553 */
Manuel Pégourié-Gonnardde44a4a2013-07-09 16:05:52 +02001554int ecp_check_privkey( const ecp_group *grp, const mpi *d )
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001555{
1556 /* We want 1 <= d <= N-1 */
1557 if ( mpi_cmp_int( d, 1 ) < 0 || mpi_cmp_mpi( d, &grp->N ) >= 0 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001558 return( POLARSSL_ERR_ECP_INVALID_KEY );
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001559
1560 return( 0 );
1561}
1562
1563/*
Manuel Pégourié-Gonnard45a035a2013-01-26 14:42:45 +01001564 * Generate a keypair (SEC1 3.2.1)
1565 */
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001566int ecp_gen_keypair( ecp_group *grp, mpi *d, ecp_point *Q,
Manuel Pégourié-Gonnard45a035a2013-01-26 14:42:45 +01001567 int (*f_rng)(void *, unsigned char *, size_t),
1568 void *p_rng )
1569{
1570 int count = 0;
1571 size_t n_size = (grp->nbits + 7) / 8;
1572
1573 /*
1574 * Generate d such that 1 <= n < N
1575 */
1576 do
1577 {
1578 mpi_fill_random( d, n_size, f_rng, p_rng );
1579
1580 while( mpi_cmp_mpi( d, &grp->N ) >= 0 )
1581 mpi_shift_r( d, 1 );
1582
1583 if( count++ > 10 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001584 return( POLARSSL_ERR_ECP_RANDOM_FAILED );
Manuel Pégourié-Gonnard45a035a2013-01-26 14:42:45 +01001585 }
1586 while( mpi_cmp_int( d, 1 ) < 0 );
1587
Manuel Pégourié-Gonnarde09d2f82013-09-02 14:29:09 +02001588 return( ecp_mul( grp, Q, d, &grp->G, f_rng, p_rng ) );
Manuel Pégourié-Gonnard45a035a2013-01-26 14:42:45 +01001589}
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001590
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001591#if defined(POLARSSL_ECP_NIST_OPTIM)
Manuel Pégourié-Gonnard9fcceac2013-10-23 20:56:12 +02001592/*
1593 * Fast reduction modulo the primes used by the NIST curves.
1594 *
1595 * These functions are: critical for speed, but not need for correct
1596 * operations. So, we make the choice to heavily rely on the internals of our
1597 * bignum library, which creates a tight coupling between these functions and
1598 * our MPI implementation. However, the coupling between the ECP module and
1599 * MPI remains loose, since these functions can be deactivated at will.
1600 */
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001601
1602#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
1603/*
1604 * Compared to the way things are presented in FIPS 186-3 D.2,
1605 * we proceed in columns, from right (least significant chunk) to left,
1606 * adding chunks to N in place, and keeping a carry for the next chunk.
1607 * This avoids moving things around in memory, and uselessly adding zeros,
1608 * compared to the more straightforward, line-oriented approach.
1609 *
1610 * For this prime we need to handle data in chunks of 64 bits.
1611 * Since this is always a multiple of our basic t_uint, we can
1612 * use a t_uint * to designate such a chunk, and small loops to handle it.
1613 */
1614
1615/* Add 64-bit chunks (dst += src) and update carry */
1616static inline void add64( t_uint *dst, t_uint *src, t_uint *carry )
1617{
1618 unsigned char i;
1619 t_uint c = 0;
1620 for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++, src++ )
1621 {
1622 *dst += c; c = ( *dst < c );
1623 *dst += *src; c += ( *dst < *src );
1624 }
1625 *carry += c;
1626}
1627
1628/* Add carry to a 64-bit chunk and update carry */
1629static inline void carry64( t_uint *dst, t_uint *carry )
1630{
1631 unsigned char i;
1632 for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++ )
1633 {
1634 *dst += *carry;
1635 *carry = ( *dst < *carry );
1636 }
1637}
1638
1639#define WIDTH 8 / sizeof( t_uint )
1640#define A( i ) N->p + i * WIDTH
1641#define ADD( i ) add64( p, A( i ), &c )
1642#define NEXT p += WIDTH; carry64( p, &c )
1643#define LAST p += WIDTH; *p = c; while( ++p < end ) *p = 0
1644
1645/*
1646 * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
1647 */
1648static int ecp_mod_p192( mpi *N )
1649{
1650 int ret;
1651 t_uint c = 0;
1652 t_uint *p, *end;
1653
1654 /* Make sure we have enough blocks so that A(5) is legal */
1655 MPI_CHK( mpi_grow( N, 6 * WIDTH ) );
1656
1657 p = N->p;
1658 end = p + N->n;
1659
1660 ADD( 3 ); ADD( 5 ); NEXT; // A0 += A3 + A5
1661 ADD( 3 ); ADD( 4 ); ADD( 5 ); NEXT; // A1 += A3 + A4 + A5
1662 ADD( 4 ); ADD( 5 ); LAST; // A2 += A4 + A5
1663
1664cleanup:
1665 return( ret );
1666}
1667
1668#undef WIDTH
1669#undef A
1670#undef ADD
1671#undef NEXT
1672#undef LAST
1673#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
1674
1675#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED) || \
1676 defined(POLARSSL_ECP_DP_SECP256R1_ENABLED) || \
1677 defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
1678/*
1679 * The reader is advised to first understand ecp_mod_p192() since the same
1680 * general structure is used here, but with additional complications:
1681 * (1) chunks of 32 bits, and (2) subtractions.
1682 */
1683
1684/*
1685 * For these primes, we need to handle data in chunks of 32 bits.
1686 * This makes it more complicated if we use 64 bits limbs in MPI,
1687 * which prevents us from using a uniform access method as for p192.
1688 *
1689 * So, we define a mini abstraction layer to access 32 bit chunks,
1690 * load them in 'cur' for work, and store them back from 'cur' when done.
1691 *
1692 * While at it, also define the size of N in terms of 32-bit chunks.
1693 */
1694#define LOAD32 cur = A( i );
1695
1696#if defined(POLARSSL_HAVE_INT8) /* 8 bit */
1697
1698#define MAX32 N->n / 4
1699#define A( j ) (uint32_t)( N->p[4*j+0] ) | \
1700 ( N->p[4*j+1] << 8 ) | \
1701 ( N->p[4*j+2] << 16 ) | \
1702 ( N->p[4*j+3] << 24 )
1703#define STORE32 N->p[4*i+0] = (uint8_t)( cur ); \
1704 N->p[4*i+1] = (uint8_t)( cur >> 8 ); \
1705 N->p[4*i+2] = (uint8_t)( cur >> 16 ); \
1706 N->p[4*i+3] = (uint8_t)( cur >> 24 );
1707
1708#elif defined(POLARSSL_HAVE_INT16) /* 16 bit */
1709
1710#define MAX32 N->n / 2
1711#define A( j ) (uint32_t)( N->p[2*j] ) | ( N->p[2*j+1] << 16 )
1712#define STORE32 N->p[2*i+0] = (uint16_t)( cur ); \
1713 N->p[2*i+1] = (uint16_t)( cur >> 16 );
1714
1715#elif defined(POLARSSL_HAVE_INT32) /* 32 bit */
1716
1717#define MAX32 N->n
1718#define A( j ) N->p[j]
1719#define STORE32 N->p[i] = cur;
1720
1721#else /* 64-bit */
1722
1723#define MAX32 N->n * 2
1724#define A( j ) j % 2 ? (uint32_t)( N->p[j/2] >> 32 ) : (uint32_t)( N->p[j/2] )
1725#define STORE32 \
1726 if( i % 2 ) { \
1727 N->p[i/2] &= 0x00000000FFFFFFFF; \
1728 N->p[i/2] |= ((uint64_t) cur) << 32; \
1729 } else { \
1730 N->p[i/2] &= 0xFFFFFFFF00000000; \
1731 N->p[i/2] |= (uint64_t) cur; \
1732 }
1733
1734#endif /* sizeof( t_uint ) */
1735
1736/*
1737 * Helpers for addition and subtraction of chunks, with signed carry.
1738 */
1739static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
1740{
1741 *dst += src;
1742 *carry += ( *dst < src );
1743}
1744
1745static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
1746{
1747 *carry -= ( *dst < src );
1748 *dst -= src;
1749}
1750
1751#define ADD( j ) add32( &cur, A( j ), &c );
1752#define SUB( j ) sub32( &cur, A( j ), &c );
1753
1754/*
1755 * Helpers for the main 'loop'
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02001756 * (see fix_negative for the motivation of C)
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001757 */
1758#define INIT( b ) \
1759 int ret; \
1760 signed char c = 0, cc; \
1761 uint32_t cur; \
1762 size_t i = 0, bits = b; \
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02001763 mpi C; \
1764 t_uint Cp[ b / 8 / sizeof( t_uint) + 1 ]; \
1765 \
1766 C.s = 1; \
1767 C.n = b / 8 / sizeof( t_uint) + 1; \
1768 C.p = Cp; \
1769 memset( Cp, 0, C.n * sizeof( t_uint ) ); \
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001770 \
1771 MPI_CHK( mpi_grow( N, b * 2 / 8 / sizeof( t_uint ) ) ); \
1772 LOAD32;
1773
1774#define NEXT \
1775 STORE32; i++; LOAD32; \
1776 cc = c; c = 0; \
1777 if( cc < 0 ) \
1778 sub32( &cur, -cc, &c ); \
1779 else \
1780 add32( &cur, cc, &c ); \
1781
1782#define LAST \
1783 STORE32; i++; \
1784 cur = c > 0 ? c : 0; STORE32; \
1785 cur = 0; while( ++i < MAX32 ) { STORE32; } \
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02001786 if( c < 0 ) fix_negative( N, c, &C, bits );
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001787
1788/*
1789 * If the result is negative, we get it in the form
1790 * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
1791 */
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02001792static inline int fix_negative( mpi *N, signed char c, mpi *C, size_t bits )
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001793{
1794 int ret;
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001795
1796 /* C = - c * 2^(bits + 32) */
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02001797#if !defined(POLARSSL_HAVE_INT64)
1798 ((void) bits);
1799#else
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001800 if( bits == 224 )
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02001801 C->p[ C->n - 1 ] = ((t_uint) -c) << 32;
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001802 else
1803#endif
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02001804 C->p[ C->n - 1 ] = (t_uint) -c;
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001805
1806 /* N = - ( C - N ) */
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02001807 MPI_CHK( mpi_sub_abs( N, C, N ) );
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001808 N->s = -1;
1809
1810cleanup:
1811
1812 return( ret );
1813}
1814
1815#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
1816/*
1817 * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
1818 */
1819static int ecp_mod_p224( mpi *N )
1820{
1821 INIT( 224 );
1822
1823 SUB( 7 ); SUB( 11 ); NEXT; // A0 += -A7 - A11
1824 SUB( 8 ); SUB( 12 ); NEXT; // A1 += -A8 - A12
1825 SUB( 9 ); SUB( 13 ); NEXT; // A2 += -A9 - A13
1826 SUB( 10 ); ADD( 7 ); ADD( 11 ); NEXT; // A3 += -A10 + A7 + A11
1827 SUB( 11 ); ADD( 8 ); ADD( 12 ); NEXT; // A4 += -A11 + A8 + A12
1828 SUB( 12 ); ADD( 9 ); ADD( 13 ); NEXT; // A5 += -A12 + A9 + A13
1829 SUB( 13 ); ADD( 10 ); LAST; // A6 += -A13 + A10
1830
1831cleanup:
1832 return( ret );
1833}
1834#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
1835
1836#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
1837/*
1838 * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
1839 */
1840static int ecp_mod_p256( mpi *N )
1841{
1842 INIT( 256 );
1843
1844 ADD( 8 ); ADD( 9 );
1845 SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 ); NEXT; // A0
1846
1847 ADD( 9 ); ADD( 10 );
1848 SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A1
1849
1850 ADD( 10 ); ADD( 11 );
1851 SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A2
1852
1853 ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
1854 SUB( 15 ); SUB( 8 ); SUB( 9 ); NEXT; // A3
1855
1856 ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
1857 SUB( 9 ); SUB( 10 ); NEXT; // A4
1858
1859 ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
1860 SUB( 10 ); SUB( 11 ); NEXT; // A5
1861
1862 ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
1863 SUB( 8 ); SUB( 9 ); NEXT; // A6
1864
1865 ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
1866 SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 ); LAST; // A7
1867
1868cleanup:
1869 return( ret );
1870}
1871#endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
1872
1873#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
1874/*
1875 * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
1876 */
1877static int ecp_mod_p384( mpi *N )
1878{
1879 INIT( 384 );
1880
1881 ADD( 12 ); ADD( 21 ); ADD( 20 );
1882 SUB( 23 ); NEXT; // A0
1883
1884 ADD( 13 ); ADD( 22 ); ADD( 23 );
1885 SUB( 12 ); SUB( 20 ); NEXT; // A2
1886
1887 ADD( 14 ); ADD( 23 );
1888 SUB( 13 ); SUB( 21 ); NEXT; // A2
1889
1890 ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
1891 SUB( 14 ); SUB( 22 ); SUB( 23 ); NEXT; // A3
1892
1893 ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
1894 SUB( 15 ); SUB( 23 ); SUB( 23 ); NEXT; // A4
1895
1896 ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
1897 SUB( 16 ); NEXT; // A5
1898
1899 ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
1900 SUB( 17 ); NEXT; // A6
1901
1902 ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
1903 SUB( 18 ); NEXT; // A7
1904
1905 ADD( 20 ); ADD( 17 ); ADD( 16 );
1906 SUB( 19 ); NEXT; // A8
1907
1908 ADD( 21 ); ADD( 18 ); ADD( 17 );
1909 SUB( 20 ); NEXT; // A9
1910
1911 ADD( 22 ); ADD( 19 ); ADD( 18 );
1912 SUB( 21 ); NEXT; // A10
1913
1914 ADD( 23 ); ADD( 20 ); ADD( 19 );
1915 SUB( 22 ); LAST; // A11
1916
1917cleanup:
1918 return( ret );
1919}
1920#endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
1921
1922#undef A
1923#undef LOAD32
1924#undef STORE32
1925#undef MAX32
1926#undef INIT
1927#undef NEXT
1928#undef LAST
1929
1930#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED ||
1931 POLARSSL_ECP_DP_SECP256R1_ENABLED ||
1932 POLARSSL_ECP_DP_SECP384R1_ENABLED */
1933
1934#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
1935/*
1936 * Here we have an actual Mersenne prime, so things are more straightforward.
1937 * However, chunks are aligned on a 'weird' boundary (521 bits).
1938 */
1939
1940/* Size of p521 in terms of t_uint */
1941#define P521_WIDTH ( 521 / 8 / sizeof( t_uint ) + 1 )
1942
1943/* Bits to keep in the most significant t_uint */
1944#if defined(POLARSSL_HAVE_INT8)
1945#define P521_MASK 0x01
1946#else
1947#define P521_MASK 0x01FF
1948#endif
1949
1950/*
1951 * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
1952 * Write N as A1 + 2^521 A0, return A0 + A1
1953 */
1954static int ecp_mod_p521( mpi *N )
1955{
1956 int ret;
1957 size_t i;
1958 mpi M;
1959 t_uint Mp[P521_WIDTH + 1];
1960 /* Worst case for the size of M is when t_uint is 16 bits:
1961 * we need to hold bits 513 to 1056, which is 34 limbs, that is
1962 * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
1963
1964 if( N->n < P521_WIDTH )
1965 return( 0 );
1966
1967 /* M = A1 */
1968 M.s = 1;
1969 M.n = N->n - ( P521_WIDTH - 1 );
1970 if( M.n > P521_WIDTH + 1 )
1971 M.n = P521_WIDTH + 1;
1972 M.p = Mp;
1973 memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( t_uint ) );
1974 MPI_CHK( mpi_shift_r( &M, 521 % ( 8 * sizeof( t_uint ) ) ) );
1975
1976 /* N = A0 */
1977 N->p[P521_WIDTH - 1] &= P521_MASK;
1978 for( i = P521_WIDTH; i < N->n; i++ )
1979 N->p[i] = 0;
1980
1981 /* N = A0 + A1 */
1982 MPI_CHK( mpi_add_abs( N, N, &M ) );
1983
1984cleanup:
1985 return( ret );
1986}
1987
1988#undef P521_WIDTH
1989#undef P521_MASK
1990#endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
1991
1992#endif /* POLARSSL_ECP_NIST_OPTIM */
1993
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +01001994#if defined(POLARSSL_SELF_TEST)
1995
Manuel Pégourié-Gonnardb505c272012-11-05 17:27:54 +01001996/*
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +01001997 * Checkup routine
1998 */
1999int ecp_self_test( int verbose )
2000{
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002001 int ret;
2002 size_t i;
2003 ecp_group grp;
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02002004 ecp_point R, P;
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002005 mpi m;
2006 unsigned long add_c_prev, dbl_c_prev;
Manuel Pégourié-Gonnardb8012fc2013-10-10 15:40:49 +02002007 /* exponents especially adapted for secp192r1 */
Paul Bakkerb6c5d2e2013-06-25 16:25:17 +02002008 const char *exponents[] =
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002009 {
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01002010 "000000000000000000000000000000000000000000000000", /* zero */
2011 "000000000000000000000000000000000000000000000001", /* one */
2012 "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831", /* N */
2013 "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002014 "400000000000000000000000000000000000000000000000",
2015 "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
2016 "555555555555555555555555555555555555555555555555",
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002017 };
2018
2019 ecp_group_init( &grp );
2020 ecp_point_init( &R );
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02002021 ecp_point_init( &P );
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002022 mpi_init( &m );
2023
Manuel Pégourié-Gonnardb8012fc2013-10-10 15:40:49 +02002024 /* Use secp192r1 if available, or any available curve */
Paul Bakker5dc6b5f2013-06-29 23:26:34 +02002025#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002026 MPI_CHK( ecp_use_known_dp( &grp, POLARSSL_ECP_DP_SECP192R1 ) );
Paul Bakker5dc6b5f2013-06-29 23:26:34 +02002027#else
Manuel Pégourié-Gonnardb8012fc2013-10-10 15:40:49 +02002028 MPI_CHK( ecp_use_known_dp( &grp, ecp_curve_list()->grp_id ) );
2029#endif
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002030
2031 if( verbose != 0 )
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02002032 printf( " ECP test #1 (constant op_count, base point G): " );
2033
2034 /* Do a dummy multiplication first to trigger precomputation */
2035 MPI_CHK( mpi_lset( &m, 2 ) );
2036 MPI_CHK( ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) );
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002037
2038 add_count = 0;
2039 dbl_count = 0;
2040 MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) );
Manuel Pégourié-Gonnarde09d2f82013-09-02 14:29:09 +02002041 MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002042
2043 for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
2044 {
2045 add_c_prev = add_count;
2046 dbl_c_prev = dbl_count;
2047 add_count = 0;
2048 dbl_count = 0;
2049
2050 MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) );
Manuel Pégourié-Gonnarde09d2f82013-09-02 14:29:09 +02002051 MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002052
2053 if( add_count != add_c_prev || dbl_count != dbl_c_prev )
2054 {
2055 if( verbose != 0 )
2056 printf( "failed (%zu)\n", i );
2057
2058 ret = 1;
2059 goto cleanup;
2060 }
2061 }
2062
2063 if( verbose != 0 )
2064 printf( "passed\n" );
2065
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02002066 if( verbose != 0 )
2067 printf( " ECP test #2 (constant op_count, other point): " );
2068 /* We computed P = 2G last time, use it */
2069
2070 add_count = 0;
2071 dbl_count = 0;
2072 MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) );
2073 MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
2074
2075 for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
2076 {
2077 add_c_prev = add_count;
2078 dbl_c_prev = dbl_count;
2079 add_count = 0;
2080 dbl_count = 0;
2081
2082 MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) );
2083 MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
2084
2085 if( add_count != add_c_prev || dbl_count != dbl_c_prev )
2086 {
2087 if( verbose != 0 )
2088 printf( "failed (%zu)\n", i );
2089
2090 ret = 1;
2091 goto cleanup;
2092 }
2093 }
2094
2095 if( verbose != 0 )
2096 printf( "passed\n" );
2097
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002098cleanup:
2099
2100 if( ret < 0 && verbose != 0 )
2101 printf( "Unexpected error, return code = %08X\n", ret );
2102
2103 ecp_group_free( &grp );
2104 ecp_point_free( &R );
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02002105 ecp_point_free( &P );
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002106 mpi_free( &m );
2107
2108 if( verbose != 0 )
2109 printf( "\n" );
2110
2111 return( ret );
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +01002112}
2113
2114#endif
2115
2116#endif