blob: 76c5f38a13445d5da1fac7b9cb2e2fd586bf8ff1 [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
18 * Copyright (C) 2018, ARM Limited, All Rights Reserved
19 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
32 *
33 * This file is part of mbed TLS (https://tls.mbed.org)
34 */
35
36#ifndef PSA_CRYPTO_VALUES_H
37#define PSA_CRYPTO_VALUES_H
38
39/** \defgroup error Error codes
40 * @{
41 */
42
43#if !defined(PSA_SUCCESS)
44/* If PSA_SUCCESS is defined, assume that PSA crypto is being used
45 * together with PSA IPC, which also defines the identifier
46 * PSA_SUCCESS. We must not define PSA_SUCCESS ourselves in that case;
47 * the other error code names don't clash. This is a temporary hack
48 * until we unify error reporting in PSA IPC and PSA crypto.
49 *
50 * Note that psa_defs.h must be included before this header!
51 */
52/** The action was completed successfully. */
53#define PSA_SUCCESS ((psa_status_t)0)
54#endif /* !defined(PSA_SUCCESS) */
55
56/** An error occurred that does not correspond to any defined
57 * failure cause.
58 *
59 * Implementations may use this error code if none of the other standard
60 * error codes are applicable. */
61#define PSA_ERROR_UNKNOWN_ERROR ((psa_status_t)1)
62
63/** The requested operation or a parameter is not supported
64 * by this implementation.
65 *
66 * Implementations should return this error code when an enumeration
67 * parameter such as a key type, algorithm, etc. is not recognized.
68 * If a combination of parameters is recognized and identified as
69 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
70#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)2)
71
72/** The requested action is denied by a policy.
73 *
74 * Implementations should return this error code when the parameters
75 * are recognized as valid and supported, and a policy explicitly
76 * denies the requested operation.
77 *
78 * If a subset of the parameters of a function call identify a
79 * forbidden operation, and another subset of the parameters are
80 * not valid or not supported, it is unspecified whether the function
81 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
82 * #PSA_ERROR_INVALID_ARGUMENT. */
83#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)3)
84
85/** An output buffer is too small.
86 *
87 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
88 * description to determine a sufficient buffer size.
89 *
90 * Implementations should preferably return this error code only
91 * in cases when performing the operation with a larger output
92 * buffer would succeed. However implementations may return this
93 * error if a function has invalid or unsupported parameters in addition
94 * to the parameters that determine the necessary output buffer size. */
95#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)4)
96
97/** A slot is occupied, but must be empty to carry out the
98 * requested action.
99 *
100 * If a handle is invalid, it does not designate an occupied slot.
101 * The error for an invalid handle is #PSA_ERROR_INVALID_HANDLE.
102 */
103#define PSA_ERROR_OCCUPIED_SLOT ((psa_status_t)5)
104
105/** A slot is empty, but must be occupied to carry out the
106 * requested action.
107 *
108 * If a handle is invalid, it does not designate an empty slot.
109 * The error for an invalid handle is #PSA_ERROR_INVALID_HANDLE.
110 */
111#define PSA_ERROR_EMPTY_SLOT ((psa_status_t)6)
112
113/** The requested action cannot be performed in the current state.
114 *
115 * Multipart operations return this error when one of the
116 * functions is called out of sequence. Refer to the function
117 * descriptions for permitted sequencing of functions.
118 *
119 * Implementations shall not return this error code to indicate
120 * that a key slot is occupied when it needs to be free or vice versa,
121 * but shall return #PSA_ERROR_OCCUPIED_SLOT or #PSA_ERROR_EMPTY_SLOT
122 * as applicable. */
123#define PSA_ERROR_BAD_STATE ((psa_status_t)7)
124
125/** The parameters passed to the function are invalid.
126 *
127 * Implementations may return this error any time a parameter or
128 * combination of parameters are recognized as invalid.
129 *
130 * Implementations shall not return this error code to indicate
131 * that a key slot is occupied when it needs to be free or vice versa,
132 * but shall return #PSA_ERROR_OCCUPIED_SLOT or #PSA_ERROR_EMPTY_SLOT
133 * as applicable.
134 *
135 * Implementation shall not return this error code to indicate that a
136 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
137 * instead.
138 */
139#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)8)
140
141/** There is not enough runtime memory.
142 *
143 * If the action is carried out across multiple security realms, this
144 * error can refer to available memory in any of the security realms. */
145#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)9)
146
147/** There is not enough persistent storage.
148 *
149 * Functions that modify the key storage return this error code if
150 * there is insufficient storage space on the host media. In addition,
151 * many functions that do not otherwise access storage may return this
152 * error code if the implementation requires a mandatory log entry for
153 * the requested action and the log storage space is full. */
154#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)10)
155
156/** There was a communication failure inside the implementation.
157 *
158 * This can indicate a communication failure between the application
159 * and an external cryptoprocessor or between the cryptoprocessor and
160 * an external volatile or persistent memory. A communication failure
161 * may be transient or permanent depending on the cause.
162 *
163 * \warning If a function returns this error, it is undetermined
164 * whether the requested action has completed or not. Implementations
165 * should return #PSA_SUCCESS on successful completion whenver
166 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
167 * if the requested action was completed successfully in an external
168 * cryptoprocessor but there was a breakdown of communication before
169 * the cryptoprocessor could report the status to the application.
170 */
171#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)11)
172
173/** There was a storage failure that may have led to data loss.
174 *
175 * This error indicates that some persistent storage is corrupted.
176 * It should not be used for a corruption of volatile memory
177 * (use #PSA_ERROR_TAMPERING_DETECTED), for a communication error
178 * between the cryptoprocessor and its external storage (use
179 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
180 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
181 *
182 * Note that a storage failure does not indicate that any data that was
183 * previously read is invalid. However this previously read data may no
184 * longer be readable from storage.
185 *
186 * When a storage failure occurs, it is no longer possible to ensure
187 * the global integrity of the keystore. Depending on the global
188 * integrity guarantees offered by the implementation, access to other
189 * data may or may not fail even if the data is still readable but
190 * its integrity canont be guaranteed.
191 *
192 * Implementations should only use this error code to report a
193 * permanent storage corruption. However application writers should
194 * keep in mind that transient errors while reading the storage may be
195 * reported using this error code. */
196#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)12)
197
198/** A hardware failure was detected.
199 *
200 * A hardware failure may be transient or permanent depending on the
201 * cause. */
202#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)13)
203
204/** A tampering attempt was detected.
205 *
206 * If an application receives this error code, there is no guarantee
207 * that previously accessed or computed data was correct and remains
208 * confidential. Applications should not perform any security function
209 * and should enter a safe failure state.
210 *
211 * Implementations may return this error code if they detect an invalid
212 * state that cannot happen during normal operation and that indicates
213 * that the implementation's security guarantees no longer hold. Depending
214 * on the implementation architecture and on its security and safety goals,
215 * the implementation may forcibly terminate the application.
216 *
217 * This error code is intended as a last resort when a security breach
218 * is detected and it is unsure whether the keystore data is still
219 * protected. Implementations shall only return this error code
220 * to report an alarm from a tampering detector, to indicate that
221 * the confidentiality of stored data can no longer be guaranteed,
222 * or to indicate that the integrity of previously returned data is now
223 * considered compromised. Implementations shall not use this error code
224 * to indicate a hardware failure that merely makes it impossible to
225 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
226 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
227 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
228 * instead).
229 *
230 * This error indicates an attack against the application. Implementations
231 * shall not return this error code as a consequence of the behavior of
232 * the application itself. */
233#define PSA_ERROR_TAMPERING_DETECTED ((psa_status_t)14)
234
235/** There is not enough entropy to generate random data needed
236 * for the requested action.
237 *
238 * This error indicates a failure of a hardware random generator.
239 * Application writers should note that this error can be returned not
240 * only by functions whose purpose is to generate random data, such
241 * as key, IV or nonce generation, but also by functions that execute
242 * an algorithm with a randomized result, as well as functions that
243 * use randomization of intermediate computations as a countermeasure
244 * to certain attacks.
245 *
246 * Implementations should avoid returning this error after psa_crypto_init()
247 * has succeeded. Implementations should generate sufficient
248 * entropy during initialization and subsequently use a cryptographically
249 * secure pseudorandom generator (PRNG). However implementations may return
250 * this error at any time if a policy requires the PRNG to be reseeded
251 * during normal operation. */
252#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)15)
253
254/** The signature, MAC or hash is incorrect.
255 *
256 * Verification functions return this error if the verification
257 * calculations completed successfully, and the value to be verified
258 * was determined to be incorrect.
259 *
260 * If the value to verify has an invalid size, implementations may return
261 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
262#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)16)
263
264/** The decrypted padding is incorrect.
265 *
266 * \warning In some protocols, when decrypting data, it is essential that
267 * the behavior of the application does not depend on whether the padding
268 * is correct, down to precise timing. Applications should prefer
269 * protocols that use authenticated encryption rather than plain
270 * encryption. If the application must perform a decryption of
271 * unauthenticated data, the application writer should take care not
272 * to reveal whether the padding is invalid.
273 *
274 * Implementations should strive to make valid and invalid padding
275 * as close as possible to indistinguishable to an external observer.
276 * In particular, the timing of a decryption operation should not
277 * depend on the validity of the padding. */
278#define PSA_ERROR_INVALID_PADDING ((psa_status_t)17)
279
280/** The generator has insufficient capacity left.
281 *
282 * Once a function returns this error, attempts to read from the
283 * generator will always return this error. */
284#define PSA_ERROR_INSUFFICIENT_CAPACITY ((psa_status_t)18)
285
286/** The key handle is not valid.
287 */
288#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)19)
289
290/**@}*/
291
292/** \defgroup crypto_types Key and algorithm types
293 * @{
294 */
295
296/** An invalid key type value.
297 *
298 * Zero is not the encoding of any key type.
299 */
300#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000)
301
302/** Vendor-defined flag
303 *
304 * Key types defined by this standard will never have the
305 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
306 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
307 * respect the bitwise structure used by standard encodings whenever practical.
308 */
309#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000)
310
311#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x70000000)
312#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x40000000)
313#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x50000000)
314#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x60000000)
315#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x70000000)
316
317#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x10000000)
318
319/** Whether a key type is vendor-defined. */
320#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
321 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
322
323/** Whether a key type is an unstructured array of bytes.
324 *
325 * This encompasses both symmetric keys and non-key data.
326 */
327#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
328 (((type) & PSA_KEY_TYPE_CATEGORY_MASK & ~(psa_key_type_t)0x10000000) == \
329 PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
330
331/** Whether a key type is asymmetric: either a key pair or a public key. */
332#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
333 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
334 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
335 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
336/** Whether a key type is the public part of a key pair. */
337#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
338 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
339/** Whether a key type is a key pair containing a private part and a public
340 * part. */
341#define PSA_KEY_TYPE_IS_KEYPAIR(type) \
342 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
343/** The key pair type corresponding to a public key type.
344 *
345 * You may also pass a key pair type as \p type, it will be left unchanged.
346 *
347 * \param type A public key type or key pair type.
348 *
349 * \return The corresponding key pair type.
350 * If \p type is not a public key or a key pair,
351 * the return value is undefined.
352 */
353#define PSA_KEY_TYPE_KEYPAIR_OF_PUBLIC_KEY(type) \
354 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
355/** The public key type corresponding to a key pair type.
356 *
357 * You may also pass a key pair type as \p type, it will be left unchanged.
358 *
359 * \param type A public key type or key pair type.
360 *
361 * \return The corresponding public key type.
362 * If \p type is not a public key or a key pair,
363 * the return value is undefined.
364 */
365#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) \
366 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
367
368/** Raw data.
369 *
370 * A "key" of this type cannot be used for any cryptographic operation.
371 * Applications may use this type to store arbitrary data in the keystore. */
372#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x50000001)
373
374/** HMAC key.
375 *
376 * The key policy determines which underlying hash algorithm the key can be
377 * used for.
378 *
379 * HMAC keys should generally have the same size as the underlying hash.
380 * This size can be calculated with #PSA_HASH_SIZE(\c alg) where
381 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
382#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x51000000)
383
384/** A secret for key derivation.
385 *
386 * The key policy determines which key derivation algorithm the key
387 * can be used for.
388 */
389#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x52000000)
390
391/** Key for an cipher, AEAD or MAC algorithm based on the AES block cipher.
392 *
393 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
394 * 32 bytes (AES-256).
395 */
396#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x40000001)
397
398/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
399 *
400 * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
401 * 24 bytes (3-key 3DES).
402 *
403 * Note that single DES and 2-key 3DES are weak and strongly
404 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
405 * is weak and deprecated and should only be used in legacy protocols.
406 */
407#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x40000002)
408
409/** Key for an cipher, AEAD or MAC algorithm based on the
410 * Camellia block cipher. */
411#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x40000003)
412
413/** Key for the RC4 stream cipher.
414 *
415 * Note that RC4 is weak and deprecated and should only be used in
416 * legacy protocols. */
417#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x40000004)
418
419/** RSA public key. */
420#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x60010000)
421/** RSA key pair (private and public key). */
422#define PSA_KEY_TYPE_RSA_KEYPAIR ((psa_key_type_t)0x70010000)
423/** Whether a key type is an RSA key (pair or public-only). */
424#define PSA_KEY_TYPE_IS_RSA(type) \
425 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
426
427/** DSA public key. */
428#define PSA_KEY_TYPE_DSA_PUBLIC_KEY ((psa_key_type_t)0x60020000)
429/** DSA key pair (private and public key). */
430#define PSA_KEY_TYPE_DSA_KEYPAIR ((psa_key_type_t)0x70020000)
431/** Whether a key type is an DSA key (pair or public-only). */
432#define PSA_KEY_TYPE_IS_DSA(type) \
433 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_DSA_PUBLIC_KEY)
434
435#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x60030000)
436#define PSA_KEY_TYPE_ECC_KEYPAIR_BASE ((psa_key_type_t)0x70030000)
437#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x0000ffff)
438/** Elliptic curve key pair. */
439#define PSA_KEY_TYPE_ECC_KEYPAIR(curve) \
440 (PSA_KEY_TYPE_ECC_KEYPAIR_BASE | (curve))
441/** Elliptic curve public key. */
442#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
443 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
444
445/** Whether a key type is an elliptic curve key (pair or public-only). */
446#define PSA_KEY_TYPE_IS_ECC(type) \
447 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) & \
448 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100449/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100450#define PSA_KEY_TYPE_IS_ECC_KEYPAIR(type) \
451 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
452 PSA_KEY_TYPE_ECC_KEYPAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100453/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100454#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
455 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
456 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
457
458/** Extract the curve from an elliptic curve key type. */
459#define PSA_KEY_TYPE_GET_CURVE(type) \
460 ((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
461 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
462 0))
463
464/* The encoding of curve identifiers is currently aligned with the
465 * TLS Supported Groups Registry (formerly known as the
466 * TLS EC Named Curve Registry)
467 * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
468 * The values are defined by RFC 8422 and RFC 7027. */
469#define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x0001)
470#define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x0002)
471#define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x0003)
472#define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x0004)
473#define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x0005)
474#define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x0006)
475#define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x0007)
476#define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x0008)
477#define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x0009)
478#define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x000a)
479#define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x000b)
480#define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x000c)
481#define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x000d)
482#define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x000e)
483#define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x000f)
484#define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x0010)
485#define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x0011)
486#define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x0012)
487#define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x0013)
488#define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x0014)
489#define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x0015)
490#define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x0016)
491#define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x0017)
492#define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x0018)
493#define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x0019)
494#define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x001a)
495#define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x001b)
496#define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x001c)
497#define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x001d)
498#define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x001e)
499
Jaeden Amero8851c402019-01-11 14:20:03 +0000500/** Diffie-Hellman key exchange public key. */
501#define PSA_KEY_TYPE_DH_PUBLIC_KEY ((psa_key_type_t)0x60040000)
502/** Diffie-Hellman key exchange key pair (private and public key). */
503#define PSA_KEY_TYPE_DH_KEYPAIR ((psa_key_type_t)0x70040000)
504/** Whether a key type is a Diffie-Hellman key exchange key (pair or
505 * public-only). */
506#define PSA_KEY_TYPE_IS_DH(type) \
507 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_DH_PUBLIC_KEY)
508
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100509/** The block size of a block cipher.
510 *
511 * \param type A cipher key type (value of type #psa_key_type_t).
512 *
513 * \return The block size for a block cipher, or 1 for a stream cipher.
514 * The return value is undefined if \p type is not a supported
515 * cipher key type.
516 *
517 * \note It is possible to build stream cipher algorithms on top of a block
518 * cipher, for example CTR mode (#PSA_ALG_CTR).
519 * This macro only takes the key type into account, so it cannot be
520 * used to determine the size of the data that #psa_cipher_update()
521 * might buffer for future processing in general.
522 *
523 * \note This macro returns a compile-time constant if its argument is one.
524 *
525 * \warning This macro may evaluate its argument multiple times.
526 */
527#define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \
528 ( \
529 (type) == PSA_KEY_TYPE_AES ? 16 : \
530 (type) == PSA_KEY_TYPE_DES ? 8 : \
531 (type) == PSA_KEY_TYPE_CAMELLIA ? 16 : \
532 (type) == PSA_KEY_TYPE_ARC4 ? 1 : \
533 0)
534
535#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
536#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
537#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000)
538#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000)
539#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
540#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000)
541#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000)
542#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000)
Gilles Peskine6843c292019-01-18 16:44:49 +0100543#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x20000000)
544#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x30000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100545
546#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
547 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
548
549/** Whether the specified algorithm is a hash algorithm.
550 *
551 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
552 *
553 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
554 * This macro may return either 0 or 1 if \p alg is not a supported
555 * algorithm identifier.
556 */
557#define PSA_ALG_IS_HASH(alg) \
558 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
559
560/** Whether the specified algorithm is a MAC algorithm.
561 *
562 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
563 *
564 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
565 * This macro may return either 0 or 1 if \p alg is not a supported
566 * algorithm identifier.
567 */
568#define PSA_ALG_IS_MAC(alg) \
569 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
570
571/** Whether the specified algorithm is a symmetric cipher algorithm.
572 *
573 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
574 *
575 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
576 * This macro may return either 0 or 1 if \p alg is not a supported
577 * algorithm identifier.
578 */
579#define PSA_ALG_IS_CIPHER(alg) \
580 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
581
582/** Whether the specified algorithm is an authenticated encryption
583 * with associated data (AEAD) algorithm.
584 *
585 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
586 *
587 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
588 * This macro may return either 0 or 1 if \p alg is not a supported
589 * algorithm identifier.
590 */
591#define PSA_ALG_IS_AEAD(alg) \
592 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
593
594/** Whether the specified algorithm is a public-key signature algorithm.
595 *
596 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
597 *
598 * \return 1 if \p alg is a public-key signature algorithm, 0 otherwise.
599 * This macro may return either 0 or 1 if \p alg is not a supported
600 * algorithm identifier.
601 */
602#define PSA_ALG_IS_SIGN(alg) \
603 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
604
605/** Whether the specified algorithm is a public-key encryption algorithm.
606 *
607 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
608 *
609 * \return 1 if \p alg is a public-key encryption algorithm, 0 otherwise.
610 * This macro may return either 0 or 1 if \p alg is not a supported
611 * algorithm identifier.
612 */
613#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
614 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
615
616#define PSA_ALG_KEY_SELECTION_FLAG ((psa_algorithm_t)0x01000000)
617/** Whether the specified algorithm is a key agreement algorithm.
618 *
619 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
620 *
621 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
622 * This macro may return either 0 or 1 if \p alg is not a supported
623 * algorithm identifier.
624 */
625#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
626 (((alg) & PSA_ALG_CATEGORY_MASK & ~PSA_ALG_KEY_SELECTION_FLAG) == \
627 PSA_ALG_CATEGORY_KEY_AGREEMENT)
628
629/** Whether the specified algorithm is a key derivation algorithm.
630 *
631 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
632 *
633 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
634 * This macro may return either 0 or 1 if \p alg is not a supported
635 * algorithm identifier.
636 */
637#define PSA_ALG_IS_KEY_DERIVATION(alg) \
638 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
639
640/** Whether the specified algorithm is a key selection algorithm.
641 *
642 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
643 *
644 * \return 1 if \p alg is a key selection algorithm, 0 otherwise.
645 * This macro may return either 0 or 1 if \p alg is not a supported
646 * algorithm identifier.
647 */
648#define PSA_ALG_IS_KEY_SELECTION(alg) \
649 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_SELECTION)
650
651#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100652
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100653#define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001)
654#define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002)
655#define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003)
656#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004)
657#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005)
658/** SHA2-224 */
659#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008)
660/** SHA2-256 */
661#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009)
662/** SHA2-384 */
663#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a)
664/** SHA2-512 */
665#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b)
666/** SHA2-512/224 */
667#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c)
668/** SHA2-512/256 */
669#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d)
670/** SHA3-224 */
671#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010)
672/** SHA3-256 */
673#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011)
674/** SHA3-384 */
675#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012)
676/** SHA3-512 */
677#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013)
678
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100679/** Allow any hash algorithm.
680 *
681 * This value may only be used to form the algorithm usage field of a policy
682 * for a signature algorithm that is parametrized by a hash. That is,
683 * suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
684 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
685 * - #PSA_ALG_DSA, #PSA_ALG_DETERMINISTIC_DSA,
686 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
687 * Then you may create a key as follows:
688 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
689 * ```
690 * psa_key_policy_set_usage(&policy,
691 * PSA_KEY_USAGE_SIGN, //or PSA_KEY_USAGE_VERIFY
692 * PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
693 * psa_set_key_policy(handle, &policy);
694 * ```
695 * - Import or generate key material.
696 * - Call psa_asymmetric_sign() or psa_asymmetric_verify(), passing
697 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
698 * call to sign or verify a message may use a different hash.
699 * ```
700 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
701 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
702 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
703 * ```
704 *
705 * This value may not be used to build other algorithms that are
706 * parametrized over a hash. For any valid use of this macro to build
707 * an algorithm `\p alg`, #PSA_ALG_IS_HASH_AND_SIGN(\p alg) is true.
708 *
709 * This value may not be used to build an algorithm specification to
710 * perform an operation. It is only valid to build policies.
711 */
712#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x010000ff)
713
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100714#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
715#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000)
716/** Macro to build an HMAC algorithm.
717 *
718 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
719 *
720 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
721 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
722 *
723 * \return The corresponding HMAC algorithm.
724 * \return Unspecified if \p alg is not a supported
725 * hash algorithm.
726 */
727#define PSA_ALG_HMAC(hash_alg) \
728 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
729
730#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
731 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
732
733/** Whether the specified algorithm is an HMAC algorithm.
734 *
735 * HMAC is a family of MAC algorithms that are based on a hash function.
736 *
737 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
738 *
739 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
740 * This macro may return either 0 or 1 if \p alg is not a supported
741 * algorithm identifier.
742 */
743#define PSA_ALG_IS_HMAC(alg) \
744 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
745 PSA_ALG_HMAC_BASE)
746
747/* In the encoding of a MAC algorithm, the bits corresponding to
748 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
749 * truncated. As an exception, the value 0 means the untruncated algorithm,
750 * whatever its length is. The length is encoded in 6 bits, so it can
751 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
752 * to full length is correctly encoded as 0 and any non-trivial truncation
753 * is correctly encoded as a value between 1 and 63. */
754#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00)
755#define PSA_MAC_TRUNCATION_OFFSET 8
756
757/** Macro to build a truncated MAC algorithm.
758 *
759 * A truncated MAC algorithm is identical to the corresponding MAC
760 * algorithm except that the MAC value for the truncated algorithm
761 * consists of only the first \p mac_length bytes of the MAC value
762 * for the untruncated algorithm.
763 *
764 * \note This macro may allow constructing algorithm identifiers that
765 * are not valid, either because the specified length is larger
766 * than the untruncated MAC or because the specified length is
767 * smaller than permitted by the implementation.
768 *
769 * \note It is implementation-defined whether a truncated MAC that
770 * is truncated to the same length as the MAC of the untruncated
771 * algorithm is considered identical to the untruncated algorithm
772 * for policy comparison purposes.
773 *
774 * \param alg A MAC algorithm identifier (value of type
775 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
776 * is true). This may be a truncated or untruncated
777 * MAC algorithm.
778 * \param mac_length Desired length of the truncated MAC in bytes.
779 * This must be at most the full length of the MAC
780 * and must be at least an implementation-specified
781 * minimum. The implementation-specified minimum
782 * shall not be zero.
783 *
784 * \return The corresponding MAC algorithm with the specified
785 * length.
786 * \return Unspecified if \p alg is not a supported
787 * MAC algorithm or if \p mac_length is too small or
788 * too large for the specified MAC algorithm.
789 */
790#define PSA_ALG_TRUNCATED_MAC(alg, mac_length) \
791 (((alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \
792 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
793
794/** Macro to build the base MAC algorithm corresponding to a truncated
795 * MAC algorithm.
796 *
797 * \param alg A MAC algorithm identifier (value of type
798 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
799 * is true). This may be a truncated or untruncated
800 * MAC algorithm.
801 *
802 * \return The corresponding base MAC algorithm.
803 * \return Unspecified if \p alg is not a supported
804 * MAC algorithm.
805 */
806#define PSA_ALG_FULL_LENGTH_MAC(alg) \
807 ((alg) & ~PSA_ALG_MAC_TRUNCATION_MASK)
808
809/** Length to which a MAC algorithm is truncated.
810 *
811 * \param alg A MAC algorithm identifier (value of type
812 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
813 * is true).
814 *
815 * \return Length of the truncated MAC in bytes.
816 * \return 0 if \p alg is a non-truncated MAC algorithm.
817 * \return Unspecified if \p alg is not a supported
818 * MAC algorithm.
819 */
820#define PSA_MAC_TRUNCATED_LENGTH(alg) \
821 (((alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
822
823#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000)
824#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001)
825#define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002)
826#define PSA_ALG_GMAC ((psa_algorithm_t)0x02c00003)
827
828/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
829 *
830 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
831 *
832 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
833 * This macro may return either 0 or 1 if \p alg is not a supported
834 * algorithm identifier.
835 */
836#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
837 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
838 PSA_ALG_CIPHER_MAC_BASE)
839
840#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
841#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
842
843/** Whether the specified algorithm is a stream cipher.
844 *
845 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
846 * by applying a bitwise-xor with a stream of bytes that is generated
847 * from a key.
848 *
849 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
850 *
851 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
852 * This macro may return either 0 or 1 if \p alg is not a supported
853 * algorithm identifier or if it is not a symmetric cipher algorithm.
854 */
855#define PSA_ALG_IS_STREAM_CIPHER(alg) \
856 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
857 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
858
859/** The ARC4 stream cipher algorithm.
860 */
861#define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001)
862
863/** The CTR stream cipher mode.
864 *
865 * CTR is a stream cipher which is built from a block cipher.
866 * The underlying block cipher is determined by the key type.
867 * For example, to use AES-128-CTR, use this algorithm with
868 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
869 */
870#define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001)
871
872#define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002)
873
874#define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003)
875
876/** The XTS cipher mode.
877 *
878 * XTS is a cipher mode which is built from a block cipher. It requires at
879 * least one full block of input, but beyond this minimum the input
880 * does not need to be a whole number of blocks.
881 */
882#define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff)
883
884/** The CBC block cipher chaining mode, with no padding.
885 *
886 * The underlying block cipher is determined by the key type.
887 *
888 * This symmetric cipher mode can only be used with messages whose lengths
889 * are whole number of blocks for the chosen block cipher.
890 */
891#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100)
892
893/** The CBC block cipher chaining mode with PKCS#7 padding.
894 *
895 * The underlying block cipher is determined by the key type.
896 *
897 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
898 */
899#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101)
900
901#define PSA_ALG_CCM ((psa_algorithm_t)0x06001001)
902#define PSA_ALG_GCM ((psa_algorithm_t)0x06001002)
903
904/* In the encoding of a AEAD algorithm, the bits corresponding to
905 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
906 * The constants for default lengths follow this encoding.
907 */
908#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00)
909#define PSA_AEAD_TAG_LENGTH_OFFSET 8
910
911/** Macro to build a shortened AEAD algorithm.
912 *
913 * A shortened AEAD algorithm is similar to the corresponding AEAD
914 * algorithm, but has an authentication tag that consists of fewer bytes.
915 * Depending on the algorithm, the tag length may affect the calculation
916 * of the ciphertext.
917 *
918 * \param alg A AEAD algorithm identifier (value of type
919 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
920 * is true).
921 * \param tag_length Desired length of the authentication tag in bytes.
922 *
923 * \return The corresponding AEAD algorithm with the specified
924 * length.
925 * \return Unspecified if \p alg is not a supported
926 * AEAD algorithm or if \p tag_length is not valid
927 * for the specified AEAD algorithm.
928 */
929#define PSA_ALG_AEAD_WITH_TAG_LENGTH(alg, tag_length) \
930 (((alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \
931 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
932 PSA_ALG_AEAD_TAG_LENGTH_MASK))
933
934/** Calculate the corresponding AEAD algorithm with the default tag length.
935 *
936 * \param alg An AEAD algorithm (\c PSA_ALG_XXX value such that
937 * #PSA_ALG_IS_AEAD(\p alg) is true).
938 *
939 * \return The corresponding AEAD algorithm with the default tag length
940 * for that algorithm.
941 */
942#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(alg) \
943 ( \
944 PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(alg, PSA_ALG_CCM) \
945 PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(alg, PSA_ALG_GCM) \
946 0)
947#define PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(alg, ref) \
948 PSA_ALG_AEAD_WITH_TAG_LENGTH(alg, 0) == \
949 PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \
950 ref :
951
952#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000)
953/** RSA PKCS#1 v1.5 signature with hashing.
954 *
955 * This is the signature scheme defined by RFC 8017
956 * (PKCS#1: RSA Cryptography Specifications) under the name
957 * RSASSA-PKCS1-v1_5.
958 *
959 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
960 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100961 * This includes #PSA_ALG_ANY_HASH
962 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100963 *
964 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
965 * \return Unspecified if \p alg is not a supported
966 * hash algorithm.
967 */
968#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
969 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
970/** Raw PKCS#1 v1.5 signature.
971 *
972 * The input to this algorithm is the DigestInfo structure used by
973 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
974 * steps 3&ndash;6.
975 */
976#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
977#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
978 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
979
980#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000)
981/** RSA PSS signature with hashing.
982 *
983 * This is the signature scheme defined by RFC 8017
984 * (PKCS#1: RSA Cryptography Specifications) under the name
985 * RSASSA-PSS, with the message generation function MGF1, and with
986 * a salt length equal to the length of the hash. The specified
987 * hash algorithm is used to hash the input message, to create the
988 * salted hash, and for the mask generation.
989 *
990 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
991 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100992 * This includes #PSA_ALG_ANY_HASH
993 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100994 *
995 * \return The corresponding RSA PSS signature algorithm.
996 * \return Unspecified if \p alg is not a supported
997 * hash algorithm.
998 */
999#define PSA_ALG_RSA_PSS(hash_alg) \
1000 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1001#define PSA_ALG_IS_RSA_PSS(alg) \
1002 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1003
1004#define PSA_ALG_DSA_BASE ((psa_algorithm_t)0x10040000)
1005/** DSA signature with hashing.
1006 *
1007 * This is the signature scheme defined by FIPS 186-4,
1008 * with a random per-message secret number (*k*).
1009 *
1010 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1011 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001012 * This includes #PSA_ALG_ANY_HASH
1013 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001014 *
1015 * \return The corresponding DSA signature algorithm.
1016 * \return Unspecified if \p alg is not a supported
1017 * hash algorithm.
1018 */
1019#define PSA_ALG_DSA(hash_alg) \
1020 (PSA_ALG_DSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1021#define PSA_ALG_DETERMINISTIC_DSA_BASE ((psa_algorithm_t)0x10050000)
1022#define PSA_ALG_DSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00010000)
1023#define PSA_ALG_DETERMINISTIC_DSA(hash_alg) \
1024 (PSA_ALG_DETERMINISTIC_DSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1025#define PSA_ALG_IS_DSA(alg) \
1026 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \
1027 PSA_ALG_DSA_BASE)
1028#define PSA_ALG_DSA_IS_DETERMINISTIC(alg) \
1029 (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0)
1030#define PSA_ALG_IS_DETERMINISTIC_DSA(alg) \
1031 (PSA_ALG_IS_DSA(alg) && PSA_ALG_DSA_IS_DETERMINISTIC(alg))
1032#define PSA_ALG_IS_RANDOMIZED_DSA(alg) \
1033 (PSA_ALG_IS_DSA(alg) && !PSA_ALG_DSA_IS_DETERMINISTIC(alg))
1034
1035#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000)
1036/** ECDSA signature with hashing.
1037 *
1038 * This is the ECDSA signature scheme defined by ANSI X9.62,
1039 * with a random per-message secret number (*k*).
1040 *
1041 * The representation of the signature as a byte string consists of
1042 * the concatentation of the signature values *r* and *s*. Each of
1043 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1044 * of the base point of the curve in octets. Each value is represented
1045 * in big-endian order (most significant octet first).
1046 *
1047 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1048 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001049 * This includes #PSA_ALG_ANY_HASH
1050 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001051 *
1052 * \return The corresponding ECDSA signature algorithm.
1053 * \return Unspecified if \p alg is not a supported
1054 * hash algorithm.
1055 */
1056#define PSA_ALG_ECDSA(hash_alg) \
1057 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1058/** ECDSA signature without hashing.
1059 *
1060 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1061 * without specifying a hash algorithm. This algorithm may only be
1062 * used to sign or verify a sequence of bytes that should be an
1063 * already-calculated hash. Note that the input is padded with
1064 * zeros on the left or truncated on the left as required to fit
1065 * the curve size.
1066 */
1067#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1068#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000)
1069/** Deterministic ECDSA signature with hashing.
1070 *
1071 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1072 *
1073 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1074 *
1075 * Note that when this algorithm is used for verification, signatures
1076 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1077 * same private key are accepted. In other words,
1078 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1079 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1080 *
1081 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1082 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001083 * This includes #PSA_ALG_ANY_HASH
1084 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001085 *
1086 * \return The corresponding deterministic ECDSA signature
1087 * algorithm.
1088 * \return Unspecified if \p alg is not a supported
1089 * hash algorithm.
1090 */
1091#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1092 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1093#define PSA_ALG_IS_ECDSA(alg) \
1094 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \
1095 PSA_ALG_ECDSA_BASE)
1096#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
1097 (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0)
1098#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1099 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1100#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1101 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1102
Gilles Peskined35b4892019-01-14 16:02:15 +01001103/** Whether the specified algorithm is a hash-and-sign algorithm.
1104 *
1105 * Hash-and-sign algorithms are public-key signature algorithms structured
1106 * in two parts: first the calculation of a hash in a way that does not
1107 * depend on the key, then the calculation of a signature from the
1108 * hash value and the key.
1109 *
1110 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1111 *
1112 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1113 * This macro may return either 0 or 1 if \p alg is not a supported
1114 * algorithm identifier.
1115 */
1116#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1117 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1118 PSA_ALG_IS_DSA(alg) || PSA_ALG_IS_ECDSA(alg))
1119
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001120/** Get the hash used by a hash-and-sign signature algorithm.
1121 *
1122 * A hash-and-sign algorithm is a signature algorithm which is
1123 * composed of two phases: first a hashing phase which does not use
1124 * the key and produces a hash of the input message, then a signing
1125 * phase which only uses the hash and the key and not the message
1126 * itself.
1127 *
1128 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1129 * #PSA_ALG_IS_SIGN(\p alg) is true).
1130 *
1131 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1132 * algorithm.
1133 * \return 0 if \p alg is a signature algorithm that does not
1134 * follow the hash-and-sign structure.
1135 * \return Unspecified if \p alg is not a signature algorithm or
1136 * if it is not supported by the implementation.
1137 */
1138#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001139 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001140 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1141 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1142 0)
1143
1144/** RSA PKCS#1 v1.5 encryption.
1145 */
1146#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000)
1147
1148#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000)
1149/** RSA OAEP encryption.
1150 *
1151 * This is the encryption scheme defined by RFC 8017
1152 * (PKCS#1: RSA Cryptography Specifications) under the name
1153 * RSAES-OAEP, with the message generation function MGF1.
1154 *
1155 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1156 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1157 * for MGF1.
1158 *
1159 * \return The corresponding RSA OAEP signature algorithm.
1160 * \return Unspecified if \p alg is not a supported
1161 * hash algorithm.
1162 */
1163#define PSA_ALG_RSA_OAEP(hash_alg) \
1164 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1165#define PSA_ALG_IS_RSA_OAEP(alg) \
1166 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1167#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1168 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1169 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1170 0)
1171
Gilles Peskine6843c292019-01-18 16:44:49 +01001172#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x20000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001173/** Macro to build an HKDF algorithm.
1174 *
1175 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1176 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001177 * This key derivation algorithm uses the following inputs:
1178 * - #PSA_KDF_STEP_SALT is the salt used in the "extract" step.
1179 * It is optional; if omitted, the derivation uses an empty salt.
1180 * - #PSA_KDF_STEP_SECRET is the secret key used in the "extract" step.
1181 * - #PSA_KDF_STEP_INFO is the info string used in the "expand" step.
1182 * You must pass #PSA_KDF_STEP_SALT before #PSA_KDF_STEP_SECRET.
1183 * You may pass #PSA_KDF_STEP_INFO at any time after steup and before
1184 * starting to generate output.
1185 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001186 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1187 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1188 *
1189 * \return The corresponding HKDF algorithm.
1190 * \return Unspecified if \p alg is not a supported
1191 * hash algorithm.
1192 */
1193#define PSA_ALG_HKDF(hash_alg) \
1194 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1195/** Whether the specified algorithm is an HKDF algorithm.
1196 *
1197 * HKDF is a family of key derivation algorithms that are based on a hash
1198 * function and the HMAC construction.
1199 *
1200 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1201 *
1202 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1203 * This macro may return either 0 or 1 if \c alg is not a supported
1204 * key derivation algorithm identifier.
1205 */
1206#define PSA_ALG_IS_HKDF(alg) \
1207 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1208#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1209 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1210
Gilles Peskine6843c292019-01-18 16:44:49 +01001211#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x20000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001212/** Macro to build a TLS-1.2 PRF algorithm.
1213 *
1214 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1215 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1216 * used with either SHA-256 or SHA-384.
1217 *
1218 * For the application to TLS-1.2, the salt and label arguments passed
1219 * to psa_key_derivation() are what's called 'seed' and 'label' in RFC 5246,
1220 * respectively. For example, for TLS key expansion, the salt is the
1221 * concatenation of ServerHello.Random + ClientHello.Random,
1222 * while the label is "key expansion".
1223 *
1224 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1225 * TLS 1.2 PRF using HMAC-SHA-256.
1226 *
1227 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1228 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1229 *
1230 * \return The corresponding TLS-1.2 PRF algorithm.
1231 * \return Unspecified if \p alg is not a supported
1232 * hash algorithm.
1233 */
1234#define PSA_ALG_TLS12_PRF(hash_alg) \
1235 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1236
1237/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1238 *
1239 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1240 *
1241 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1242 * This macro may return either 0 or 1 if \c alg is not a supported
1243 * key derivation algorithm identifier.
1244 */
1245#define PSA_ALG_IS_TLS12_PRF(alg) \
1246 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1247#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1248 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1249
Gilles Peskine6843c292019-01-18 16:44:49 +01001250#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x20000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001251/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1252 *
1253 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1254 * from the PreSharedKey (PSK) through the application of padding
1255 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1256 * The latter is based on HMAC and can be used with either SHA-256
1257 * or SHA-384.
1258 *
1259 * For the application to TLS-1.2, the salt passed to psa_key_derivation()
1260 * (and forwarded to the TLS-1.2 PRF) is the concatenation of the
1261 * ClientHello.Random + ServerHello.Random, while the label is "master secret"
1262 * or "extended master secret".
1263 *
1264 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1265 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1266 *
1267 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1268 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1269 *
1270 * \return The corresponding TLS-1.2 PSK to MS algorithm.
1271 * \return Unspecified if \p alg is not a supported
1272 * hash algorithm.
1273 */
1274#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1275 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1276
1277/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1278 *
1279 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1280 *
1281 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1282 * This macro may return either 0 or 1 if \c alg is not a supported
1283 * key derivation algorithm identifier.
1284 */
1285#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1286 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1287#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1288 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1289
Gilles Peskine6843c292019-01-18 16:44:49 +01001290#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x080fffff)
1291#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0x10f00000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001292
Gilles Peskine6843c292019-01-18 16:44:49 +01001293/** Macro to build a combined algorithm that chains a key agreement with
1294 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001295 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001296 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1297 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1298 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1299 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001300 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001301 * \return The corresponding key agreement and derivation
1302 * algorithm.
1303 * \return Unspecified if \p ka_alg is not a supported
1304 * key agreement algorithm or \p kdf_alg is not a
1305 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001306 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001307#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1308 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001309
1310#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1311 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1312
Gilles Peskine6843c292019-01-18 16:44:49 +01001313#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1314 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001315
Gilles Peskine6843c292019-01-18 16:44:49 +01001316#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
1317 (PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
1318
1319#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1320 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1321
1322/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001323 *
1324 * The shared secret produced by key agreement and passed as input to the
1325 * derivation or selection algorithm \p kdf_alg is the shared secret
1326 * `g^{ab}` in big-endian format.
1327 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1328 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001329 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001330#define PSA_ALG_FFDH ((psa_algorithm_t)0x30100000)
1331
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001332/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1333 *
1334 * This includes every supported key selection or key agreement algorithm
1335 * for the output of the Diffie-Hellman calculation.
1336 *
1337 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1338 *
1339 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1340 * This macro may return either 0 or 1 if \c alg is not a supported
1341 * key agreement algorithm identifier.
1342 */
1343#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001344 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001345
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001346/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1347 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001348 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001349 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1350 * `m` is the bit size associated with the curve, i.e. the bit size of the
1351 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1352 * the byte containing the most significant bit of the shared secret
1353 * is padded with zero bits. The byte order is either little-endian
1354 * or big-endian depending on the curve type.
1355 *
1356 * - For Montgomery curves (curve types `PSA_ECC_CURVE_CURVEXXX`),
1357 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1358 * in little-endian byte order.
1359 * The bit size is 448 for Curve448 and 255 for Curve25519.
1360 * - For Weierstrass curves over prime fields (curve types
1361 * `PSA_ECC_CURVE_SECPXXX` and `PSA_ECC_CURVE_BRAINPOOL_PXXX`),
1362 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1363 * in big-endian byte order.
1364 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1365 * - For Weierstrass curves over binary fields (curve types
1366 * `PSA_ECC_CURVE_SECTXXX`),
1367 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1368 * in big-endian byte order.
1369 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001370 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001371#define PSA_ALG_ECDH ((psa_algorithm_t)0x30200000)
1372
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001373/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1374 * algorithm.
1375 *
1376 * This includes every supported key selection or key agreement algorithm
1377 * for the output of the Diffie-Hellman calculation.
1378 *
1379 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1380 *
1381 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1382 * 0 otherwise.
1383 * This macro may return either 0 or 1 if \c alg is not a supported
1384 * key agreement algorithm identifier.
1385 */
1386#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001387 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001388
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001389/** Whether the specified algorithm encoding is a wildcard.
1390 *
1391 * Wildcard values may only be used to set the usage algorithm field in
1392 * a policy, not to perform an operation.
1393 *
1394 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1395 *
1396 * \return 1 if \c alg is a wildcard algorithm encoding.
1397 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1398 * an operation).
1399 * \return This macro may return either 0 or 1 if \c alg is not a supported
1400 * algorithm identifier.
1401 */
1402#define PSA_ALG_IS_WILDCARD(alg) \
1403 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1404 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1405 (alg) == PSA_ALG_ANY_HASH)
1406
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001407/**@}*/
1408
1409/** \defgroup key_lifetimes Key lifetimes
1410 * @{
1411 */
1412
1413/** A volatile key only exists as long as the handle to it is not closed.
1414 * The key material is guaranteed to be erased on a power reset.
1415 */
1416#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1417
1418/** The default storage area for persistent keys.
1419 *
1420 * A persistent key remains in storage until it is explicitly destroyed or
1421 * until the corresponding storage area is wiped. This specification does
1422 * not define any mechanism to wipe a storage area, but implementations may
1423 * provide their own mechanism (for example to perform a factory reset,
1424 * to prepare for device refurbishment, or to uninstall an application).
1425 *
1426 * This lifetime value is the default storage area for the calling
1427 * application. Implementations may offer other storage areas designated
1428 * by other lifetime values as implementation-specific extensions.
1429 */
1430#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1431
1432/**@}*/
1433
1434/** \defgroup policy Key policies
1435 * @{
1436 */
1437
1438/** Whether the key may be exported.
1439 *
1440 * A public key or the public part of a key pair may always be exported
1441 * regardless of the value of this permission flag.
1442 *
1443 * If a key does not have export permission, implementations shall not
1444 * allow the key to be exported in plain form from the cryptoprocessor,
1445 * whether through psa_export_key() or through a proprietary interface.
1446 * The key may however be exportable in a wrapped form, i.e. in a form
1447 * where it is encrypted by another key.
1448 */
1449#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
1450
1451/** Whether the key may be used to encrypt a message.
1452 *
1453 * This flag allows the key to be used for a symmetric encryption operation,
1454 * for an AEAD encryption-and-authentication operation,
1455 * or for an asymmetric encryption operation,
1456 * if otherwise permitted by the key's type and policy.
1457 *
1458 * For a key pair, this concerns the public key.
1459 */
1460#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
1461
1462/** Whether the key may be used to decrypt a message.
1463 *
1464 * This flag allows the key to be used for a symmetric decryption operation,
1465 * for an AEAD decryption-and-verification operation,
1466 * or for an asymmetric decryption operation,
1467 * if otherwise permitted by the key's type and policy.
1468 *
1469 * For a key pair, this concerns the private key.
1470 */
1471#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
1472
1473/** Whether the key may be used to sign a message.
1474 *
1475 * This flag allows the key to be used for a MAC calculation operation
1476 * or for an asymmetric signature operation,
1477 * if otherwise permitted by the key's type and policy.
1478 *
1479 * For a key pair, this concerns the private key.
1480 */
1481#define PSA_KEY_USAGE_SIGN ((psa_key_usage_t)0x00000400)
1482
1483/** Whether the key may be used to verify a message signature.
1484 *
1485 * This flag allows the key to be used for a MAC verification operation
1486 * or for an asymmetric signature verification operation,
1487 * if otherwise permitted by by the key's type and policy.
1488 *
1489 * For a key pair, this concerns the public key.
1490 */
1491#define PSA_KEY_USAGE_VERIFY ((psa_key_usage_t)0x00000800)
1492
1493/** Whether the key may be used to derive other keys.
1494 */
1495#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000)
1496
1497/**@}*/
1498
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001499/** \defgroup derivation Key derivation
1500 * @{
1501 */
1502
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001503/** A secret input for key derivation.
1504 *
1505 * This must be a key of type #PSA_KEY_TYPE_DERIVE.
1506 */
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001507#define PSA_KDF_STEP_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001508
1509/** A label for key derivation.
1510 *
1511 * This must be a direct input.
1512 */
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001513#define PSA_KDF_STEP_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001514
1515/** A salt for key derivation.
1516 *
1517 * This must be a direct input.
1518 */
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001519#define PSA_KDF_STEP_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001520
1521/** An information string for key derivation.
1522 *
1523 * This must be a direct input.
1524 */
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001525#define PSA_KDF_STEP_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001526
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001527/**@}*/
1528
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001529#endif /* PSA_CRYPTO_VALUES_H */