blob: e21e3b39da359cde4a978abdb280f92fdc68e2a3 [file] [log] [blame]
Jerry Yu49231312023-01-10 16:57:21 +08001/*
Dave Rodgmanf918d422023-03-17 17:52:23 +00002 * Armv8-A Cryptographic Extension support functions for Aarch64
Jerry Yu49231312023-01-10 16:57:21 +08003 *
4 * Copyright The Mbed TLS Contributors
5 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 */
19
Jerry Yu48b999c2023-03-03 15:51:07 +080020#if defined(__aarch64__) && !defined(__ARM_FEATURE_CRYPTO) && \
Jerry Yu6f86c192023-03-13 11:03:40 +080021 defined(__clang__) && __clang_major__ >= 4
Jerry Yu48b999c2023-03-03 15:51:07 +080022/* TODO: Re-consider above after https://reviews.llvm.org/D131064 merged.
23 *
24 * The intrinsic declaration are guarded by predefined ACLE macros in clang:
25 * these are normally only enabled by the -march option on the command line.
26 * By defining the macros ourselves we gain access to those declarations without
27 * requiring -march on the command line.
28 *
29 * `arm_neon.h` could be included by any header file, so we put these defines
30 * at the top of this file, before any includes.
31 */
32#define __ARM_FEATURE_CRYPTO 1
Jerry Yuae129c32023-03-03 15:55:56 +080033/* See: https://arm-software.github.io/acle/main/acle.html#cryptographic-extensions
34 *
Jerry Yu490bf082023-03-06 15:21:44 +080035 * `__ARM_FEATURE_CRYPTO` is deprecated, but we need to continue to specify it
36 * for older compilers.
Jerry Yuae129c32023-03-03 15:55:56 +080037 */
38#define __ARM_FEATURE_AES 1
Dave Rodgmandb6ab242023-03-14 16:03:57 +000039#define MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG
Jerry Yu490bf082023-03-06 15:21:44 +080040#endif
Jerry Yu48b999c2023-03-03 15:51:07 +080041
Jerry Yu49231312023-01-10 16:57:21 +080042#include <string.h>
43#include "common.h"
44
45#if defined(MBEDTLS_AESCE_C)
46
47#include "aesce.h"
48
49#if defined(MBEDTLS_HAVE_ARM64)
50
Jerry Yu61c4cfa2023-04-26 11:06:51 +080051/* Compiler version checks. */
Jerry Yudb368de2023-04-26 16:55:37 +080052#if defined(__clang__)
53# if __clang_major__ < 4
54# error "Minimum version of Clang for MBEDTLS_AESCE_C is 4.0."
55# endif
56#elif defined(__GNUC__)
57# if __GNUC__ < 6
58# error "Minimum version of GCC for MBEDTLS_AESCE_C is 6.0."
59# endif
60#elif defined(_MSC_VER)
Jerry Yu61c4cfa2023-04-26 11:06:51 +080061/* TODO: We haven't verified MSVC from 1920 to 1928. If someone verified that,
62 * please update this and document of `MBEDTLS_AESCE_C` in
63 * `mbedtls_config.h`. */
Jerry Yudb368de2023-04-26 16:55:37 +080064# if _MSC_VER < 1929
65# error "Minimum version of MSVC for MBEDTLS_AESCE_C is 2019 version 16.11.2."
66# endif
Jerry Yu61c4cfa2023-04-26 11:06:51 +080067#endif
68
Dave Rodgmandb6ab242023-03-14 16:03:57 +000069#if !defined(__ARM_FEATURE_AES) || defined(MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG)
Jerry Yuec9be842023-03-14 10:42:47 +080070# if defined(__clang__)
Jerry Yuec9be842023-03-14 10:42:47 +080071# pragma clang attribute push (__attribute__((target("crypto"))), apply_to=function)
72# define MBEDTLS_POP_TARGET_PRAGMA
73# elif defined(__GNUC__)
Jerry Yuec9be842023-03-14 10:42:47 +080074# pragma GCC push_options
75# pragma GCC target ("arch=armv8-a+crypto")
76# define MBEDTLS_POP_TARGET_PRAGMA
Jerry Yu07d28d82023-03-20 18:12:36 +080077# elif defined(_MSC_VER)
Jerry Yu61c4cfa2023-04-26 11:06:51 +080078# error "Required feature(__ARM_FEATURE_AES) is not enabled."
Jerry Yu49231312023-01-10 16:57:21 +080079# endif
Dave Rodgmandb6ab242023-03-14 16:03:57 +000080#endif /* !__ARM_FEATURE_AES || MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG */
Jerry Yu49231312023-01-10 16:57:21 +080081
Jerry Yu49231312023-01-10 16:57:21 +080082#include <arm_neon.h>
83
Jerry Yub95c7762023-01-10 16:59:51 +080084#if defined(__linux__)
85#include <asm/hwcap.h>
86#include <sys/auxv.h>
87#endif
88
89/*
90 * AES instruction support detection routine
91 */
92int mbedtls_aesce_has_support(void)
93{
94#if defined(__linux__)
95 unsigned long auxval = getauxval(AT_HWCAP);
96 return (auxval & (HWCAP_ASIMD | HWCAP_AES)) ==
97 (HWCAP_ASIMD | HWCAP_AES);
98#else
Jerry Yuba1e78f2023-02-24 11:18:16 +080099 /* Assume AES instructions are supported. */
Jerry Yub95c7762023-01-10 16:59:51 +0800100 return 1;
101#endif
102}
103
Jerry Yu2bb3d812023-01-10 17:38:26 +0800104static uint8x16_t aesce_encrypt_block(uint8x16_t block,
105 unsigned char *keys,
106 int rounds)
107{
Dave Rodgman96fdfb82023-06-15 16:21:31 +0100108 /* Assume either 10, 12 or 14 rounds */
109 if (rounds == 10) {
110 goto rounds_10;
Jerry Yu2bb3d812023-01-10 17:38:26 +0800111 }
Dave Rodgman96fdfb82023-06-15 16:21:31 +0100112 if (rounds == 12) {
113 goto rounds_12;
114 }
115 block = vaeseq_u8(block, vld1q_u8(keys));
116 block = vaesmcq_u8(block);
117 keys += 16;
118 block = vaeseq_u8(block, vld1q_u8(keys));
119 block = vaesmcq_u8(block);
120 keys += 16;
121rounds_12:
122 block = vaeseq_u8(block, vld1q_u8(keys));
123 block = vaesmcq_u8(block);
124 keys += 16;
125 block = vaeseq_u8(block, vld1q_u8(keys));
126 block = vaesmcq_u8(block);
127 keys += 16;
128rounds_10:
129 block = vaeseq_u8(block, vld1q_u8(keys));
130 block = vaesmcq_u8(block);
131 keys += 16;
132 block = vaeseq_u8(block, vld1q_u8(keys));
133 block = vaesmcq_u8(block);
134 keys += 16;
135 block = vaeseq_u8(block, vld1q_u8(keys));
136 block = vaesmcq_u8(block);
137 keys += 16;
138 block = vaeseq_u8(block, vld1q_u8(keys));
139 block = vaesmcq_u8(block);
140 keys += 16;
141 block = vaeseq_u8(block, vld1q_u8(keys));
142 block = vaesmcq_u8(block);
143 keys += 16;
144 block = vaeseq_u8(block, vld1q_u8(keys));
145 block = vaesmcq_u8(block);
146 keys += 16;
147 block = vaeseq_u8(block, vld1q_u8(keys));
148 block = vaesmcq_u8(block);
149 keys += 16;
150 block = vaeseq_u8(block, vld1q_u8(keys));
151 block = vaesmcq_u8(block);
152 keys += 16;
153 block = vaeseq_u8(block, vld1q_u8(keys));
154 block = vaesmcq_u8(block);
155 keys += 16;
Jerry Yu2bb3d812023-01-10 17:38:26 +0800156
Jerry Yuc8bcdc82023-02-21 14:49:02 +0800157 /* AES AddRoundKey for the previous round.
158 * SubBytes, ShiftRows for the final round. */
Dave Rodgman96fdfb82023-06-15 16:21:31 +0100159 block = vaeseq_u8(block, vld1q_u8(keys));
160 keys += 16;
Jerry Yu2bb3d812023-01-10 17:38:26 +0800161
Jerry Yuc8bcdc82023-02-21 14:49:02 +0800162 /* Final round: no MixColumns */
Jerry Yu3304c202023-02-22 14:37:11 +0800163
164 /* Final AddRoundKey */
Dave Rodgman96fdfb82023-06-15 16:21:31 +0100165 block = veorq_u8(block, vld1q_u8(keys));
Jerry Yu2bb3d812023-01-10 17:38:26 +0800166
167 return block;
168}
169
170static uint8x16_t aesce_decrypt_block(uint8x16_t block,
171 unsigned char *keys,
172 int rounds)
173{
Dave Rodgman1c4451d2023-06-15 16:28:00 +0100174 /* Assume either 10, 12 or 14 rounds */
175 if (rounds == 10) {
176 goto rounds_10;
Jerry Yu2bb3d812023-01-10 17:38:26 +0800177 }
Dave Rodgman1c4451d2023-06-15 16:28:00 +0100178 if (rounds == 12) {
179 goto rounds_12;
180 }
181
182 /* AES AddRoundKey, SubBytes, ShiftRows */
183 block = vaesdq_u8(block, vld1q_u8(keys));
184 /* AES inverse MixColumns for the next round.
185 *
186 * This means that we switch the order of the inverse AddRoundKey and
187 * inverse MixColumns operations. We have to do this as AddRoundKey is
188 * done in an atomic instruction together with the inverses of SubBytes
189 * and ShiftRows.
190 *
191 * It works because MixColumns is a linear operation over GF(2^8) and
192 * AddRoundKey is an exclusive or, which is equivalent to addition over
193 * GF(2^8). (The inverse of MixColumns needs to be applied to the
194 * affected round keys separately which has been done when the
195 * decryption round keys were calculated.) */
196 block = vaesimcq_u8(block);
197 keys += 16;
198
199 block = vaesdq_u8(block, vld1q_u8(keys));
200 block = vaesimcq_u8(block);
201 keys += 16;
202rounds_12:
203 block = vaesdq_u8(block, vld1q_u8(keys));
204 block = vaesimcq_u8(block);
205 keys += 16;
206 block = vaesdq_u8(block, vld1q_u8(keys));
207 block = vaesimcq_u8(block);
208 keys += 16;
209rounds_10:
210 block = vaesdq_u8(block, vld1q_u8(keys));
211 block = vaesimcq_u8(block);
212 keys += 16;
213 block = vaesdq_u8(block, vld1q_u8(keys));
214 block = vaesimcq_u8(block);
215 keys += 16;
216 block = vaesdq_u8(block, vld1q_u8(keys));
217 block = vaesimcq_u8(block);
218 keys += 16;
219 block = vaesdq_u8(block, vld1q_u8(keys));
220 block = vaesimcq_u8(block);
221 keys += 16;
222 block = vaesdq_u8(block, vld1q_u8(keys));
223 block = vaesimcq_u8(block);
224 keys += 16;
225 block = vaesdq_u8(block, vld1q_u8(keys));
226 block = vaesimcq_u8(block);
227 keys += 16;
228 block = vaesdq_u8(block, vld1q_u8(keys));
229 block = vaesimcq_u8(block);
230 keys += 16;
231 block = vaesdq_u8(block, vld1q_u8(keys));
232 block = vaesimcq_u8(block);
233 keys += 16;
234 block = vaesdq_u8(block, vld1q_u8(keys));
235 block = vaesimcq_u8(block);
236 keys += 16;
Jerry Yu2bb3d812023-01-10 17:38:26 +0800237
Jerry Yuc8bcdc82023-02-21 14:49:02 +0800238 /* The inverses of AES AddRoundKey, SubBytes, ShiftRows finishing up the
239 * last full round. */
Dave Rodgman1c4451d2023-06-15 16:28:00 +0100240 block = vaesdq_u8(block, vld1q_u8(keys));
241 keys += 16;
Jerry Yu2bb3d812023-01-10 17:38:26 +0800242
Jerry Yuc8bcdc82023-02-21 14:49:02 +0800243 /* Inverse AddRoundKey for inverting the initial round key addition. */
Dave Rodgman1c4451d2023-06-15 16:28:00 +0100244 block = veorq_u8(block, vld1q_u8(keys));
Jerry Yu2bb3d812023-01-10 17:38:26 +0800245
246 return block;
247}
248
249/*
250 * AES-ECB block en(de)cryption
251 */
252int mbedtls_aesce_crypt_ecb(mbedtls_aes_context *ctx,
253 int mode,
254 const unsigned char input[16],
255 unsigned char output[16])
256{
257 uint8x16_t block = vld1q_u8(&input[0]);
258 unsigned char *keys = (unsigned char *) (ctx->buf + ctx->rk_offset);
259
260 if (mode == MBEDTLS_AES_ENCRYPT) {
261 block = aesce_encrypt_block(block, keys, ctx->nr);
262 } else {
263 block = aesce_decrypt_block(block, keys, ctx->nr);
264 }
265 vst1q_u8(&output[0], block);
266
267 return 0;
268}
269
Jerry Yue096da12023-01-10 17:07:01 +0800270/*
271 * Compute decryption round keys from encryption round keys
272 */
273void mbedtls_aesce_inverse_key(unsigned char *invkey,
274 const unsigned char *fwdkey,
275 int nr)
276{
277 int i, j;
278 j = nr;
279 vst1q_u8(invkey, vld1q_u8(fwdkey + j * 16));
280 for (i = 1, j--; j > 0; i++, j--) {
281 vst1q_u8(invkey + i * 16,
282 vaesimcq_u8(vld1q_u8(fwdkey + j * 16)));
283 }
284 vst1q_u8(invkey + i * 16, vld1q_u8(fwdkey + j * 16));
285
286}
287
Jerry Yuc8bcdc82023-02-21 14:49:02 +0800288static inline uint32_t aes_rot_word(uint32_t word)
Jerry Yu3f2fb712023-01-10 17:05:42 +0800289{
290 return (word << (32 - 8)) | (word >> 8);
291}
292
Jerry Yuc8bcdc82023-02-21 14:49:02 +0800293static inline uint32_t aes_sub_word(uint32_t in)
Jerry Yu3f2fb712023-01-10 17:05:42 +0800294{
Jerry Yuc8bcdc82023-02-21 14:49:02 +0800295 uint8x16_t v = vreinterpretq_u8_u32(vdupq_n_u32(in));
Jerry Yu3f2fb712023-01-10 17:05:42 +0800296 uint8x16_t zero = vdupq_n_u8(0);
Jerry Yuc8bcdc82023-02-21 14:49:02 +0800297
298 /* vaeseq_u8 does both SubBytes and ShiftRows. Taking the first row yields
299 * the correct result as ShiftRows doesn't change the first row. */
300 v = vaeseq_u8(zero, v);
301 return vgetq_lane_u32(vreinterpretq_u32_u8(v), 0);
Jerry Yu3f2fb712023-01-10 17:05:42 +0800302}
303
304/*
Jerry Yubaae4012023-02-21 15:26:13 +0800305 * Key expansion function
Jerry Yu3f2fb712023-01-10 17:05:42 +0800306 */
Jerry Yubaae4012023-02-21 15:26:13 +0800307static void aesce_setkey_enc(unsigned char *rk,
308 const unsigned char *key,
309 const size_t key_bit_length)
Jerry Yu3f2fb712023-01-10 17:05:42 +0800310{
Jerry Yubaae4012023-02-21 15:26:13 +0800311 static uint8_t const rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10,
312 0x20, 0x40, 0x80, 0x1b, 0x36 };
Jerry Yu947bf962023-02-23 11:07:57 +0800313 /* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
314 * - Section 5, Nr = Nk + 6
Jerry Yu2c266512023-03-01 11:18:20 +0800315 * - Section 5.2, the length of round keys is Nb*(Nr+1)
Jerry Yu947bf962023-02-23 11:07:57 +0800316 */
317 const uint32_t key_len_in_words = key_bit_length / 32; /* Nk */
318 const size_t round_key_len_in_words = 4; /* Nb */
Jerry Yu2c266512023-03-01 11:18:20 +0800319 const size_t rounds_needed = key_len_in_words + 6; /* Nr */
320 const size_t round_keys_len_in_words =
321 round_key_len_in_words * (rounds_needed + 1); /* Nb*(Nr+1) */
322 const uint32_t *rko_end = (uint32_t *) rk + round_keys_len_in_words;
Jerry Yuc8bcdc82023-02-21 14:49:02 +0800323
Jerry Yu3304c202023-02-22 14:37:11 +0800324 memcpy(rk, key, key_len_in_words * 4);
Jerry Yu3f2fb712023-01-10 17:05:42 +0800325
Jerry Yu3304c202023-02-22 14:37:11 +0800326 for (uint32_t *rki = (uint32_t *) rk;
327 rki + key_len_in_words < rko_end;
328 rki += key_len_in_words) {
329
Jerry Yufac5a542023-02-23 10:13:40 +0800330 size_t iteration = (rki - (uint32_t *) rk) / key_len_in_words;
Jerry Yu3304c202023-02-22 14:37:11 +0800331 uint32_t *rko;
Jerry Yubaae4012023-02-21 15:26:13 +0800332 rko = rki + key_len_in_words;
333 rko[0] = aes_rot_word(aes_sub_word(rki[key_len_in_words - 1]));
Jerry Yu3304c202023-02-22 14:37:11 +0800334 rko[0] ^= rcon[iteration] ^ rki[0];
Jerry Yu3f2fb712023-01-10 17:05:42 +0800335 rko[1] = rko[0] ^ rki[1];
336 rko[2] = rko[1] ^ rki[2];
337 rko[3] = rko[2] ^ rki[3];
Jerry Yufac5a542023-02-23 10:13:40 +0800338 if (rko + key_len_in_words > rko_end) {
Jerry Yu3304c202023-02-22 14:37:11 +0800339 /* Do not write overflow words.*/
340 continue;
341 }
Yanray Wange2bc1582023-05-08 10:28:53 +0800342#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
Jerry Yubaae4012023-02-21 15:26:13 +0800343 switch (key_bit_length) {
Jerry Yu3304c202023-02-22 14:37:11 +0800344 case 128:
345 break;
Jerry Yubaae4012023-02-21 15:26:13 +0800346 case 192:
Jerry Yu3304c202023-02-22 14:37:11 +0800347 rko[4] = rko[3] ^ rki[4];
348 rko[5] = rko[4] ^ rki[5];
Jerry Yubaae4012023-02-21 15:26:13 +0800349 break;
350 case 256:
Jerry Yu3304c202023-02-22 14:37:11 +0800351 rko[4] = aes_sub_word(rko[3]) ^ rki[4];
352 rko[5] = rko[4] ^ rki[5];
353 rko[6] = rko[5] ^ rki[6];
354 rko[7] = rko[6] ^ rki[7];
Jerry Yubaae4012023-02-21 15:26:13 +0800355 break;
Jerry Yu3f2fb712023-01-10 17:05:42 +0800356 }
Yanray Wange2bc1582023-05-08 10:28:53 +0800357#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
Jerry Yu3f2fb712023-01-10 17:05:42 +0800358 }
359}
360
361/*
362 * Key expansion, wrapper
363 */
364int mbedtls_aesce_setkey_enc(unsigned char *rk,
365 const unsigned char *key,
366 size_t bits)
367{
368 switch (bits) {
Jerry Yubaae4012023-02-21 15:26:13 +0800369 case 128:
370 case 192:
371 case 256:
Jerry Yuba1e78f2023-02-24 11:18:16 +0800372 aesce_setkey_enc(rk, key, bits);
373 break;
374 default:
375 return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
Jerry Yu3f2fb712023-01-10 17:05:42 +0800376 }
377
378 return 0;
379}
380
Jerry Yudf87a122023-01-10 18:17:15 +0800381#if defined(MBEDTLS_GCM_C)
382
Jerry Yu132d0cb2023-03-02 17:35:53 +0800383#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 5
Jerry Yu1ac7f6b2023-03-07 15:44:59 +0800384/* Some intrinsics are not available for GCC 5.X. */
Jerry Yu132d0cb2023-03-02 17:35:53 +0800385#define vreinterpretq_p64_u8(a) ((poly64x2_t) a)
386#define vreinterpretq_u8_p128(a) ((uint8x16_t) a)
387static inline poly64_t vget_low_p64(poly64x2_t __a)
388{
389 uint64x2_t tmp = (uint64x2_t) (__a);
390 uint64x1_t lo = vcreate_u64(vgetq_lane_u64(tmp, 0));
391 return (poly64_t) (lo);
392}
393#endif /* !__clang__ && __GNUC__ && __GNUC__ == 5*/
394
Jerry Yu1ac7f6b2023-03-07 15:44:59 +0800395/* vmull_p64/vmull_high_p64 wrappers.
396 *
397 * Older compilers miss some intrinsic functions for `poly*_t`. We use
398 * uint8x16_t and uint8x16x3_t as input/output parameters.
399 */
Jerry Yu9db4b1f2023-03-21 16:56:43 +0800400#if defined(__GNUC__) && !defined(__clang__)
401/* GCC reports incompatible type error without cast. GCC think poly64_t and
402 * poly64x1_t are different, that is different with MSVC and Clang. */
403#define MBEDTLS_VMULL_P64(a, b) vmull_p64((poly64_t) a, (poly64_t) b)
404#else
405/* MSVC reports `error C2440: 'type cast'` with cast. Clang does not report
406 * error with/without cast. And I think poly64_t and poly64x1_t are same, no
407 * cast for clang also. */
408#define MBEDTLS_VMULL_P64(a, b) vmull_p64(a, b)
409#endif
Jerry Yudf87a122023-01-10 18:17:15 +0800410static inline uint8x16_t pmull_low(uint8x16_t a, uint8x16_t b)
411{
Jerry Yu9db4b1f2023-03-21 16:56:43 +0800412
Jerry Yudf87a122023-01-10 18:17:15 +0800413 return vreinterpretq_u8_p128(
Jerry Yu9db4b1f2023-03-21 16:56:43 +0800414 MBEDTLS_VMULL_P64(
415 vget_low_p64(vreinterpretq_p64_u8(a)),
416 vget_low_p64(vreinterpretq_p64_u8(b))
417 ));
Jerry Yudf87a122023-01-10 18:17:15 +0800418}
419
420static inline uint8x16_t pmull_high(uint8x16_t a, uint8x16_t b)
421{
422 return vreinterpretq_u8_p128(
423 vmull_high_p64(vreinterpretq_p64_u8(a),
424 vreinterpretq_p64_u8(b)));
425}
426
Jerry Yuf0526a92023-03-14 15:00:29 +0800427/* GHASH does 128b polynomial multiplication on block in GF(2^128) defined by
Jerry Yu49b43672023-03-13 10:09:34 +0800428 * `x^128 + x^7 + x^2 + x + 1`.
Jerry Yu1ac7f6b2023-03-07 15:44:59 +0800429 *
430 * Arm64 only has 64b->128b polynomial multipliers, we need to do 4 64b
431 * multiplies to generate a 128b.
432 *
433 * `poly_mult_128` executes polynomial multiplication and outputs 256b that
434 * represented by 3 128b due to code size optimization.
435 *
436 * Output layout:
437 * | | | |
438 * |------------|-------------|-------------|
439 * | ret.val[0] | h3:h2:00:00 | high 128b |
Jerry Yu8f810602023-03-14 17:28:52 +0800440 * | ret.val[1] | :m2:m1:00 | middle 128b |
Jerry Yu1ac7f6b2023-03-07 15:44:59 +0800441 * | ret.val[2] | : :l1:l0 | low 128b |
442 */
Jerry Yudf87a122023-01-10 18:17:15 +0800443static inline uint8x16x3_t poly_mult_128(uint8x16_t a, uint8x16_t b)
444{
445 uint8x16x3_t ret;
Jerry Yu8f810602023-03-14 17:28:52 +0800446 uint8x16_t h, m, l; /* retval high/middle/low */
Jerry Yu1ac7f6b2023-03-07 15:44:59 +0800447 uint8x16_t c, d, e;
448
449 h = pmull_high(a, b); /* h3:h2:00:00 = a1*b1 */
450 l = pmull_low(a, b); /* : :l1:l0 = a0*b0 */
451 c = vextq_u8(b, b, 8); /* :c1:c0 = b0:b1 */
452 d = pmull_high(a, c); /* :d2:d1:00 = a1*b0 */
453 e = pmull_low(a, c); /* :e2:e1:00 = a0*b1 */
454 m = veorq_u8(d, e); /* :m2:m1:00 = d + e */
455
456 ret.val[0] = h;
457 ret.val[1] = m;
458 ret.val[2] = l;
Jerry Yudf87a122023-01-10 18:17:15 +0800459 return ret;
460}
461
Jerry Yu1ac7f6b2023-03-07 15:44:59 +0800462/*
463 * Modulo reduction.
464 *
465 * See: https://www.researchgate.net/publication/285612706_Implementing_GCM_on_ARMv8
466 *
467 * Section 4.3
468 *
469 * Modular reduction is slightly more complex. Write the GCM modulus as f(z) =
470 * z^128 +r(z), where r(z) = z^7+z^2+z+ 1. The well known approach is to
Jerry Yube4fdef2023-03-15 14:50:42 +0800471 * consider that z^128 ≡r(z) (mod z^128 +r(z)), allowing us to write the 256-bit
472 * operand to be reduced as a(z) = h(z)z^128 +l(z)≡h(z)r(z) + l(z). That is, we
473 * simply multiply the higher part of the operand by r(z) and add it to l(z). If
Jerry Yu1ac7f6b2023-03-07 15:44:59 +0800474 * the result is still larger than 128 bits, we reduce again.
475 */
476static inline uint8x16_t poly_mult_reduce(uint8x16x3_t input)
Jerry Yudf87a122023-01-10 18:17:15 +0800477{
Jerry Yu1ac7f6b2023-03-07 15:44:59 +0800478 uint8x16_t const ZERO = vdupq_n_u8(0);
Jerry Yu8b6df3f2023-03-21 16:59:13 +0800479
Jerry Yudf87a122023-01-10 18:17:15 +0800480 uint64x2_t r = vreinterpretq_u64_u8(vdupq_n_u8(0x87));
Jerry Yu8b6df3f2023-03-21 16:59:13 +0800481#if defined(__GNUC__)
482 /* use 'asm' as an optimisation barrier to prevent loading MODULO from
483 * memory. It is for GNUC compatible compilers.
484 */
Jerry Yudf87a122023-01-10 18:17:15 +0800485 asm ("" : "+w" (r));
Jerry Yu8b6df3f2023-03-21 16:59:13 +0800486#endif
Jerry Yu1ac7f6b2023-03-07 15:44:59 +0800487 uint8x16_t const MODULO = vreinterpretq_u8_u64(vshrq_n_u64(r, 64 - 8));
Jerry Yu8f810602023-03-14 17:28:52 +0800488 uint8x16_t h, m, l; /* input high/middle/low 128b */
Jerry Yu1ac7f6b2023-03-07 15:44:59 +0800489 uint8x16_t c, d, e, f, g, n, o;
490 h = input.val[0]; /* h3:h2:00:00 */
491 m = input.val[1]; /* :m2:m1:00 */
492 l = input.val[2]; /* : :l1:l0 */
493 c = pmull_high(h, MODULO); /* :c2:c1:00 = reduction of h3 */
494 d = pmull_low(h, MODULO); /* : :d1:d0 = reduction of h2 */
495 e = veorq_u8(c, m); /* :e2:e1:00 = m2:m1:00 + c2:c1:00 */
496 f = pmull_high(e, MODULO); /* : :f1:f0 = reduction of e2 */
497 g = vextq_u8(ZERO, e, 8); /* : :g1:00 = e1:00 */
498 n = veorq_u8(d, l); /* : :n1:n0 = d1:d0 + l1:l0 */
499 o = veorq_u8(n, f); /* o1:o0 = f1:f0 + n1:n0 */
500 return veorq_u8(o, g); /* = o1:o0 + g1:00 */
Jerry Yudf87a122023-01-10 18:17:15 +0800501}
502
503/*
504 * GCM multiplication: c = a times b in GF(2^128)
505 */
506void mbedtls_aesce_gcm_mult(unsigned char c[16],
507 const unsigned char a[16],
508 const unsigned char b[16])
509{
510 uint8x16_t va, vb, vc;
511 va = vrbitq_u8(vld1q_u8(&a[0]));
512 vb = vrbitq_u8(vld1q_u8(&b[0]));
513 vc = vrbitq_u8(poly_mult_reduce(poly_mult_128(va, vb)));
514 vst1q_u8(&c[0], vc);
515}
516
517#endif /* MBEDTLS_GCM_C */
Jerry Yu48b999c2023-03-03 15:51:07 +0800518
519#if defined(MBEDTLS_POP_TARGET_PRAGMA)
520#if defined(__clang__)
521#pragma clang attribute pop
522#elif defined(__GNUC__)
523#pragma GCC pop_options
524#endif
525#undef MBEDTLS_POP_TARGET_PRAGMA
526#endif
527
Jerry Yu49231312023-01-10 16:57:21 +0800528#endif /* MBEDTLS_HAVE_ARM64 */
529
530#endif /* MBEDTLS_AESCE_C */