blob: eb6bf6ca57561f4e2b6bbe9adb1fb1fb399945b7 [file] [log] [blame]
Jaeden Ameroe54e6932018-08-06 16:19:58 +01001/**
2 * \file ecp.h
3 *
4 * \brief This file provides an API for Elliptic Curves over GF(P) (ECP).
5 *
6 * The use of ECP in cryptography and TLS is defined in
7 * <em>Standards for Efficient Cryptography Group (SECG): SEC1
8 * Elliptic Curve Cryptography</em> and
9 * <em>RFC-4492: Elliptic Curve Cryptography (ECC) Cipher Suites
10 * for Transport Layer Security (TLS)</em>.
11 *
12 * <em>RFC-2409: The Internet Key Exchange (IKE)</em> defines ECP
13 * group types.
14 *
15 */
16
17/*
18 * Copyright (C) 2006-2018, Arm Limited (or its affiliates), All Rights Reserved
19 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
32 *
33 * This file is part of Mbed Crypto (https://tls.mbed.org)
34 */
35
36#ifndef MBEDCRYPTO_ECP_H
37#define MBEDCRYPTO_ECP_H
38
39#include "bignum.h"
40
41/*
42 * ECP error codes
43 */
44#define MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA -0x4F80 /**< Bad input parameters to function. */
45#define MBEDCRYPTO_ERR_ECP_BUFFER_TOO_SMALL -0x4F00 /**< The buffer is too small to write to. */
46#define MBEDCRYPTO_ERR_ECP_FEATURE_UNAVAILABLE -0x4E80 /**< The requested feature is not available, for example, the requested curve is not supported. */
47#define MBEDCRYPTO_ERR_ECP_VERIFY_FAILED -0x4E00 /**< The signature is not valid. */
48#define MBEDCRYPTO_ERR_ECP_ALLOC_FAILED -0x4D80 /**< Memory allocation failed. */
49#define MBEDCRYPTO_ERR_ECP_RANDOM_FAILED -0x4D00 /**< Generation of random value, such as ephemeral key, failed. */
50#define MBEDCRYPTO_ERR_ECP_INVALID_KEY -0x4C80 /**< Invalid private or public key. */
51#define MBEDCRYPTO_ERR_ECP_SIG_LEN_MISMATCH -0x4C00 /**< The buffer contains a valid signature followed by more data. */
52#define MBEDCRYPTO_ERR_ECP_HW_ACCEL_FAILED -0x4B80 /**< The ECP hardware accelerator failed. */
53
54#ifdef __cplusplus
55extern "C" {
56#endif
57
58/**
59 * Domain-parameter identifiers: curve, subgroup, and generator.
60 *
61 * \note Only curves over prime fields are supported.
62 *
63 * \warning This library does not support validation of arbitrary domain
64 * parameters. Therefore, only standardized domain parameters from trusted
65 * sources should be used. See mbedcrypto_ecp_group_load().
66 */
67typedef enum
68{
69 MBEDCRYPTO_ECP_DP_NONE = 0, /*!< Curve not defined. */
70 MBEDCRYPTO_ECP_DP_SECP192R1, /*!< Domain parameters for the 192-bit curve defined by FIPS 186-4 and SEC1. */
71 MBEDCRYPTO_ECP_DP_SECP224R1, /*!< Domain parameters for the 224-bit curve defined by FIPS 186-4 and SEC1. */
72 MBEDCRYPTO_ECP_DP_SECP256R1, /*!< Domain parameters for the 256-bit curve defined by FIPS 186-4 and SEC1. */
73 MBEDCRYPTO_ECP_DP_SECP384R1, /*!< Domain parameters for the 384-bit curve defined by FIPS 186-4 and SEC1. */
74 MBEDCRYPTO_ECP_DP_SECP521R1, /*!< Domain parameters for the 521-bit curve defined by FIPS 186-4 and SEC1. */
75 MBEDCRYPTO_ECP_DP_BP256R1, /*!< Domain parameters for 256-bit Brainpool curve. */
76 MBEDCRYPTO_ECP_DP_BP384R1, /*!< Domain parameters for 384-bit Brainpool curve. */
77 MBEDCRYPTO_ECP_DP_BP512R1, /*!< Domain parameters for 512-bit Brainpool curve. */
78 MBEDCRYPTO_ECP_DP_CURVE25519, /*!< Domain parameters for Curve25519. */
79 MBEDCRYPTO_ECP_DP_SECP192K1, /*!< Domain parameters for 192-bit "Koblitz" curve. */
80 MBEDCRYPTO_ECP_DP_SECP224K1, /*!< Domain parameters for 224-bit "Koblitz" curve. */
81 MBEDCRYPTO_ECP_DP_SECP256K1, /*!< Domain parameters for 256-bit "Koblitz" curve. */
82 MBEDCRYPTO_ECP_DP_CURVE448, /*!< Domain parameters for Curve448. */
83} mbedcrypto_ecp_group_id;
84
85/**
86 * The number of supported curves, plus one for #MBEDCRYPTO_ECP_DP_NONE.
87 *
88 * \note Montgomery curves are currently excluded.
89 */
90#define MBEDCRYPTO_ECP_DP_MAX 12
91
92/**
93 * Curve information, for use by other modules.
94 */
95typedef struct
96{
97 mbedcrypto_ecp_group_id grp_id; /*!< An internal identifier. */
98 uint16_t tls_id; /*!< The TLS NamedCurve identifier. */
99 uint16_t bit_size; /*!< The curve size in bits. */
100 const char *name; /*!< A human-friendly name. */
101} mbedcrypto_ecp_curve_info;
102
103/**
104 * \brief The ECP point structure, in Jacobian coordinates.
105 *
106 * \note All functions expect and return points satisfying
107 * the following condition: <code>Z == 0</code> or
108 * <code>Z == 1</code>. Other values of \p Z are
109 * used only by internal functions.
110 * The point is zero, or "at infinity", if <code>Z == 0</code>.
111 * Otherwise, \p X and \p Y are its standard (affine)
112 * coordinates.
113 */
114typedef struct
115{
116 mbedcrypto_mpi X; /*!< The X coordinate of the ECP point. */
117 mbedcrypto_mpi Y; /*!< The Y coordinate of the ECP point. */
118 mbedcrypto_mpi Z; /*!< The Z coordinate of the ECP point. */
119}
120mbedcrypto_ecp_point;
121
122#if !defined(MBEDCRYPTO_ECP_ALT)
123/*
124 * default Mbed Crypto elliptic curve arithmetic implementation
125 *
126 * (in case MBEDCRYPTO_ECP_ALT is defined then the developer has to provide an
127 * alternative implementation for the whole module and it will replace this
128 * one.)
129 */
130
131/**
132 * \brief The ECP group structure.
133 *
134 * We consider two types of curve equations:
135 * <ul><li>Short Weierstrass: <code>y^2 = x^3 + A x + B mod P</code>
136 * (SEC1 + RFC-4492)</li>
137 * <li>Montgomery: <code>y^2 = x^3 + A x^2 + x mod P</code> (Curve25519,
138 * Curve448)</li></ul>
139 * In both cases, the generator (\p G) for a prime-order subgroup is fixed.
140 *
141 * For Short Weierstrass, this subgroup is the whole curve, and its
142 * cardinality is denoted by \p N. Our code requires that \p N is an
143 * odd prime as mbedcrypto_ecp_mul() requires an odd number, and
144 * mbedcrypto_ecdsa_sign() requires that it is prime for blinding purposes.
145 *
146 * For Montgomery curves, we do not store \p A, but <code>(A + 2) / 4</code>,
147 * which is the quantity used in the formulas. Additionally, \p nbits is
148 * not the size of \p N but the required size for private keys.
149 *
150 * If \p modp is NULL, reduction modulo \p P is done using a generic algorithm.
151 * Otherwise, \p modp must point to a function that takes an \p mbedcrypto_mpi in the
152 * range of <code>0..2^(2*pbits)-1</code>, and transforms it in-place to an integer
153 * which is congruent mod \p P to the given MPI, and is close enough to \p pbits
154 * in size, so that it may be efficiently brought in the 0..P-1 range by a few
155 * additions or subtractions. Therefore, it is only an approximative modular
156 * reduction. It must return 0 on success and non-zero on failure.
157 *
158 */
159typedef struct
160{
161 mbedcrypto_ecp_group_id id; /*!< An internal group identifier. */
162 mbedcrypto_mpi P; /*!< The prime modulus of the base field. */
163 mbedcrypto_mpi A; /*!< For Short Weierstrass: \p A in the equation. For
164 Montgomery curves: <code>(A + 2) / 4</code>. */
165 mbedcrypto_mpi B; /*!< For Short Weierstrass: \p B in the equation.
166 For Montgomery curves: unused. */
167 mbedcrypto_ecp_point G; /*!< The generator of the subgroup used. */
168 mbedcrypto_mpi N; /*!< The order of \p G. */
169 size_t pbits; /*!< The number of bits in \p P.*/
170 size_t nbits; /*!< For Short Weierstrass: The number of bits in \p P.
171 For Montgomery curves: the number of bits in the
172 private keys. */
173 unsigned int h; /*!< \internal 1 if the constants are static. */
174 int (*modp)(mbedcrypto_mpi *); /*!< The function for fast pseudo-reduction
175 mod \p P (see above).*/
176 int (*t_pre)(mbedcrypto_ecp_point *, void *); /*!< Unused. */
177 int (*t_post)(mbedcrypto_ecp_point *, void *); /*!< Unused. */
178 void *t_data; /*!< Unused. */
179 mbedcrypto_ecp_point *T; /*!< Pre-computed points for ecp_mul_comb(). */
180 size_t T_size; /*!< The number of pre-computed points. */
181}
182mbedcrypto_ecp_group;
183
184/**
185 * \name SECTION: Module settings
186 *
187 * The configuration options you can set for this module are in this section.
188 * Either change them in config.h, or define them using the compiler command line.
189 * \{
190 */
191
192#if !defined(MBEDCRYPTO_ECP_MAX_BITS)
193/**
194 * The maximum size of the groups, that is, of \c N and \c P.
195 */
196#define MBEDCRYPTO_ECP_MAX_BITS 521 /**< The maximum size of groups, in bits. */
197#endif
198
199#define MBEDCRYPTO_ECP_MAX_BYTES ( ( MBEDCRYPTO_ECP_MAX_BITS + 7 ) / 8 )
200#define MBEDCRYPTO_ECP_MAX_PT_LEN ( 2 * MBEDCRYPTO_ECP_MAX_BYTES + 1 )
201
202#if !defined(MBEDCRYPTO_ECP_WINDOW_SIZE)
203/*
204 * Maximum "window" size used for point multiplication.
205 * Default: 6.
206 * Minimum value: 2. Maximum value: 7.
207 *
208 * Result is an array of at most ( 1 << ( MBEDCRYPTO_ECP_WINDOW_SIZE - 1 ) )
209 * points used for point multiplication. This value is directly tied to EC
210 * peak memory usage, so decreasing it by one should roughly cut memory usage
211 * by two (if large curves are in use).
212 *
213 * Reduction in size may reduce speed, but larger curves are impacted first.
214 * Sample performances (in ECDHE handshakes/s, with FIXED_POINT_OPTIM = 1):
215 * w-size: 6 5 4 3 2
216 * 521 145 141 135 120 97
217 * 384 214 209 198 177 146
218 * 256 320 320 303 262 226
219 * 224 475 475 453 398 342
220 * 192 640 640 633 587 476
221 */
222#define MBEDCRYPTO_ECP_WINDOW_SIZE 6 /**< The maximum window size used. */
223#endif /* MBEDCRYPTO_ECP_WINDOW_SIZE */
224
225#if !defined(MBEDCRYPTO_ECP_FIXED_POINT_OPTIM)
226/*
227 * Trade memory for speed on fixed-point multiplication.
228 *
229 * This speeds up repeated multiplication of the generator (that is, the
230 * multiplication in ECDSA signatures, and half of the multiplications in
231 * ECDSA verification and ECDHE) by a factor roughly 3 to 4.
232 *
233 * The cost is increasing EC peak memory usage by a factor roughly 2.
234 *
235 * Change this value to 0 to reduce peak memory usage.
236 */
237#define MBEDCRYPTO_ECP_FIXED_POINT_OPTIM 1 /**< Enable fixed-point speed-up. */
238#endif /* MBEDCRYPTO_ECP_FIXED_POINT_OPTIM */
239
240/* \} name SECTION: Module settings */
241
242#else /* MBEDCRYPTO_ECP_ALT */
243#include "ecp_alt.h"
244#endif /* MBEDCRYPTO_ECP_ALT */
245
246/**
247 * \brief The ECP key-pair structure.
248 *
249 * A generic key-pair that may be used for ECDSA and fixed ECDH, for example.
250 *
251 * \note Members are deliberately in the same order as in the
252 * ::mbedcrypto_ecdsa_context structure.
253 */
254typedef struct
255{
256 mbedcrypto_ecp_group grp; /*!< Elliptic curve and base point */
257 mbedcrypto_mpi d; /*!< our secret value */
258 mbedcrypto_ecp_point Q; /*!< our public value */
259}
260mbedcrypto_ecp_keypair;
261
262/*
263 * Point formats, from RFC 4492's enum ECPointFormat
264 */
265#define MBEDCRYPTO_ECP_PF_UNCOMPRESSED 0 /**< Uncompressed point format. */
266#define MBEDCRYPTO_ECP_PF_COMPRESSED 1 /**< Compressed point format. */
267
268/*
269 * Some other constants from RFC 4492
270 */
271#define MBEDCRYPTO_ECP_TLS_NAMED_CURVE 3 /**< The named_curve of ECCurveType. */
272
273/**
274 * \brief This function retrieves the information defined in
275 * mbedcrypto_ecp_curve_info() for all supported curves in order
276 * of preference.
277 *
278 * \return A statically allocated array. The last entry is 0.
279 */
280const mbedcrypto_ecp_curve_info *mbedcrypto_ecp_curve_list( void );
281
282/**
283 * \brief This function retrieves the list of internal group
284 * identifiers of all supported curves in the order of
285 * preference.
286 *
287 * \return A statically allocated array,
288 * terminated with MBEDCRYPTO_ECP_DP_NONE.
289 */
290const mbedcrypto_ecp_group_id *mbedcrypto_ecp_grp_id_list( void );
291
292/**
293 * \brief This function retrieves curve information from an internal
294 * group identifier.
295 *
296 * \param grp_id An \c MBEDCRYPTO_ECP_DP_XXX value.
297 *
298 * \return The associated curve information on success.
299 * \return NULL on failure.
300 */
301const mbedcrypto_ecp_curve_info *mbedcrypto_ecp_curve_info_from_grp_id( mbedcrypto_ecp_group_id grp_id );
302
303/**
304 * \brief This function retrieves curve information from a TLS
305 * NamedCurve value.
306 *
307 * \param tls_id An \c MBEDCRYPTO_ECP_DP_XXX value.
308 *
309 * \return The associated curve information on success.
310 * \return NULL on failure.
311 */
312const mbedcrypto_ecp_curve_info *mbedcrypto_ecp_curve_info_from_tls_id( uint16_t tls_id );
313
314/**
315 * \brief This function retrieves curve information from a
316 * human-readable name.
317 *
318 * \param name The human-readable name.
319 *
320 * \return The associated curve information on success.
321 * \return NULL on failure.
322 */
323const mbedcrypto_ecp_curve_info *mbedcrypto_ecp_curve_info_from_name( const char *name );
324
325/**
326 * \brief This function initializes a point as zero.
327 *
328 * \param pt The point to initialize.
329 */
330void mbedcrypto_ecp_point_init( mbedcrypto_ecp_point *pt );
331
332/**
333 * \brief This function initializes an ECP group context
334 * without loading any domain parameters.
335 *
336 * \note After this function is called, domain parameters
337 * for various ECP groups can be loaded through the
338 * mbedcrypto_ecp_load() or mbedcrypto_ecp_tls_read_group()
339 * functions.
340 */
341void mbedcrypto_ecp_group_init( mbedcrypto_ecp_group *grp );
342
343/**
344 * \brief This function initializes a key pair as an invalid one.
345 *
346 * \param key The key pair to initialize.
347 */
348void mbedcrypto_ecp_keypair_init( mbedcrypto_ecp_keypair *key );
349
350/**
351 * \brief This function frees the components of a point.
352 *
353 * \param pt The point to free.
354 */
355void mbedcrypto_ecp_point_free( mbedcrypto_ecp_point *pt );
356
357/**
358 * \brief This function frees the components of an ECP group.
359 * \param grp The group to free.
360 */
361void mbedcrypto_ecp_group_free( mbedcrypto_ecp_group *grp );
362
363/**
364 * \brief This function frees the components of a key pair.
365 * \param key The key pair to free.
366 */
367void mbedcrypto_ecp_keypair_free( mbedcrypto_ecp_keypair *key );
368
369/**
370 * \brief This function copies the contents of point \p Q into
371 * point \p P.
372 *
373 * \param P The destination point.
374 * \param Q The source point.
375 *
376 * \return \c 0 on success.
377 * \return #MBEDCRYPTO_ERR_MPI_ALLOC_FAILED on memory-allocation failure.
378 */
379int mbedcrypto_ecp_copy( mbedcrypto_ecp_point *P, const mbedcrypto_ecp_point *Q );
380
381/**
382 * \brief This function copies the contents of group \p src into
383 * group \p dst.
384 *
385 * \param dst The destination group.
386 * \param src The source group.
387 *
388 * \return \c 0 on success.
389 * \return #MBEDCRYPTO_ERR_MPI_ALLOC_FAILED on memory-allocation failure.
390 */
391int mbedcrypto_ecp_group_copy( mbedcrypto_ecp_group *dst, const mbedcrypto_ecp_group *src );
392
393/**
394 * \brief This function sets a point to zero.
395 *
396 * \param pt The point to set.
397 *
398 * \return \c 0 on success.
399 * \return #MBEDCRYPTO_ERR_MPI_ALLOC_FAILED on memory-allocation failure.
400 */
401int mbedcrypto_ecp_set_zero( mbedcrypto_ecp_point *pt );
402
403/**
404 * \brief This function checks if a point is zero.
405 *
406 * \param pt The point to test.
407 *
408 * \return \c 1 if the point is zero.
409 * \return \c 0 if the point is non-zero.
410 */
411int mbedcrypto_ecp_is_zero( mbedcrypto_ecp_point *pt );
412
413/**
414 * \brief This function compares two points.
415 *
416 * \note This assumes that the points are normalized. Otherwise,
417 * they may compare as "not equal" even if they are.
418 *
419 * \param P The first point to compare.
420 * \param Q The second point to compare.
421 *
422 * \return \c 0 if the points are equal.
423 * \return #MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA if the points are not equal.
424 */
425int mbedcrypto_ecp_point_cmp( const mbedcrypto_ecp_point *P,
426 const mbedcrypto_ecp_point *Q );
427
428/**
429 * \brief This function imports a non-zero point from two ASCII
430 * strings.
431 *
432 * \param P The destination point.
433 * \param radix The numeric base of the input.
434 * \param x The first affine coordinate, as a null-terminated string.
435 * \param y The second affine coordinate, as a null-terminated string.
436 *
437 * \return \c 0 on success.
438 * \return An \c MBEDCRYPTO_ERR_MPI_XXX error code on failure.
439 */
440int mbedcrypto_ecp_point_read_string( mbedcrypto_ecp_point *P, int radix,
441 const char *x, const char *y );
442
443/**
444 * \brief This function exports a point into unsigned binary data.
445 *
446 * \param grp The group to which the point should belong.
447 * \param P The point to export.
448 * \param format The point format. Should be an \c MBEDCRYPTO_ECP_PF_XXX macro.
449 * \param olen The length of the output.
450 * \param buf The output buffer.
451 * \param buflen The length of the output buffer.
452 *
453 * \return \c 0 on success.
454 * \return #MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA
455 * or #MBEDCRYPTO_ERR_ECP_BUFFER_TOO_SMALL on failure.
456 */
457int mbedcrypto_ecp_point_write_binary( const mbedcrypto_ecp_group *grp, const mbedcrypto_ecp_point *P,
458 int format, size_t *olen,
459 unsigned char *buf, size_t buflen );
460
461/**
462 * \brief This function imports a point from unsigned binary data.
463 *
464 * \note This function does not check that the point actually
465 * belongs to the given group, see mbedcrypto_ecp_check_pubkey()
466 * for that.
467 *
468 * \param grp The group to which the point should belong.
469 * \param P The point to import.
470 * \param buf The input buffer.
471 * \param ilen The length of the input.
472 *
473 * \return \c 0 on success.
474 * \return #MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA if input is invalid.
475 * \return #MBEDCRYPTO_ERR_MPI_ALLOC_FAILED on memory-allocation failure.
476 * \return #MBEDCRYPTO_ERR_ECP_FEATURE_UNAVAILABLE if the point format
477 * is not implemented.
478 *
479 */
480int mbedcrypto_ecp_point_read_binary( const mbedcrypto_ecp_group *grp, mbedcrypto_ecp_point *P,
481 const unsigned char *buf, size_t ilen );
482
483/**
484 * \brief This function imports a point from a TLS ECPoint record.
485 *
486 * \note On function return, \p buf is updated to point to immediately
487 * after the ECPoint record.
488 *
489 * \param grp The ECP group used.
490 * \param pt The destination point.
491 * \param buf The address of the pointer to the start of the input buffer.
492 * \param len The length of the buffer.
493 *
494 * \return \c 0 on success.
495 * \return An \c MBEDCRYPTO_ERR_MPI_XXX error code on initialization failure.
496 * \return #MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA if input is invalid.
497 */
498int mbedcrypto_ecp_tls_read_point( const mbedcrypto_ecp_group *grp, mbedcrypto_ecp_point *pt,
499 const unsigned char **buf, size_t len );
500
501/**
502 * \brief This function exports a point as a TLS ECPoint record.
503 *
504 * \param grp The ECP group used.
505 * \param pt The point format to export to. The point format is an
506 * \c MBEDCRYPTO_ECP_PF_XXX constant.
507 * \param format The export format.
508 * \param olen The length of the data written.
509 * \param buf The buffer to write to.
510 * \param blen The length of the buffer.
511 *
512 * \return \c 0 on success.
513 * \return #MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA or
514 * #MBEDCRYPTO_ERR_ECP_BUFFER_TOO_SMALL on failure.
515 */
516int mbedcrypto_ecp_tls_write_point( const mbedcrypto_ecp_group *grp, const mbedcrypto_ecp_point *pt,
517 int format, size_t *olen,
518 unsigned char *buf, size_t blen );
519
520/**
521 * \brief This function sets a group using standardized domain parameters.
522 *
523 * \note The index should be a value of the NamedCurve enum,
524 * as defined in <em>RFC-4492: Elliptic Curve Cryptography
525 * (ECC) Cipher Suites for Transport Layer Security (TLS)</em>,
526 * usually in the form of an \c MBEDCRYPTO_ECP_DP_XXX macro.
527 *
528 * \param grp The destination group.
529 * \param id The identifier of the domain parameter set to load.
530 *
531 * \return \c 0 on success,
532 * \return An \c MBEDCRYPTO_ERR_MPI_XXX error code on initialization failure.
533 * \return #MBEDCRYPTO_ERR_ECP_FEATURE_UNAVAILABLE for unkownn groups.
534
535 */
536int mbedcrypto_ecp_group_load( mbedcrypto_ecp_group *grp, mbedcrypto_ecp_group_id id );
537
538/**
539 * \brief This function sets a group from a TLS ECParameters record.
540 *
541 * \note \p buf is updated to point right after the ECParameters record
542 * on exit.
543 *
544 * \param grp The destination group.
545 * \param buf The address of the pointer to the start of the input buffer.
546 * \param len The length of the buffer.
547 *
548 * \return \c 0 on success.
549 * \return An \c MBEDCRYPTO_ERR_MPI_XXX error code on initialization failure.
550 * \return #MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA if input is invalid.
551 */
552int mbedcrypto_ecp_tls_read_group( mbedcrypto_ecp_group *grp, const unsigned char **buf, size_t len );
553
554/**
555 * \brief This function writes the TLS ECParameters record for a group.
556 *
557 * \param grp The ECP group used.
558 * \param olen The number of Bytes written.
559 * \param buf The buffer to write to.
560 * \param blen The length of the buffer.
561 *
562 * \return \c 0 on success.
563 * \return #MBEDCRYPTO_ERR_ECP_BUFFER_TOO_SMALL on failure.
564 */
565int mbedcrypto_ecp_tls_write_group( const mbedcrypto_ecp_group *grp, size_t *olen,
566 unsigned char *buf, size_t blen );
567
568/**
569 * \brief This function performs multiplication of a point by
570 * an integer: \p R = \p m * \p P.
571 *
572 * It is not thread-safe to use same group in multiple threads.
573 *
574 * \note To prevent timing attacks, this function
575 * executes the exact same sequence of base-field
576 * operations for any valid \p m. It avoids any if-branch or
577 * array index depending on the value of \p m.
578 *
579 * \note If \p f_rng is not NULL, it is used to randomize
580 * intermediate results to prevent potential timing attacks
581 * targeting these results. We recommend always providing
582 * a non-NULL \p f_rng. The overhead is negligible.
583 *
584 * \param grp The ECP group.
585 * \param R The destination point.
586 * \param m The integer by which to multiply.
587 * \param P The point to multiply.
588 * \param f_rng The RNG function.
589 * \param p_rng The RNG context.
590 *
591 * \return \c 0 on success.
592 * \return #MBEDCRYPTO_ERR_ECP_INVALID_KEY if \p m is not a valid private
593 * key, or \p P is not a valid public key.
594 * \return #MBEDCRYPTO_ERR_MPI_ALLOC_FAILED on memory-allocation failure.
595 */
596int mbedcrypto_ecp_mul( mbedcrypto_ecp_group *grp, mbedcrypto_ecp_point *R,
597 const mbedcrypto_mpi *m, const mbedcrypto_ecp_point *P,
598 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng );
599
600/**
601 * \brief This function performs multiplication and addition of two
602 * points by integers: \p R = \p m * \p P + \p n * \p Q
603 *
604 * It is not thread-safe to use same group in multiple threads.
605 *
606 * \note In contrast to mbedcrypto_ecp_mul(), this function does not
607 * guarantee a constant execution flow and timing.
608 *
609 * \param grp The ECP group.
610 * \param R The destination point.
611 * \param m The integer by which to multiply \p P.
612 * \param P The point to multiply by \p m.
613 * \param n The integer by which to multiply \p Q.
614 * \param Q The point to be multiplied by \p n.
615 *
616 * \return \c 0 on success.
617 * \return #MBEDCRYPTO_ERR_ECP_INVALID_KEY if \p m or \p n are not
618 * valid private keys, or \p P or \p Q are not valid public
619 * keys.
620 * \return #MBEDCRYPTO_ERR_MPI_ALLOC_FAILED on memory-allocation failure.
621 */
622int mbedcrypto_ecp_muladd( mbedcrypto_ecp_group *grp, mbedcrypto_ecp_point *R,
623 const mbedcrypto_mpi *m, const mbedcrypto_ecp_point *P,
624 const mbedcrypto_mpi *n, const mbedcrypto_ecp_point *Q );
625
626/**
627 * \brief This function checks that a point is a valid public key
628 * on this curve.
629 *
630 * It only checks that the point is non-zero, has
631 * valid coordinates and lies on the curve. It does not verify
632 * that it is indeed a multiple of \p G. This additional
633 * check is computationally more expensive, is not required
634 * by standards, and should not be necessary if the group
635 * used has a small cofactor. In particular, it is useless for
636 * the NIST groups which all have a cofactor of 1.
637 *
638 * \note This function uses bare components rather than an
639 * ::mbedcrypto_ecp_keypair structure, to ease use with other
640 * structures, such as ::mbedcrypto_ecdh_context or
641 * ::mbedcrypto_ecdsa_context.
642 *
643 * \param grp The curve the point should lie on.
644 * \param pt The point to check.
645 *
646 * \return \c 0 if the point is a valid public key.
647 * \return #MBEDCRYPTO_ERR_ECP_INVALID_KEY on failure.
648 */
649int mbedcrypto_ecp_check_pubkey( const mbedcrypto_ecp_group *grp, const mbedcrypto_ecp_point *pt );
650
651/**
652 * \brief This function checks that an \p mbedcrypto_mpi is a valid private
653 * key for this curve.
654 *
655 * \note This function uses bare components rather than an
656 * ::mbedcrypto_ecp_keypair structure to ease use with other
657 * structures, such as ::mbedcrypto_ecdh_context or
658 * ::mbedcrypto_ecdsa_context.
659 *
660 * \param grp The group used.
661 * \param d The integer to check.
662 *
663 * \return \c 0 if the point is a valid private key.
664 * \return #MBEDCRYPTO_ERR_ECP_INVALID_KEY on failure.
665 */
666int mbedcrypto_ecp_check_privkey( const mbedcrypto_ecp_group *grp, const mbedcrypto_mpi *d );
667
668/**
669 * \brief This function generates a keypair with a configurable base
670 * point.
671 *
672 * \note This function uses bare components rather than an
673 * ::mbedcrypto_ecp_keypair structure to ease use with other
674 * structures, such as ::mbedcrypto_ecdh_context or
675 * ::mbedcrypto_ecdsa_context.
676 *
677 * \param grp The ECP group.
678 * \param G The chosen base point.
679 * \param d The destination MPI (secret part).
680 * \param Q The destination point (public part).
681 * \param f_rng The RNG function.
682 * \param p_rng The RNG context.
683 *
684 * \return \c 0 on success.
685 * \return An \c MBEDCRYPTO_ERR_ECP_XXX or \c MBEDCRYPTO_MPI_XXX error code
686 * on failure.
687 */
688int mbedcrypto_ecp_gen_keypair_base( mbedcrypto_ecp_group *grp,
689 const mbedcrypto_ecp_point *G,
690 mbedcrypto_mpi *d, mbedcrypto_ecp_point *Q,
691 int (*f_rng)(void *, unsigned char *, size_t),
692 void *p_rng );
693
694/**
695 * \brief This function generates an ECP keypair.
696 *
697 * \note This function uses bare components rather than an
698 * ::mbedcrypto_ecp_keypair structure to ease use with other
699 * structures, such as ::mbedcrypto_ecdh_context or
700 * ::mbedcrypto_ecdsa_context.
701 *
702 * \param grp The ECP group.
703 * \param d The destination MPI (secret part).
704 * \param Q The destination point (public part).
705 * \param f_rng The RNG function.
706 * \param p_rng The RNG context.
707 *
708 * \return \c 0 on success.
709 * \return An \c MBEDCRYPTO_ERR_ECP_XXX or \c MBEDCRYPTO_MPI_XXX error code
710 * on failure.
711 */
712int mbedcrypto_ecp_gen_keypair( mbedcrypto_ecp_group *grp, mbedcrypto_mpi *d, mbedcrypto_ecp_point *Q,
713 int (*f_rng)(void *, unsigned char *, size_t),
714 void *p_rng );
715
716/**
717 * \brief This function generates an ECP key.
718 *
719 * \param grp_id The ECP group identifier.
720 * \param key The destination key.
721 * \param f_rng The RNG function.
722 * \param p_rng The RNG context.
723 *
724 * \return \c 0 on success.
725 * \return An \c MBEDCRYPTO_ERR_ECP_XXX or \c MBEDCRYPTO_MPI_XXX error code
726 * on failure.
727 */
728int mbedcrypto_ecp_gen_key( mbedcrypto_ecp_group_id grp_id, mbedcrypto_ecp_keypair *key,
729 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng );
730
731/**
732 * \brief This function checks that the keypair objects
733 * \p pub and \p prv have the same group and the
734 * same public point, and that the private key in
735 * \p prv is consistent with the public key.
736 *
737 * \param pub The keypair structure holding the public key.
738 * If it contains a private key, that part is ignored.
739 * \param prv The keypair structure holding the full keypair.
740 *
741 * \return \c 0 on success, meaning that the keys are valid and match.
742 * \return #MBEDCRYPTO_ERR_ECP_BAD_INPUT_DATA if the keys are invalid or do not match.
743 * \return An \c MBEDCRYPTO_ERR_ECP_XXX or an \c MBEDCRYPTO_ERR_MPI_XXX
744 * error code on calculation failure.
745 */
746int mbedcrypto_ecp_check_pub_priv( const mbedcrypto_ecp_keypair *pub, const mbedcrypto_ecp_keypair *prv );
747
748#if defined(MBEDCRYPTO_SELF_TEST)
749
750/**
751 * \brief The ECP checkup routine.
752 *
753 * \return \c 0 on success.
754 * \return \c 1 on failure.
755 */
756int mbedcrypto_ecp_self_test( int verbose );
757
758#endif /* MBEDCRYPTO_SELF_TEST */
759
760#ifdef __cplusplus
761}
762#endif
763
764#endif /* ecp.h */