| /* BEGIN_HEADER */ |
| #include "../library/alignment.h" |
| |
| #include <stdint.h> |
| |
| #if defined(__clang__) |
| #pragma clang diagnostic ignored "-Wunreachable-code" |
| #endif |
| #include <stdio.h> |
| |
| /* |
| * Convert a string of the form "abcd" (case-insensitive) to a uint64_t. |
| */ |
| int parse_hex_string( char* hex_string, uint64_t *result ) |
| { |
| uint8_t raw[8]; |
| size_t olen; |
| if ( mbedtls_test_unhexify(raw, sizeof(raw), hex_string, &olen) != 0 ) return 0; |
| *result = 0; |
| for ( size_t i = 0; i < olen; i++ ) |
| { |
| if ( MBEDTLS_IS_BIG_ENDIAN ) { |
| *result |= ((uint64_t)raw[i]) << ( i * 8 ); |
| } |
| else |
| { |
| *result |= ((uint64_t)raw[i]) << ( (olen - i - 1) * 8 ); |
| } |
| } |
| return 1; |
| } |
| |
| /* END_HEADER */ |
| |
| /* BEGIN_CASE */ |
| void mbedtls_unaligned_access( int size, int offset ) |
| { |
| /* Define 64-bit aligned raw byte array */ |
| uint64_t raw[2]; |
| |
| /* Populate with known data */ |
| uint8_t *x = (uint8_t *) raw; |
| for ( size_t i = 0; i < sizeof(raw); i++ ) |
| x[i] = (uint8_t)i; |
| |
| TEST_ASSERT( size == 16 || size == 32 || size == 64 ); |
| |
| uint64_t r = 0; |
| switch ( size ) |
| { |
| case 16: |
| r = mbedtls_get_unaligned_uint16( x + offset ); |
| break; |
| case 32: |
| r = mbedtls_get_unaligned_uint32( x + offset ); |
| break; |
| case 64: |
| r = mbedtls_get_unaligned_uint64( x + offset ); |
| break; |
| } |
| |
| /* Generate expected result */ |
| uint64_t expected = 0; |
| for ( uint8_t i = 0; i < 8; i++ ) |
| { |
| uint8_t shift; |
| if ( MBEDTLS_IS_BIG_ENDIAN ) |
| { |
| /* |
| * Similar to little-endian case described below, but the shift needs |
| * to be inverted |
| */ |
| shift = 7 - ( i * 8 ); |
| } else { |
| /* example for offset == 1: |
| * expected = (( 1 + 0 ) << (0 * 8)) | (( 1 + 1 ) << (1 * 8)) | (( 1 + 2 ) << (2 * 8))) |
| * = (1 << 0) | (2 << 8) | (3 << 16) ... |
| * = 0x0807060504030201 |
| * x = { 0, 1, 2, 3, ... } |
| * ie expected is the value that would be read from x on a LE system, when |
| * byte swapping is not performed |
| */ |
| shift = i * 8; |
| } |
| uint64_t b = offset + i; |
| expected |= b << shift; |
| } |
| |
| /* Mask out excess bits from expected result */ |
| switch ( size ) |
| { |
| case 16: |
| expected &= 0xffff; |
| break; |
| case 32: |
| expected &= 0xffffffff; |
| break; |
| } |
| |
| TEST_EQUAL( r, expected ); |
| |
| /* Write sentinel to the part of the array we will testing writing to */ |
| for ( size_t i = 0; i < (size_t) ( size / 8 ); i++ ) |
| { |
| x[i + offset] = 0xff; |
| } |
| /* |
| * Write back to the array with mbedtls_put_unaligned_uint16 and validate |
| * that the array is unchanged as a result. |
| */ |
| switch ( size ) |
| { |
| case 16: |
| mbedtls_put_unaligned_uint16( x + offset, r ); |
| break; |
| case 32: |
| mbedtls_put_unaligned_uint32( x + offset, r ); |
| break; |
| case 64: |
| mbedtls_put_unaligned_uint64( x + offset, r ); |
| break; |
| } |
| for ( size_t i = 0; i < sizeof(x); i++ ) |
| { |
| TEST_EQUAL( x[i], (uint8_t)i ); |
| } |
| } |
| /* END_CASE */ |
| |
| /* BEGIN_CASE */ |
| void mbedtls_byteswap( char* input_str, int size, char *expected_str ) |
| { |
| uint64_t input, expected; |
| TEST_ASSERT( parse_hex_string( input_str, &input ) ); |
| TEST_ASSERT( parse_hex_string( expected_str, &expected ) ); |
| |
| /* Check against expected result */ |
| uint64_t r = 0; |
| switch ( size ) |
| { |
| case 16: |
| r = MBEDTLS_BSWAP16( input ); |
| break; |
| case 32: |
| r = MBEDTLS_BSWAP32( input ); |
| break; |
| case 64: |
| r = MBEDTLS_BSWAP64( input ); |
| break; |
| default: |
| TEST_ASSERT( ! "size must be 16, 32 or 64" ); |
| } |
| TEST_EQUAL( r, expected ); |
| |
| /* |
| * Check byte by byte by extracting bytes from opposite ends of |
| * input and r. |
| */ |
| for ( size_t i = 0; i < (size_t)( size / 8 ); i++ ) |
| { |
| size_t s1 = i * 8; |
| size_t s2 = ( ( size / 8 - 1 ) - i ) * 8; |
| uint64_t a = ( input & ( (uint64_t)0xff << s1 ) ) >> s1; |
| uint64_t b = ( r & ( (uint64_t)0xff << s2 ) ) >> s2; |
| TEST_EQUAL( a, b ); |
| } |
| |
| /* Check BSWAP(BSWAP(x)) == x */ |
| switch ( size ) |
| { |
| case 16: |
| r = MBEDTLS_BSWAP16( r ); |
| TEST_EQUAL( r, input & 0xffff ); |
| break; |
| case 32: |
| r = MBEDTLS_BSWAP32( r ); |
| TEST_EQUAL( r, input & 0xffffffff ); |
| break; |
| case 64: |
| r = MBEDTLS_BSWAP64( r ); |
| TEST_EQUAL( r, input ); |
| break; |
| } |
| } |
| /* END_CASE */ |
| |
| /* BEGIN_CASE */ |
| void get_byte() |
| { |
| uint8_t data[16]; |
| |
| for ( size_t i = 0; i < sizeof(data); i++ ) |
| data[i] = (uint8_t) i; |
| |
| uint64_t u64 = 0x0706050403020100; |
| for ( size_t b = 0; b < 8 ; b++ ) |
| { |
| uint8_t expected = b; |
| uint8_t actual = b + 1; |
| switch ( b ) |
| { |
| case 0: |
| actual = MBEDTLS_BYTE_0( u64 ); |
| break; |
| case 1: |
| actual = MBEDTLS_BYTE_1( u64 ); |
| break; |
| case 2: |
| actual = MBEDTLS_BYTE_2( u64 ); |
| break; |
| case 3: |
| actual = MBEDTLS_BYTE_3( u64 ); |
| break; |
| case 4: |
| actual = MBEDTLS_BYTE_4( u64 ); |
| break; |
| case 5: |
| actual = MBEDTLS_BYTE_5( u64 ); |
| break; |
| case 6: |
| actual = MBEDTLS_BYTE_6( u64 ); |
| break; |
| case 7: |
| actual = MBEDTLS_BYTE_7( u64 ); |
| break; |
| } |
| TEST_EQUAL( actual, expected ); |
| } |
| |
| uint32_t u32 = 0x03020100; |
| for ( size_t b = 0; b < 4 ; b++ ) |
| { |
| uint8_t expected = b; |
| uint8_t actual = b + 1; |
| switch ( b ) |
| { |
| case 0: |
| actual = MBEDTLS_BYTE_0( u32 ); |
| break; |
| case 1: |
| actual = MBEDTLS_BYTE_1( u32 ); |
| break; |
| case 2: |
| actual = MBEDTLS_BYTE_2( u32 ); |
| break; |
| case 3: |
| actual = MBEDTLS_BYTE_3( u32 ); |
| break; |
| } |
| TEST_EQUAL( actual, expected ); |
| } |
| |
| uint16_t u16 = 0x0100; |
| for ( size_t b = 0; b < 2 ; b++ ) |
| { |
| uint8_t expected = b; |
| uint8_t actual = b + 1; |
| switch ( b ) |
| { |
| case 0: |
| actual = MBEDTLS_BYTE_0( u16 ); |
| break; |
| case 1: |
| actual = MBEDTLS_BYTE_1( u16 ); |
| break; |
| } |
| TEST_EQUAL( actual, expected ); |
| } |
| |
| uint8_t u8 = 0x01; |
| uint8_t actual = MBEDTLS_BYTE_0( u8 ); |
| TEST_EQUAL( actual, u8 ); |
| } |
| /* END_CASE */ |
| |
| /* BEGIN_CASE */ |
| void unaligned_access_endian_aware(int size, int offset, int big_endian ) |
| { |
| TEST_ASSERT( size == 16 || size == 24 || size == 32 || size == 64 ); |
| TEST_ASSERT( offset >= 0 && offset < 8 ); |
| |
| /* Define 64-bit aligned raw byte array */ |
| uint64_t raw[2]; |
| /* Populate with known data: x == { 0, 1, 2, ... } */ |
| uint8_t *x = (uint8_t *) raw; |
| for ( size_t i = 0; i < sizeof(raw); i++ ) |
| x[i] = (uint8_t) i; |
| |
| uint64_t read = 0; |
| if ( big_endian ) |
| { |
| switch ( size ) |
| { |
| case 16: |
| read = MBEDTLS_GET_UINT16_BE( x, offset ); |
| break; |
| case 24: |
| read = MBEDTLS_GET_UINT24_BE( x, offset ); |
| break; |
| case 32: |
| read = MBEDTLS_GET_UINT32_BE( x, offset ); |
| break; |
| case 64: |
| read = MBEDTLS_GET_UINT64_BE( x, offset ); |
| break; |
| } |
| } |
| else |
| { |
| switch ( size ) |
| { |
| case 16: |
| read = MBEDTLS_GET_UINT16_LE( x, offset ); |
| break; |
| case 24: |
| read = MBEDTLS_GET_UINT24_LE( x, offset ); |
| break; |
| case 32: |
| read = MBEDTLS_GET_UINT32_LE( x, offset ); |
| break; |
| case 64: |
| read = MBEDTLS_GET_UINT64_LE( x, offset ); |
| break; |
| } |
| } |
| |
| /* Build up expected value byte by byte, in either big or little endian format */ |
| uint64_t expected = 0; |
| for ( size_t i = 0; i < (size_t)(size / 8); i++ ) |
| { |
| uint64_t b = x[i + offset]; |
| uint8_t shift = (big_endian) ? (8 * ((size / 8 - 1) - i)) : (8 * i); |
| expected |= b << shift; |
| } |
| |
| /* Verify read */ |
| TEST_EQUAL( read, expected ); |
| |
| /* Test writing back to memory. First write sentiel */ |
| for ( size_t i = 0; i < (size_t)(size / 8); i++ ) |
| { |
| x[i + offset] = 0xff; |
| } |
| /* Overwrite sentinel with endian-aware write macro */ |
| if ( big_endian ) |
| { |
| switch ( size ) |
| { |
| case 16: |
| MBEDTLS_PUT_UINT16_BE( read, x, offset ); |
| break; |
| case 24: |
| MBEDTLS_PUT_UINT24_BE( read, x, offset ); |
| break; |
| case 32: |
| MBEDTLS_PUT_UINT32_BE( read, x, offset ); |
| break; |
| case 64: |
| MBEDTLS_PUT_UINT64_BE( read, x, offset ); |
| break; |
| } |
| } |
| else |
| { |
| switch ( size ) |
| { |
| case 16: |
| MBEDTLS_PUT_UINT16_LE( read, x, offset ); |
| break; |
| case 24: |
| MBEDTLS_PUT_UINT24_LE( read, x, offset ); |
| break; |
| case 32: |
| MBEDTLS_PUT_UINT32_LE( read, x, offset ); |
| break; |
| case 64: |
| MBEDTLS_PUT_UINT64_LE( read, x, offset ); |
| break; |
| } |
| } |
| |
| /* Verify write - check memory is correct */ |
| for ( size_t i = 0; i < sizeof(raw); i++ ) |
| TEST_EQUAL( x[i], (uint8_t) i ); |
| } |
| /* END_CASE */ |
| |
| /* BEGIN_CASE */ |
| void mbedtls_is_big_endian() |
| { |
| uint16_t check = 0x1234; |
| uint8_t* p = (uint8_t*) ✓ |
| |
| if ( MBEDTLS_IS_BIG_ENDIAN ) |
| { |
| /* Big-endian: data stored MSB first, i.e. p == { 0x12, 0x34 } */ |
| TEST_EQUAL( p[0], 0x12 ); |
| TEST_EQUAL( p[1], 0x34 ); |
| } |
| else |
| { |
| /* Little-endian: data stored LSB first, i.e. p == { 0x34, 0x12 } */ |
| TEST_EQUAL( p[0], 0x34 ); |
| TEST_EQUAL( p[1], 0x12 ); |
| } |
| } |
| /* END_CASE */ |