blob: a7b7bc73ad5eef9ea77e0dfabab3bd4ddc57b010 [file] [log] [blame]
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +01001/*
2 * Elliptic curves over GF(p): curve-specific data and functions
3 *
4 * Copyright (C) 2006-2013, Brainspark B.V.
5 *
6 * This file is part of PolarSSL (http://www.polarssl.org)
7 * Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
8 *
9 * All rights reserved.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 */
25
26#include "polarssl/config.h"
27
28#if defined(POLARSSL_ECP_C)
29
30#include "polarssl/ecp.h"
31
32/*
33 * Domain parameters for secp192r1
34 */
35#define SECP192R1_P \
36 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF"
37#define SECP192R1_B \
38 "64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1"
39#define SECP192R1_GX \
40 "188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012"
41#define SECP192R1_GY \
42 "07192B95FFC8DA78631011ED6B24CDD573F977A11E794811"
43#define SECP192R1_N \
44 "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831"
45
46/*
47 * Domain parameters for secp224r1
48 */
49#define SECP224R1_P \
50 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001"
51#define SECP224R1_B \
52 "B4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4"
53#define SECP224R1_GX \
54 "B70E0CBD6BB4BF7F321390B94A03C1D356C21122343280D6115C1D21"
55#define SECP224R1_GY \
56 "BD376388B5F723FB4C22DFE6CD4375A05A07476444D5819985007E34"
57#define SECP224R1_N \
58 "FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D"
59
60/*
61 * Domain parameters for secp256r1
62 */
63#define SECP256R1_P \
64 "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF"
65#define SECP256R1_B \
66 "5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B"
67#define SECP256R1_GX \
68 "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296"
69#define SECP256R1_GY \
70 "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5"
71#define SECP256R1_N \
72 "FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551"
73
74/*
75 * Domain parameters for secp384r1
76 */
77#define SECP384R1_P \
78 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
79 "FFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF"
80#define SECP384R1_B \
81 "B3312FA7E23EE7E4988E056BE3F82D19181D9C6EFE814112" \
82 "0314088F5013875AC656398D8A2ED19D2A85C8EDD3EC2AEF"
83#define SECP384R1_GX \
84 "AA87CA22BE8B05378EB1C71EF320AD746E1D3B628BA79B98" \
85 "59F741E082542A385502F25DBF55296C3A545E3872760AB7"
86#define SECP384R1_GY \
87 "3617DE4A96262C6F5D9E98BF9292DC29F8F41DBD289A147C" \
88 "E9DA3113B5F0B8C00A60B1CE1D7E819D7A431D7C90EA0E5F"
89#define SECP384R1_N \
90 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
91 "C7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973"
92
93/*
94 * Domain parameters for secp521r1
95 */
96#define SECP521R1_P \
97 "000001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
98 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
99 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
100#define SECP521R1_B \
101 "00000051953EB9618E1C9A1F929A21A0B68540EEA2DA725B" \
102 "99B315F3B8B489918EF109E156193951EC7E937B1652C0BD" \
103 "3BB1BF073573DF883D2C34F1EF451FD46B503F00"
104#define SECP521R1_GX \
105 "000000C6858E06B70404E9CD9E3ECB662395B4429C648139" \
106 "053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127" \
107 "A2FFA8DE3348B3C1856A429BF97E7E31C2E5BD66"
108#define SECP521R1_GY \
109 "0000011839296A789A3BC0045C8A5FB42C7D1BD998F54449" \
110 "579B446817AFBD17273E662C97EE72995EF42640C550B901" \
111 "3FAD0761353C7086A272C24088BE94769FD16650"
112#define SECP521R1_N \
113 "000001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
114 "FFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148" \
115 "F709A5D03BB5C9B8899C47AEBB6FB71E91386409"
116
117/*
118 * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
119 */
120#define BP256R1_P \
121 "A9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377"
122#define BP256R1_A \
123 "7D5A0975FC2C3057EEF67530417AFFE7FB8055C126DC5C6CE94A4B44F330B5D9"
124#define BP256R1_B \
125 "26DC5C6CE94A4B44F330B5D9BBD77CBF958416295CF7E1CE6BCCDC18FF8C07B6"
126#define BP256R1_GX \
127 "8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1E3BD23C23A4453BD9ACE3262"
128#define BP256R1_GY \
129 "547EF835C3DAC4FD97F8461A14611DC9C27745132DED8E545C1D54C72F046997"
130#define BP256R1_N \
131 "A9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7"
132
133/*
134 * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
135 */
136#define BP384R1_P \
137 "8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB711" \
138 "23ACD3A729901D1A71874700133107EC53"
139#define BP384R1_A \
140 "7BC382C63D8C150C3C72080ACE05AFA0C2BEA28E4FB22787139165EFBA91F9" \
141 "0F8AA5814A503AD4EB04A8C7DD22CE2826"
142#define BP384R1_B \
143 "04A8C7DD22CE28268B39B55416F0447C2FB77DE107DCD2A62E880EA53EEB62" \
144 "D57CB4390295DBC9943AB78696FA504C11"
145#define BP384R1_GX \
146 "1D1C64F068CF45FFA2A63A81B7C13F6B8847A3E77EF14FE3DB7FCAFE0CBD10" \
147 "E8E826E03436D646AAEF87B2E247D4AF1E"
148#define BP384R1_GY \
149 "8ABE1D7520F9C2A45CB1EB8E95CFD55262B70B29FEEC5864E19C054FF99129" \
150 "280E4646217791811142820341263C5315"
151#define BP384R1_N \
152 "8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B31F166E6CAC0425" \
153 "A7CF3AB6AF6B7FC3103B883202E9046565"
154
155/*
156 * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
157 */
158#define BP512R1_P \
159 "AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308" \
160 "717D4D9B009BC66842AECDA12AE6A380E62881FF2F2D82C68528AA6056583A48F3"
161#define BP512R1_A \
162 "7830A3318B603B89E2327145AC234CC594CBDD8D3DF91610A83441CAEA9863" \
163 "BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CA"
164#define BP512R1_B \
165 "3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117" \
166 "A72BF2C7B9E7C1AC4D77FC94CADC083E67984050B75EBAE5DD2809BD638016F723"
167#define BP512R1_GX \
168 "81AEE4BDD82ED9645A21322E9C4C6A9385ED9F70B5D916C1B43B62EEF4D009" \
169 "8EFF3B1F78E2D0D48D50D1687B93B97D5F7C6D5047406A5E688B352209BCB9F822"
170#define BP512R1_GY \
171 "7DDE385D566332ECC0EABFA9CF7822FDF209F70024A57B1AA000C55B881F81" \
172 "11B2DCDE494A5F485E5BCA4BD88A2763AED1CA2B2FA8F0540678CD1E0F3AD80892"
173#define BP512R1_N \
174 "AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308" \
175 "70553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90069"
176
177/*
178 * Import an ECP group from ASCII strings, general case (A used)
179 */
180static int ecp_group_read_string_gen( ecp_group *grp, int radix,
181 const char *p, const char *a, const char *b,
182 const char *gx, const char *gy, const char *n)
183{
184 int ret;
185
186 MPI_CHK( mpi_read_string( &grp->P, radix, p ) );
187 MPI_CHK( mpi_read_string( &grp->A, radix, a ) );
188 MPI_CHK( mpi_read_string( &grp->B, radix, b ) );
189 MPI_CHK( ecp_point_read_string( &grp->G, radix, gx, gy ) );
190 MPI_CHK( mpi_read_string( &grp->N, radix, n ) );
191
192 grp->pbits = mpi_msb( &grp->P );
193 grp->nbits = mpi_msb( &grp->N );
194
195cleanup:
196 if( ret != 0 )
197 ecp_group_free( grp );
198
199 return( ret );
200}
201
202#if defined(POLARSSL_ECP_NIST_OPTIM)
203/* Forward declarations */
204int ecp_mod_p192( mpi * );
205int ecp_mod_p224( mpi * );
206int ecp_mod_p256( mpi * );
207int ecp_mod_p384( mpi * );
208int ecp_mod_p521( mpi * );
209#endif
210
211/*
212 * Set a group using well-known domain parameters
213 */
214int ecp_use_known_dp( ecp_group *grp, ecp_group_id id )
215{
216 grp->id = id;
217
218 switch( id )
219 {
220#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
221 case POLARSSL_ECP_DP_SECP192R1:
222#if defined(POLARSSL_ECP_NIST_OPTIM)
223 grp->modp = ecp_mod_p192;
224#endif
225 return( ecp_group_read_string( grp, 16,
226 SECP192R1_P, SECP192R1_B,
227 SECP192R1_GX, SECP192R1_GY, SECP192R1_N ) );
228#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
229
230#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
231 case POLARSSL_ECP_DP_SECP224R1:
232#if defined(POLARSSL_ECP_NIST_OPTIM)
233 grp->modp = ecp_mod_p224;
234#endif
235 return( ecp_group_read_string( grp, 16,
236 SECP224R1_P, SECP224R1_B,
237 SECP224R1_GX, SECP224R1_GY, SECP224R1_N ) );
238#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
239
240#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
241 case POLARSSL_ECP_DP_SECP256R1:
242#if defined(POLARSSL_ECP_NIST_OPTIM)
243 grp->modp = ecp_mod_p256;
244#endif
245 return( ecp_group_read_string( grp, 16,
246 SECP256R1_P, SECP256R1_B,
247 SECP256R1_GX, SECP256R1_GY, SECP256R1_N ) );
248#endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
249
250#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
251 case POLARSSL_ECP_DP_SECP384R1:
252#if defined(POLARSSL_ECP_NIST_OPTIM)
253 grp->modp = ecp_mod_p384;
254#endif
255 return( ecp_group_read_string( grp, 16,
256 SECP384R1_P, SECP384R1_B,
257 SECP384R1_GX, SECP384R1_GY, SECP384R1_N ) );
258#endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
259
260#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
261 case POLARSSL_ECP_DP_SECP521R1:
262#if defined(POLARSSL_ECP_NIST_OPTIM)
263 grp->modp = ecp_mod_p521;
264#endif
265 return( ecp_group_read_string( grp, 16,
266 SECP521R1_P, SECP521R1_B,
267 SECP521R1_GX, SECP521R1_GY, SECP521R1_N ) );
268#endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
269
270#if defined(POLARSSL_ECP_DP_BP256R1_ENABLED)
271 case POLARSSL_ECP_DP_BP256R1:
272 return( ecp_group_read_string_gen( grp, 16,
273 BP256R1_P, BP256R1_A, BP256R1_B,
274 BP256R1_GX, BP256R1_GY, BP256R1_N ) );
275#endif /* POLARSSL_ECP_DP_BP256R1_ENABLED */
276
277#if defined(POLARSSL_ECP_DP_BP384R1_ENABLED)
278 case POLARSSL_ECP_DP_BP384R1:
279 return( ecp_group_read_string_gen( grp, 16,
280 BP384R1_P, BP384R1_A, BP384R1_B,
281 BP384R1_GX, BP384R1_GY, BP384R1_N ) );
282#endif /* POLARSSL_ECP_DP_BP384R1_ENABLED */
283
284#if defined(POLARSSL_ECP_DP_BP512R1_ENABLED)
285 case POLARSSL_ECP_DP_BP512R1:
286 return( ecp_group_read_string_gen( grp, 16,
287 BP512R1_P, BP512R1_A, BP512R1_B,
288 BP512R1_GX, BP512R1_GY, BP512R1_N ) );
289#endif /* POLARSSL_ECP_DP_BP512R1_ENABLED */
290
291 default:
292 ecp_group_free( grp );
293 return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
294 }
295}
296
297#if defined(POLARSSL_ECP_NIST_OPTIM)
298/*
299 * Fast reduction modulo the primes used by the NIST curves.
300 *
301 * These functions are critical for speed, but not needed for correct
302 * operations. So, we make the choice to heavily rely on the internals of our
303 * bignum library, which creates a tight coupling between these functions and
304 * our MPI implementation. However, the coupling between the ECP module and
305 * MPI remains loose, since these functions can be deactivated at will.
306 */
307
308#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
309/*
310 * Compared to the way things are presented in FIPS 186-3 D.2,
311 * we proceed in columns, from right (least significant chunk) to left,
312 * adding chunks to N in place, and keeping a carry for the next chunk.
313 * This avoids moving things around in memory, and uselessly adding zeros,
314 * compared to the more straightforward, line-oriented approach.
315 *
316 * For this prime we need to handle data in chunks of 64 bits.
317 * Since this is always a multiple of our basic t_uint, we can
318 * use a t_uint * to designate such a chunk, and small loops to handle it.
319 */
320
321/* Add 64-bit chunks (dst += src) and update carry */
322static inline void add64( t_uint *dst, t_uint *src, t_uint *carry )
323{
324 unsigned char i;
325 t_uint c = 0;
326 for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++, src++ )
327 {
328 *dst += c; c = ( *dst < c );
329 *dst += *src; c += ( *dst < *src );
330 }
331 *carry += c;
332}
333
334/* Add carry to a 64-bit chunk and update carry */
335static inline void carry64( t_uint *dst, t_uint *carry )
336{
337 unsigned char i;
338 for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++ )
339 {
340 *dst += *carry;
341 *carry = ( *dst < *carry );
342 }
343}
344
345#define WIDTH 8 / sizeof( t_uint )
346#define A( i ) N->p + i * WIDTH
347#define ADD( i ) add64( p, A( i ), &c )
348#define NEXT p += WIDTH; carry64( p, &c )
349#define LAST p += WIDTH; *p = c; while( ++p < end ) *p = 0
350
351/*
352 * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
353 */
354int ecp_mod_p192( mpi *N )
355{
356 int ret;
357 t_uint c = 0;
358 t_uint *p, *end;
359
360 /* Make sure we have enough blocks so that A(5) is legal */
361 MPI_CHK( mpi_grow( N, 6 * WIDTH ) );
362
363 p = N->p;
364 end = p + N->n;
365
366 ADD( 3 ); ADD( 5 ); NEXT; // A0 += A3 + A5
367 ADD( 3 ); ADD( 4 ); ADD( 5 ); NEXT; // A1 += A3 + A4 + A5
368 ADD( 4 ); ADD( 5 ); LAST; // A2 += A4 + A5
369
370cleanup:
371 return( ret );
372}
373
374#undef WIDTH
375#undef A
376#undef ADD
377#undef NEXT
378#undef LAST
379#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
380
381#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED) || \
382 defined(POLARSSL_ECP_DP_SECP256R1_ENABLED) || \
383 defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
384/*
385 * The reader is advised to first understand ecp_mod_p192() since the same
386 * general structure is used here, but with additional complications:
387 * (1) chunks of 32 bits, and (2) subtractions.
388 */
389
390/*
391 * For these primes, we need to handle data in chunks of 32 bits.
392 * This makes it more complicated if we use 64 bits limbs in MPI,
393 * which prevents us from using a uniform access method as for p192.
394 *
395 * So, we define a mini abstraction layer to access 32 bit chunks,
396 * load them in 'cur' for work, and store them back from 'cur' when done.
397 *
398 * While at it, also define the size of N in terms of 32-bit chunks.
399 */
400#define LOAD32 cur = A( i );
401
402#if defined(POLARSSL_HAVE_INT8) /* 8 bit */
403
404#define MAX32 N->n / 4
405#define A( j ) (uint32_t)( N->p[4*j+0] ) | \
406 ( N->p[4*j+1] << 8 ) | \
407 ( N->p[4*j+2] << 16 ) | \
408 ( N->p[4*j+3] << 24 )
409#define STORE32 N->p[4*i+0] = (t_uint)( cur ); \
410 N->p[4*i+1] = (t_uint)( cur >> 8 ); \
411 N->p[4*i+2] = (t_uint)( cur >> 16 ); \
412 N->p[4*i+3] = (t_uint)( cur >> 24 );
413
414#elif defined(POLARSSL_HAVE_INT16) /* 16 bit */
415
416#define MAX32 N->n / 2
417#define A( j ) (uint32_t)( N->p[2*j] ) | ( N->p[2*j+1] << 16 )
418#define STORE32 N->p[2*i+0] = (t_uint)( cur ); \
419 N->p[2*i+1] = (t_uint)( cur >> 16 );
420
421#elif defined(POLARSSL_HAVE_INT32) /* 32 bit */
422
423#define MAX32 N->n
424#define A( j ) N->p[j]
425#define STORE32 N->p[i] = cur;
426
427#else /* 64-bit */
428
429#define MAX32 N->n * 2
430#define A( j ) j % 2 ? (uint32_t)( N->p[j/2] >> 32 ) : (uint32_t)( N->p[j/2] )
431#define STORE32 \
432 if( i % 2 ) { \
433 N->p[i/2] &= 0x00000000FFFFFFFF; \
434 N->p[i/2] |= ((t_uint) cur) << 32; \
435 } else { \
436 N->p[i/2] &= 0xFFFFFFFF00000000; \
437 N->p[i/2] |= (t_uint) cur; \
438 }
439
440#endif /* sizeof( t_uint ) */
441
442/*
443 * Helpers for addition and subtraction of chunks, with signed carry.
444 */
445static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
446{
447 *dst += src;
448 *carry += ( *dst < src );
449}
450
451static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
452{
453 *carry -= ( *dst < src );
454 *dst -= src;
455}
456
457#define ADD( j ) add32( &cur, A( j ), &c );
458#define SUB( j ) sub32( &cur, A( j ), &c );
459
460/*
461 * Helpers for the main 'loop'
462 * (see fix_negative for the motivation of C)
463 */
464#define INIT( b ) \
465 int ret; \
466 signed char c = 0, cc; \
467 uint32_t cur; \
468 size_t i = 0, bits = b; \
469 mpi C; \
470 t_uint Cp[ b / 8 / sizeof( t_uint) + 1 ]; \
471 \
472 C.s = 1; \
473 C.n = b / 8 / sizeof( t_uint) + 1; \
474 C.p = Cp; \
475 memset( Cp, 0, C.n * sizeof( t_uint ) ); \
476 \
477 MPI_CHK( mpi_grow( N, b * 2 / 8 / sizeof( t_uint ) ) ); \
478 LOAD32;
479
480#define NEXT \
481 STORE32; i++; LOAD32; \
482 cc = c; c = 0; \
483 if( cc < 0 ) \
484 sub32( &cur, -cc, &c ); \
485 else \
486 add32( &cur, cc, &c ); \
487
488#define LAST \
489 STORE32; i++; \
490 cur = c > 0 ? c : 0; STORE32; \
491 cur = 0; while( ++i < MAX32 ) { STORE32; } \
492 if( c < 0 ) fix_negative( N, c, &C, bits );
493
494/*
495 * If the result is negative, we get it in the form
496 * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
497 */
498static inline int fix_negative( mpi *N, signed char c, mpi *C, size_t bits )
499{
500 int ret;
501
502 /* C = - c * 2^(bits + 32) */
503#if !defined(POLARSSL_HAVE_INT64)
504 ((void) bits);
505#else
506 if( bits == 224 )
507 C->p[ C->n - 1 ] = ((t_uint) -c) << 32;
508 else
509#endif
510 C->p[ C->n - 1 ] = (t_uint) -c;
511
512 /* N = - ( C - N ) */
513 MPI_CHK( mpi_sub_abs( N, C, N ) );
514 N->s = -1;
515
516cleanup:
517
518 return( ret );
519}
520
521#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
522/*
523 * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
524 */
525int ecp_mod_p224( mpi *N )
526{
527 INIT( 224 );
528
529 SUB( 7 ); SUB( 11 ); NEXT; // A0 += -A7 - A11
530 SUB( 8 ); SUB( 12 ); NEXT; // A1 += -A8 - A12
531 SUB( 9 ); SUB( 13 ); NEXT; // A2 += -A9 - A13
532 SUB( 10 ); ADD( 7 ); ADD( 11 ); NEXT; // A3 += -A10 + A7 + A11
533 SUB( 11 ); ADD( 8 ); ADD( 12 ); NEXT; // A4 += -A11 + A8 + A12
534 SUB( 12 ); ADD( 9 ); ADD( 13 ); NEXT; // A5 += -A12 + A9 + A13
535 SUB( 13 ); ADD( 10 ); LAST; // A6 += -A13 + A10
536
537cleanup:
538 return( ret );
539}
540#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
541
542#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
543/*
544 * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
545 */
546int ecp_mod_p256( mpi *N )
547{
548 INIT( 256 );
549
550 ADD( 8 ); ADD( 9 );
551 SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 ); NEXT; // A0
552
553 ADD( 9 ); ADD( 10 );
554 SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A1
555
556 ADD( 10 ); ADD( 11 );
557 SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A2
558
559 ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
560 SUB( 15 ); SUB( 8 ); SUB( 9 ); NEXT; // A3
561
562 ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
563 SUB( 9 ); SUB( 10 ); NEXT; // A4
564
565 ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
566 SUB( 10 ); SUB( 11 ); NEXT; // A5
567
568 ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
569 SUB( 8 ); SUB( 9 ); NEXT; // A6
570
571 ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
572 SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 ); LAST; // A7
573
574cleanup:
575 return( ret );
576}
577#endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
578
579#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
580/*
581 * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
582 */
583int ecp_mod_p384( mpi *N )
584{
585 INIT( 384 );
586
587 ADD( 12 ); ADD( 21 ); ADD( 20 );
588 SUB( 23 ); NEXT; // A0
589
590 ADD( 13 ); ADD( 22 ); ADD( 23 );
591 SUB( 12 ); SUB( 20 ); NEXT; // A2
592
593 ADD( 14 ); ADD( 23 );
594 SUB( 13 ); SUB( 21 ); NEXT; // A2
595
596 ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
597 SUB( 14 ); SUB( 22 ); SUB( 23 ); NEXT; // A3
598
599 ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
600 SUB( 15 ); SUB( 23 ); SUB( 23 ); NEXT; // A4
601
602 ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
603 SUB( 16 ); NEXT; // A5
604
605 ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
606 SUB( 17 ); NEXT; // A6
607
608 ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
609 SUB( 18 ); NEXT; // A7
610
611 ADD( 20 ); ADD( 17 ); ADD( 16 );
612 SUB( 19 ); NEXT; // A8
613
614 ADD( 21 ); ADD( 18 ); ADD( 17 );
615 SUB( 20 ); NEXT; // A9
616
617 ADD( 22 ); ADD( 19 ); ADD( 18 );
618 SUB( 21 ); NEXT; // A10
619
620 ADD( 23 ); ADD( 20 ); ADD( 19 );
621 SUB( 22 ); LAST; // A11
622
623cleanup:
624 return( ret );
625}
626#endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
627
628#undef A
629#undef LOAD32
630#undef STORE32
631#undef MAX32
632#undef INIT
633#undef NEXT
634#undef LAST
635
636#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED ||
637 POLARSSL_ECP_DP_SECP256R1_ENABLED ||
638 POLARSSL_ECP_DP_SECP384R1_ENABLED */
639
640#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
641/*
642 * Here we have an actual Mersenne prime, so things are more straightforward.
643 * However, chunks are aligned on a 'weird' boundary (521 bits).
644 */
645
646/* Size of p521 in terms of t_uint */
647#define P521_WIDTH ( 521 / 8 / sizeof( t_uint ) + 1 )
648
649/* Bits to keep in the most significant t_uint */
650#if defined(POLARSSL_HAVE_INT8)
651#define P521_MASK 0x01
652#else
653#define P521_MASK 0x01FF
654#endif
655
656/*
657 * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
658 * Write N as A1 + 2^521 A0, return A0 + A1
659 */
660int ecp_mod_p521( mpi *N )
661{
662 int ret;
663 size_t i;
664 mpi M;
665 t_uint Mp[P521_WIDTH + 1];
666 /* Worst case for the size of M is when t_uint is 16 bits:
667 * we need to hold bits 513 to 1056, which is 34 limbs, that is
668 * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
669
670 if( N->n < P521_WIDTH )
671 return( 0 );
672
673 /* M = A1 */
674 M.s = 1;
675 M.n = N->n - ( P521_WIDTH - 1 );
676 if( M.n > P521_WIDTH + 1 )
677 M.n = P521_WIDTH + 1;
678 M.p = Mp;
679 memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( t_uint ) );
680 MPI_CHK( mpi_shift_r( &M, 521 % ( 8 * sizeof( t_uint ) ) ) );
681
682 /* N = A0 */
683 N->p[P521_WIDTH - 1] &= P521_MASK;
684 for( i = P521_WIDTH; i < N->n; i++ )
685 N->p[i] = 0;
686
687 /* N = A0 + A1 */
688 MPI_CHK( mpi_add_abs( N, N, &M ) );
689
690cleanup:
691 return( ret );
692}
693
694#undef P521_WIDTH
695#undef P521_MASK
696#endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
697
698#endif /* POLARSSL_ECP_NIST_OPTIM */
699
700#endif