blob: 59e2c877a4fee62697a79ec0ae346e49b4e5bd53 [file] [log] [blame]
gabor-mezei-arm90559722021-07-12 16:31:22 +02001/**
2 * Constant-time functions
3 *
4 * Copyright The Mbed TLS Contributors
5 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 */
19
20#include "common.h"
gabor-mezei-arm944c1072021-09-27 11:28:54 +020021#include "constant_time.h"
gabor-mezei-armcb4317b2021-09-27 14:28:31 +020022#include "mbedtls/error.h"
gabor-mezei-arm944c1072021-09-27 11:28:54 +020023
gabor-mezei-arm097d4f52021-09-27 12:55:33 +020024#if defined(MBEDTLS_BIGNUM_C)
25#include "mbedtls/bignum.h"
26#endif
27
gabor-mezei-armcb4317b2021-09-27 14:28:31 +020028#if defined(MBEDTLS_SSL_TLS_C)
29#include "mbedtls/ssl_internal.h"
30#endif
31
gabor-mezei-armf52941e2021-09-27 16:11:12 +020032#include <string.h>
gabor-mezei-arm097d4f52021-09-27 12:55:33 +020033
gabor-mezei-arm378e7eb2021-07-19 15:19:19 +020034int mbedtls_cf_memcmp( const void *a,
35 const void *b,
36 size_t n )
gabor-mezei-arm944c1072021-09-27 11:28:54 +020037{
38 size_t i;
39 volatile const unsigned char *A = (volatile const unsigned char *) a;
40 volatile const unsigned char *B = (volatile const unsigned char *) b;
41 volatile unsigned char diff = 0;
42
43 for( i = 0; i < n; i++ )
44 {
45 /* Read volatile data in order before computing diff.
46 * This avoids IAR compiler warning:
47 * 'the order of volatile accesses is undefined ..' */
48 unsigned char x = A[i], y = B[i];
49 diff |= x ^ y;
50 }
51
gabor-mezei-arm944c1072021-09-27 11:28:54 +020052 return( (int)diff );
53}
54
gabor-mezei-armc11cac92021-09-27 11:40:03 +020055/** Turn zero-or-nonzero into zero-or-all-bits-one, without branches.
56 *
57 * \param value The value to analyze.
58 * \return Zero if \p value is zero, otherwise all-bits-one.
59 */
60unsigned mbedtls_cf_uint_mask( unsigned value )
61{
62 /* MSVC has a warning about unary minus on unsigned, but this is
63 * well-defined and precisely what we want to do here */
64#if defined(_MSC_VER)
65#pragma warning( push )
66#pragma warning( disable : 4146 )
67#endif
68 return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
69#if defined(_MSC_VER)
70#pragma warning( pop )
71#endif
72}
gabor-mezei-armd361ccd2021-09-27 11:49:42 +020073
74/*
75 * Turn a bit into a mask:
76 * - if bit == 1, return the all-bits 1 mask, aka (size_t) -1
77 * - if bit == 0, return the all-bits 0 mask, aka 0
78 *
79 * This function can be used to write constant-time code by replacing branches
80 * with bit operations using masks.
81 *
82 * This function is implemented without using comparison operators, as those
83 * might be translated to branches by some compilers on some platforms.
84 */
85size_t mbedtls_cf_size_mask( size_t bit )
86{
87 /* MSVC has a warning about unary minus on unsigned integer types,
88 * but this is well-defined and precisely what we want to do here. */
89#if defined(_MSC_VER)
90#pragma warning( push )
91#pragma warning( disable : 4146 )
92#endif
93 return -bit;
94#if defined(_MSC_VER)
95#pragma warning( pop )
96#endif
97}
gabor-mezei-arm4d6b1462021-09-27 11:53:54 +020098
99/*
100 * Constant-flow mask generation for "less than" comparison:
101 * - if x < y, return all bits 1, that is (size_t) -1
102 * - otherwise, return all bits 0, that is 0
103 *
104 * This function can be used to write constant-time code by replacing branches
105 * with bit operations using masks.
106 *
107 * This function is implemented without using comparison operators, as those
108 * might be translated to branches by some compilers on some platforms.
109 */
gabor-mezei-arm04087df2021-09-27 16:29:52 +0200110size_t mbedtls_cf_size_mask_lt( size_t x,
111 size_t y )
gabor-mezei-arm4d6b1462021-09-27 11:53:54 +0200112{
113 /* This has the most significant bit set if and only if x < y */
114 const size_t sub = x - y;
115
116 /* sub1 = (x < y) ? 1 : 0 */
117 const size_t sub1 = sub >> ( sizeof( sub ) * 8 - 1 );
118
119 /* mask = (x < y) ? 0xff... : 0x00... */
120 const size_t mask = mbedtls_cf_size_mask( sub1 );
121
122 return( mask );
123}
gabor-mezei-arma2bcabc2021-09-27 11:58:31 +0200124
125/*
126 * Constant-flow mask generation for "greater or equal" comparison:
127 * - if x >= y, return all bits 1, that is (size_t) -1
128 * - otherwise, return all bits 0, that is 0
129 *
130 * This function can be used to write constant-time code by replacing branches
131 * with bit operations using masks.
132 *
133 * This function is implemented without using comparison operators, as those
134 * might be translated to branches by some compilers on some platforms.
135 */
gabor-mezei-arm04087df2021-09-27 16:29:52 +0200136size_t mbedtls_cf_size_mask_ge( size_t x,
137 size_t y )
gabor-mezei-arma2bcabc2021-09-27 11:58:31 +0200138{
139 return( ~mbedtls_cf_size_mask_lt( x, y ) );
140}
gabor-mezei-arm96584dd2021-09-27 12:15:19 +0200141
142/*
143 * Constant-flow boolean "equal" comparison:
144 * return x == y
145 *
146 * This function can be used to write constant-time code by replacing branches
147 * with bit operations - it can be used in conjunction with
148 * mbedtls_ssl_cf_mask_from_bit().
149 *
150 * This function is implemented without using comparison operators, as those
151 * might be translated to branches by some compilers on some platforms.
152 */
gabor-mezei-arm04087df2021-09-27 16:29:52 +0200153size_t mbedtls_cf_size_bool_eq( size_t x,
154 size_t y )
gabor-mezei-arm96584dd2021-09-27 12:15:19 +0200155{
156 /* diff = 0 if x == y, non-zero otherwise */
157 const size_t diff = x ^ y;
158
159 /* MSVC has a warning about unary minus on unsigned integer types,
160 * but this is well-defined and precisely what we want to do here. */
161#if defined(_MSC_VER)
162#pragma warning( push )
163#pragma warning( disable : 4146 )
164#endif
165
166 /* diff_msb's most significant bit is equal to x != y */
167 const size_t diff_msb = ( diff | (size_t) -diff );
168
169#if defined(_MSC_VER)
170#pragma warning( pop )
171#endif
172
173 /* diff1 = (x != y) ? 1 : 0 */
174 const size_t diff1 = diff_msb >> ( sizeof( diff_msb ) * 8 - 1 );
175
176 return( 1 ^ diff1 );
177}
gabor-mezei-arm9d7bf092021-09-27 12:25:07 +0200178
179/** Check whether a size is out of bounds, without branches.
180 *
181 * This is equivalent to `size > max`, but is likely to be compiled to
182 * to code using bitwise operation rather than a branch.
183 *
184 * \param size Size to check.
185 * \param max Maximum desired value for \p size.
186 * \return \c 0 if `size <= max`.
187 * \return \c 1 if `size > max`.
188 */
gabor-mezei-arm04087df2021-09-27 16:29:52 +0200189unsigned mbedtls_cf_size_gt( size_t size,
190 size_t max )
gabor-mezei-arm9d7bf092021-09-27 12:25:07 +0200191{
192 /* Return the sign bit (1 for negative) of (max - size). */
193 return( ( max - size ) >> ( sizeof( size_t ) * 8 - 1 ) );
194}
gabor-mezei-arm097d4f52021-09-27 12:55:33 +0200195
196#if defined(MBEDTLS_BIGNUM_C)
197
198/** Decide if an integer is less than the other, without branches.
199 *
200 * \param x First integer.
201 * \param y Second integer.
202 *
203 * \return 1 if \p x is less than \p y, 0 otherwise
204 */
205unsigned mbedtls_cf_mpi_uint_lt( const mbedtls_mpi_uint x,
gabor-mezei-arm04087df2021-09-27 16:29:52 +0200206 const mbedtls_mpi_uint y )
gabor-mezei-arm097d4f52021-09-27 12:55:33 +0200207{
208 mbedtls_mpi_uint ret;
209 mbedtls_mpi_uint cond;
210
211 /*
212 * Check if the most significant bits (MSB) of the operands are different.
213 */
214 cond = ( x ^ y );
215 /*
216 * If the MSB are the same then the difference x-y will be negative (and
217 * have its MSB set to 1 during conversion to unsigned) if and only if x<y.
218 */
219 ret = ( x - y ) & ~cond;
220 /*
221 * If the MSB are different, then the operand with the MSB of 1 is the
222 * bigger. (That is if y has MSB of 1, then x<y is true and it is false if
223 * the MSB of y is 0.)
224 */
225 ret |= y & cond;
226
227
228 ret = ret >> ( sizeof( mbedtls_mpi_uint ) * 8 - 1 );
229
230 return (unsigned) ret;
231}
232
233#endif /* MBEDTLS_BIGNUM_C */
gabor-mezei-arm75332532021-09-27 12:59:30 +0200234
235/** Choose between two integer values, without branches.
236 *
237 * This is equivalent to `cond ? if1 : if0`, but is likely to be compiled
238 * to code using bitwise operation rather than a branch.
239 *
240 * \param cond Condition to test.
241 * \param if1 Value to use if \p cond is nonzero.
242 * \param if0 Value to use if \p cond is zero.
243 * \return \c if1 if \p cond is nonzero, otherwise \c if0.
244 */
gabor-mezei-arm04087df2021-09-27 16:29:52 +0200245unsigned mbedtls_cf_uint_if( unsigned cond,
246 unsigned if1,
247 unsigned if0 )
gabor-mezei-arm75332532021-09-27 12:59:30 +0200248{
249 unsigned mask = mbedtls_cf_uint_mask( cond );
250 return( ( mask & if1 ) | (~mask & if0 ) );
251}
gabor-mezei-arm5cec8b42021-09-27 13:03:57 +0200252
gabor-mezei-arm04087df2021-09-27 16:29:52 +0200253size_t mbedtls_cf_size_if( unsigned cond,
254 size_t if1,
255 size_t if0 )
gabor-mezei-armbc3a2882021-09-27 15:47:00 +0200256{
257 size_t mask = mbedtls_cf_size_mask( cond );
258 return( ( mask & if1 ) | (~mask & if0 ) );
259}
260
gabor-mezei-arm5cec8b42021-09-27 13:03:57 +0200261/**
262 * Select between two sign values in constant-time.
263 *
264 * This is functionally equivalent to second ? a : b but uses only bit
265 * operations in order to avoid branches.
266 *
267 * \param[in] a The first sign; must be either +1 or -1.
268 * \param[in] b The second sign; must be either +1 or -1.
269 * \param[in] second Must be either 1 (return b) or 0 (return a).
270 *
271 * \return The selected sign value.
272 */
gabor-mezei-arm04087df2021-09-27 16:29:52 +0200273int mbedtls_cf_cond_select_sign( int a,
274 int b,
275 unsigned char second )
gabor-mezei-arm5cec8b42021-09-27 13:03:57 +0200276{
277 /* In order to avoid questions about what we can reasonnably assume about
278 * the representations of signed integers, move everything to unsigned
279 * by taking advantage of the fact that a and b are either +1 or -1. */
280 unsigned ua = a + 1;
281 unsigned ub = b + 1;
282
283 /* second was 0 or 1, mask is 0 or 2 as are ua and ub */
284 const unsigned mask = second << 1;
285
286 /* select ua or ub */
287 unsigned ur = ( ua & ~mask ) | ( ub & mask );
288
289 /* ur is now 0 or 2, convert back to -1 or +1 */
290 return( (int) ur - 1 );
291}
gabor-mezei-arm043192d2021-09-27 13:17:15 +0200292
293#if defined(MBEDTLS_BIGNUM_C)
294
295/*
296 * Conditionally assign dest = src, without leaking information
297 * about whether the assignment was made or not.
298 * dest and src must be arrays of limbs of size n.
299 * assign must be 0 or 1.
300 */
301void mbedtls_cf_mpi_uint_cond_assign( size_t n,
302 mbedtls_mpi_uint *dest,
303 const mbedtls_mpi_uint *src,
304 unsigned char assign )
305{
306 size_t i;
307
308 /* MSVC has a warning about unary minus on unsigned integer types,
309 * but this is well-defined and precisely what we want to do here. */
310#if defined(_MSC_VER)
311#pragma warning( push )
312#pragma warning( disable : 4146 )
313#endif
314
315 /* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */
316 const mbedtls_mpi_uint mask = -assign;
317
318#if defined(_MSC_VER)
319#pragma warning( pop )
320#endif
321
322 for( i = 0; i < n; i++ )
323 dest[i] = ( src[i] & mask ) | ( dest[i] & ~mask );
324}
325
326#endif /* MBEDTLS_BIGNUM_C */
gabor-mezei-arm7b23c0b2021-09-27 13:31:06 +0200327
328/** Shift some data towards the left inside a buffer without leaking
329 * the length of the data through side channels.
330 *
331 * `mbedtls_cf_mem_move_to_left(start, total, offset)` is functionally
332 * equivalent to
333 * ```
334 * memmove(start, start + offset, total - offset);
335 * memset(start + offset, 0, total - offset);
336 * ```
337 * but it strives to use a memory access pattern (and thus total timing)
338 * that does not depend on \p offset. This timing independence comes at
339 * the expense of performance.
340 *
341 * \param start Pointer to the start of the buffer.
342 * \param total Total size of the buffer.
343 * \param offset Offset from which to copy \p total - \p offset bytes.
344 */
345void mbedtls_cf_mem_move_to_left( void *start,
gabor-mezei-arm04087df2021-09-27 16:29:52 +0200346 size_t total,
347 size_t offset )
gabor-mezei-arm7b23c0b2021-09-27 13:31:06 +0200348{
349 volatile unsigned char *buf = start;
350 size_t i, n;
351 if( total == 0 )
352 return;
353 for( i = 0; i < total; i++ )
354 {
355 unsigned no_op = mbedtls_cf_size_gt( total - offset, i );
356 /* The first `total - offset` passes are a no-op. The last
357 * `offset` passes shift the data one byte to the left and
358 * zero out the last byte. */
359 for( n = 0; n < total - 1; n++ )
360 {
361 unsigned char current = buf[n];
362 unsigned char next = buf[n+1];
363 buf[n] = mbedtls_cf_uint_if( no_op, current, next );
364 }
365 buf[total-1] = mbedtls_cf_uint_if( no_op, buf[total-1], 0 );
366 }
367}
gabor-mezei-armee06feb2021-09-27 13:34:25 +0200368
369/*
370 * Constant-flow conditional memcpy:
371 * - if c1 == c2, equivalent to memcpy(dst, src, len),
372 * - otherwise, a no-op,
373 * but with execution flow independent of the values of c1 and c2.
374 *
375 * This function is implemented without using comparison operators, as those
376 * might be translated to branches by some compilers on some platforms.
377 */
378void mbedtls_cf_memcpy_if_eq( unsigned char *dst,
gabor-mezei-arm04087df2021-09-27 16:29:52 +0200379 const unsigned char *src,
380 size_t len,
381 size_t c1,
382 size_t c2 )
gabor-mezei-armee06feb2021-09-27 13:34:25 +0200383{
384 /* mask = c1 == c2 ? 0xff : 0x00 */
385 const size_t equal = mbedtls_cf_size_bool_eq( c1, c2 );
386 const unsigned char mask = (unsigned char) mbedtls_cf_size_mask( equal );
387
388 /* dst[i] = c1 == c2 ? src[i] : dst[i] */
389 for( size_t i = 0; i < len; i++ )
390 dst[i] = ( src[i] & mask ) | ( dst[i] & ~mask );
391}
gabor-mezei-arm0f7b9e42021-09-27 13:57:45 +0200392
393/*
394 * Constant-flow memcpy from variable position in buffer.
395 * - functionally equivalent to memcpy(dst, src + offset_secret, len)
396 * - but with execution flow independent from the value of offset_secret.
397 */
gabor-mezei-arm04087df2021-09-27 16:29:52 +0200398void mbedtls_cf_memcpy_offset( unsigned char *dst,
399 const unsigned char *src_base,
400 size_t offset_secret,
401 size_t offset_min,
402 size_t offset_max,
403 size_t len )
gabor-mezei-arm0f7b9e42021-09-27 13:57:45 +0200404{
405 size_t offset;
406
407 for( offset = offset_min; offset <= offset_max; offset++ )
408 {
409 mbedtls_cf_memcpy_if_eq( dst, src_base + offset, len,
410 offset, offset_secret );
411 }
412}
gabor-mezei-armcb4317b2021-09-27 14:28:31 +0200413
414#if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC)
415
416/*
417 * Compute HMAC of variable-length data with constant flow.
418 *
419 * Only works with MD-5, SHA-1, SHA-256 and SHA-384.
420 * (Otherwise, computation of block_size needs to be adapted.)
421 */
gabor-mezei-arm04087df2021-09-27 16:29:52 +0200422int mbedtls_cf_hmac( mbedtls_md_context_t *ctx,
423 const unsigned char *add_data,
424 size_t add_data_len,
425 const unsigned char *data,
426 size_t data_len_secret,
427 size_t min_data_len,
428 size_t max_data_len,
429 unsigned char *output )
gabor-mezei-armcb4317b2021-09-27 14:28:31 +0200430{
431 /*
432 * This function breaks the HMAC abstraction and uses the md_clone()
433 * extension to the MD API in order to get constant-flow behaviour.
434 *
435 * HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means
436 * concatenation, and okey/ikey are the XOR of the key with some fixed bit
437 * patterns (see RFC 2104, sec. 2), which are stored in ctx->hmac_ctx.
438 *
439 * We'll first compute inner_hash = HASH(ikey + msg) by hashing up to
440 * minlen, then cloning the context, and for each byte up to maxlen
441 * finishing up the hash computation, keeping only the correct result.
442 *
443 * Then we only need to compute HASH(okey + inner_hash) and we're done.
444 */
445 const mbedtls_md_type_t md_alg = mbedtls_md_get_type( ctx->md_info );
446 /* TLS 1.0-1.2 only support SHA-384, SHA-256, SHA-1, MD-5,
447 * all of which have the same block size except SHA-384. */
448 const size_t block_size = md_alg == MBEDTLS_MD_SHA384 ? 128 : 64;
449 const unsigned char * const ikey = ctx->hmac_ctx;
450 const unsigned char * const okey = ikey + block_size;
451 const size_t hash_size = mbedtls_md_get_size( ctx->md_info );
452
453 unsigned char aux_out[MBEDTLS_MD_MAX_SIZE];
454 mbedtls_md_context_t aux;
455 size_t offset;
456 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
457
458 mbedtls_md_init( &aux );
459
460#define MD_CHK( func_call ) \
461 do { \
462 ret = (func_call); \
463 if( ret != 0 ) \
464 goto cleanup; \
465 } while( 0 )
466
467 MD_CHK( mbedtls_md_setup( &aux, ctx->md_info, 0 ) );
468
469 /* After hmac_start() of hmac_reset(), ikey has already been hashed,
470 * so we can start directly with the message */
471 MD_CHK( mbedtls_md_update( ctx, add_data, add_data_len ) );
472 MD_CHK( mbedtls_md_update( ctx, data, min_data_len ) );
473
474 /* For each possible length, compute the hash up to that point */
475 for( offset = min_data_len; offset <= max_data_len; offset++ )
476 {
477 MD_CHK( mbedtls_md_clone( &aux, ctx ) );
478 MD_CHK( mbedtls_md_finish( &aux, aux_out ) );
479 /* Keep only the correct inner_hash in the output buffer */
480 mbedtls_cf_memcpy_if_eq( output, aux_out, hash_size,
481 offset, data_len_secret );
482
483 if( offset < max_data_len )
484 MD_CHK( mbedtls_md_update( ctx, data + offset, 1 ) );
485 }
486
487 /* The context needs to finish() before it starts() again */
488 MD_CHK( mbedtls_md_finish( ctx, aux_out ) );
489
490 /* Now compute HASH(okey + inner_hash) */
491 MD_CHK( mbedtls_md_starts( ctx ) );
492 MD_CHK( mbedtls_md_update( ctx, okey, block_size ) );
493 MD_CHK( mbedtls_md_update( ctx, output, hash_size ) );
494 MD_CHK( mbedtls_md_finish( ctx, output ) );
495
496 /* Done, get ready for next time */
497 MD_CHK( mbedtls_md_hmac_reset( ctx ) );
498
499#undef MD_CHK
500
501cleanup:
502 mbedtls_md_free( &aux );
503 return( ret );
504}
505
506#endif /* MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC */
gabor-mezei-armb8caeee2021-09-27 15:33:35 +0200507
508#if defined(MBEDTLS_BIGNUM_C)
509
510#define MPI_VALIDATE_RET( cond ) \
511 MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
512
513/*
514 * Conditionally assign X = Y, without leaking information
515 * about whether the assignment was made or not.
516 * (Leaking information about the respective sizes of X and Y is ok however.)
517 */
gabor-mezei-arm04087df2021-09-27 16:29:52 +0200518int mbedtls_mpi_safe_cond_assign( mbedtls_mpi *X,
519 const mbedtls_mpi *Y,
520 unsigned char assign )
gabor-mezei-armb8caeee2021-09-27 15:33:35 +0200521{
522 int ret = 0;
523 size_t i;
524 mbedtls_mpi_uint limb_mask;
525 MPI_VALIDATE_RET( X != NULL );
526 MPI_VALIDATE_RET( Y != NULL );
527
528 /* MSVC has a warning about unary minus on unsigned integer types,
529 * but this is well-defined and precisely what we want to do here. */
530#if defined(_MSC_VER)
531#pragma warning( push )
532#pragma warning( disable : 4146 )
533#endif
534
535 /* make sure assign is 0 or 1 in a time-constant manner */
536 assign = (assign | (unsigned char)-assign) >> (sizeof( assign ) * 8 - 1);
537 /* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */
538 limb_mask = -assign;
539
540#if defined(_MSC_VER)
541#pragma warning( pop )
542#endif
543
544 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
545
546 X->s = mbedtls_cf_cond_select_sign( X->s, Y->s, assign );
547
548 mbedtls_cf_mpi_uint_cond_assign( Y->n, X->p, Y->p, assign );
549
550 for( i = Y->n; i < X->n; i++ )
551 X->p[i] &= ~limb_mask;
552
553cleanup:
554 return( ret );
555}
556
gabor-mezei-arm58fc8a62021-09-27 15:37:50 +0200557/*
558 * Conditionally swap X and Y, without leaking information
559 * about whether the swap was made or not.
560 * Here it is not ok to simply swap the pointers, which whould lead to
561 * different memory access patterns when X and Y are used afterwards.
562 */
gabor-mezei-arm04087df2021-09-27 16:29:52 +0200563int mbedtls_mpi_safe_cond_swap( mbedtls_mpi *X,
564 mbedtls_mpi *Y,
565 unsigned char swap )
gabor-mezei-arm58fc8a62021-09-27 15:37:50 +0200566{
567 int ret, s;
568 size_t i;
569 mbedtls_mpi_uint limb_mask;
570 mbedtls_mpi_uint tmp;
571 MPI_VALIDATE_RET( X != NULL );
572 MPI_VALIDATE_RET( Y != NULL );
573
574 if( X == Y )
575 return( 0 );
576
577 /* MSVC has a warning about unary minus on unsigned integer types,
578 * but this is well-defined and precisely what we want to do here. */
579#if defined(_MSC_VER)
580#pragma warning( push )
581#pragma warning( disable : 4146 )
582#endif
583
584 /* make sure swap is 0 or 1 in a time-constant manner */
585 swap = (swap | (unsigned char)-swap) >> (sizeof( swap ) * 8 - 1);
586 /* all-bits 1 if swap is 1, all-bits 0 if swap is 0 */
587 limb_mask = -swap;
588
589#if defined(_MSC_VER)
590#pragma warning( pop )
591#endif
592
593 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
594 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( Y, X->n ) );
595
596 s = X->s;
597 X->s = mbedtls_cf_cond_select_sign( X->s, Y->s, swap );
598 Y->s = mbedtls_cf_cond_select_sign( Y->s, s, swap );
599
600
601 for( i = 0; i < X->n; i++ )
602 {
603 tmp = X->p[i];
604 X->p[i] = ( X->p[i] & ~limb_mask ) | ( Y->p[i] & limb_mask );
605 Y->p[i] = ( Y->p[i] & ~limb_mask ) | ( tmp & limb_mask );
606 }
607
608cleanup:
609 return( ret );
610}
611
gabor-mezei-armb10301d2021-09-27 15:41:30 +0200612/*
613 * Compare signed values in constant time
614 */
gabor-mezei-arm04087df2021-09-27 16:29:52 +0200615int mbedtls_mpi_lt_mpi_ct( const mbedtls_mpi *X,
616 const mbedtls_mpi *Y,
617 unsigned *ret )
gabor-mezei-armb10301d2021-09-27 15:41:30 +0200618{
619 size_t i;
620 /* The value of any of these variables is either 0 or 1 at all times. */
621 unsigned cond, done, X_is_negative, Y_is_negative;
622
623 MPI_VALIDATE_RET( X != NULL );
624 MPI_VALIDATE_RET( Y != NULL );
625 MPI_VALIDATE_RET( ret != NULL );
626
627 if( X->n != Y->n )
628 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
629
630 /*
631 * Set sign_N to 1 if N >= 0, 0 if N < 0.
632 * We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.
633 */
634 X_is_negative = ( X->s & 2 ) >> 1;
635 Y_is_negative = ( Y->s & 2 ) >> 1;
636
637 /*
638 * If the signs are different, then the positive operand is the bigger.
639 * That is if X is negative (X_is_negative == 1), then X < Y is true and it
640 * is false if X is positive (X_is_negative == 0).
641 */
642 cond = ( X_is_negative ^ Y_is_negative );
643 *ret = cond & X_is_negative;
644
645 /*
646 * This is a constant-time function. We might have the result, but we still
647 * need to go through the loop. Record if we have the result already.
648 */
649 done = cond;
650
651 for( i = X->n; i > 0; i-- )
652 {
653 /*
654 * If Y->p[i - 1] < X->p[i - 1] then X < Y is true if and only if both
655 * X and Y are negative.
656 *
657 * Again even if we can make a decision, we just mark the result and
658 * the fact that we are done and continue looping.
659 */
660 cond = mbedtls_cf_mpi_uint_lt( Y->p[i - 1], X->p[i - 1] );
661 *ret |= cond & ( 1 - done ) & X_is_negative;
662 done |= cond;
663
664 /*
665 * If X->p[i - 1] < Y->p[i - 1] then X < Y is true if and only if both
666 * X and Y are positive.
667 *
668 * Again even if we can make a decision, we just mark the result and
669 * the fact that we are done and continue looping.
670 */
671 cond = mbedtls_cf_mpi_uint_lt( X->p[i - 1], Y->p[i - 1] );
672 *ret |= cond & ( 1 - done ) & ( 1 - X_is_negative );
673 done |= cond;
674 }
675
676 return( 0 );
677}
678
gabor-mezei-armb8caeee2021-09-27 15:33:35 +0200679#endif /* MBEDTLS_BIGNUM_C */
gabor-mezei-armf52941e2021-09-27 16:11:12 +0200680
681#if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
682
683int mbedtls_cf_rsaes_pkcs1_v15_unpadding( int mode,
684 size_t ilen,
685 size_t *olen,
686 unsigned char *output,
687 size_t output_max_len,
688 unsigned char *buf )
689{
690 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
691 size_t i, plaintext_max_size;
692
693 /* The following variables take sensitive values: their value must
694 * not leak into the observable behavior of the function other than
695 * the designated outputs (output, olen, return value). Otherwise
696 * this would open the execution of the function to
697 * side-channel-based variants of the Bleichenbacher padding oracle
698 * attack. Potential side channels include overall timing, memory
699 * access patterns (especially visible to an adversary who has access
700 * to a shared memory cache), and branches (especially visible to
701 * an adversary who has access to a shared code cache or to a shared
702 * branch predictor). */
703 size_t pad_count = 0;
704 unsigned bad = 0;
705 unsigned char pad_done = 0;
706 size_t plaintext_size = 0;
707 unsigned output_too_large;
708
709 plaintext_max_size = mbedtls_cf_size_if( output_max_len > ilen - 11,
710 ilen - 11,
711 output_max_len );
712
713 /* Check and get padding length in constant time and constant
714 * memory trace. The first byte must be 0. */
715 bad |= buf[0];
716
717 if( mode == MBEDTLS_RSA_PRIVATE )
718 {
719 /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
720 * where PS must be at least 8 nonzero bytes. */
721 bad |= buf[1] ^ MBEDTLS_RSA_CRYPT;
722
723 /* Read the whole buffer. Set pad_done to nonzero if we find
724 * the 0x00 byte and remember the padding length in pad_count. */
725 for( i = 2; i < ilen; i++ )
726 {
727 pad_done |= ((buf[i] | (unsigned char)-buf[i]) >> 7) ^ 1;
728 pad_count += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
729 }
730 }
731 else
732 {
733 /* Decode EMSA-PKCS1-v1_5 padding: 0x00 || 0x01 || PS || 0x00
734 * where PS must be at least 8 bytes with the value 0xFF. */
735 bad |= buf[1] ^ MBEDTLS_RSA_SIGN;
736
737 /* Read the whole buffer. Set pad_done to nonzero if we find
738 * the 0x00 byte and remember the padding length in pad_count.
739 * If there's a non-0xff byte in the padding, the padding is bad. */
740 for( i = 2; i < ilen; i++ )
741 {
742 pad_done |= mbedtls_cf_uint_if( buf[i], 0, 1 );
743 pad_count += mbedtls_cf_uint_if( pad_done, 0, 1 );
744 bad |= mbedtls_cf_uint_if( pad_done, 0, buf[i] ^ 0xFF );
745 }
746 }
747
748 /* If pad_done is still zero, there's no data, only unfinished padding. */
749 bad |= mbedtls_cf_uint_if( pad_done, 0, 1 );
750
751 /* There must be at least 8 bytes of padding. */
752 bad |= mbedtls_cf_size_gt( 8, pad_count );
753
754 /* If the padding is valid, set plaintext_size to the number of
755 * remaining bytes after stripping the padding. If the padding
756 * is invalid, avoid leaking this fact through the size of the
757 * output: use the maximum message size that fits in the output
758 * buffer. Do it without branches to avoid leaking the padding
759 * validity through timing. RSA keys are small enough that all the
760 * size_t values involved fit in unsigned int. */
761 plaintext_size = mbedtls_cf_uint_if(
762 bad, (unsigned) plaintext_max_size,
763 (unsigned) ( ilen - pad_count - 3 ) );
764
765 /* Set output_too_large to 0 if the plaintext fits in the output
766 * buffer and to 1 otherwise. */
767 output_too_large = mbedtls_cf_size_gt( plaintext_size,
768 plaintext_max_size );
769
770 /* Set ret without branches to avoid timing attacks. Return:
771 * - INVALID_PADDING if the padding is bad (bad != 0).
772 * - OUTPUT_TOO_LARGE if the padding is good but the decrypted
773 * plaintext does not fit in the output buffer.
774 * - 0 if the padding is correct. */
775 ret = - (int) mbedtls_cf_uint_if(
776 bad, - MBEDTLS_ERR_RSA_INVALID_PADDING,
777 mbedtls_cf_uint_if( output_too_large,
778 - MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE,
779 0 ) );
780
781 /* If the padding is bad or the plaintext is too large, zero the
782 * data that we're about to copy to the output buffer.
783 * We need to copy the same amount of data
784 * from the same buffer whether the padding is good or not to
785 * avoid leaking the padding validity through overall timing or
786 * through memory or cache access patterns. */
787 bad = mbedtls_cf_uint_mask( bad | output_too_large );
788 for( i = 11; i < ilen; i++ )
789 buf[i] &= ~bad;
790
791 /* If the plaintext is too large, truncate it to the buffer size.
792 * Copy anyway to avoid revealing the length through timing, because
793 * revealing the length is as bad as revealing the padding validity
794 * for a Bleichenbacher attack. */
795 plaintext_size = mbedtls_cf_uint_if( output_too_large,
796 (unsigned) plaintext_max_size,
797 (unsigned) plaintext_size );
798
799 /* Move the plaintext to the leftmost position where it can start in
800 * the working buffer, i.e. make it start plaintext_max_size from
801 * the end of the buffer. Do this with a memory access trace that
802 * does not depend on the plaintext size. After this move, the
803 * starting location of the plaintext is no longer sensitive
804 * information. */
805 mbedtls_cf_mem_move_to_left( buf + ilen - plaintext_max_size,
806 plaintext_max_size,
807 plaintext_max_size - plaintext_size );
808
809 /* Finally copy the decrypted plaintext plus trailing zeros into the output
810 * buffer. If output_max_len is 0, then output may be an invalid pointer
811 * and the result of memcpy() would be undefined; prevent undefined
812 * behavior making sure to depend only on output_max_len (the size of the
813 * user-provided output buffer), which is independent from plaintext
814 * length, validity of padding, success of the decryption, and other
815 * secrets. */
816 if( output_max_len != 0 )
817 memcpy( output, buf + ilen - plaintext_max_size, plaintext_max_size );
818
819 /* Report the amount of data we copied to the output buffer. In case
820 * of errors (bad padding or output too large), the value of *olen
821 * when this function returns is not specified. Making it equivalent
822 * to the good case limits the risks of leaking the padding validity. */
823 *olen = plaintext_size;
824
825 return( ret );
826}
827
828#endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */