blob: 551fd81dd95a119778e3afe95ac23b212ff41355 [file] [log] [blame]
Paul Bakker5121ce52009-01-03 21:22:43 +00001/*
2 * Multi-precision integer library
3 *
Bence Szépkúti1e148272020-08-07 13:07:28 +02004 * Copyright The Mbed TLS Contributors
Dave Rodgman0f2971a2023-11-03 12:04:52 +00005 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
Paul Bakker5121ce52009-01-03 21:22:43 +00006 */
Simon Butcher15b15d12015-11-26 19:35:03 +00007
Paul Bakker5121ce52009-01-03 21:22:43 +00008/*
Simon Butcher15b15d12015-11-26 19:35:03 +00009 * The following sources were referenced in the design of this Multi-precision
10 * Integer library:
Paul Bakker5121ce52009-01-03 21:22:43 +000011 *
Simon Butcher15b15d12015-11-26 19:35:03 +000012 * [1] Handbook of Applied Cryptography - 1997
13 * Menezes, van Oorschot and Vanstone
14 *
15 * [2] Multi-Precision Math
16 * Tom St Denis
17 * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
18 *
19 * [3] GNU Multi-Precision Arithmetic Library
20 * https://gmplib.org/manual/index.html
21 *
Simon Butcherf5ba0452015-12-27 23:01:55 +000022 */
Paul Bakker5121ce52009-01-03 21:22:43 +000023
Gilles Peskinedb09ef62020-06-03 01:43:33 +020024#include "common.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000025
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020026#if defined(MBEDTLS_BIGNUM_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000027
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000028#include "mbedtls/bignum.h"
29#include "mbedtls/bn_mul.h"
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050030#include "mbedtls/platform_util.h"
Janos Follath24eed8d2019-11-22 13:21:35 +000031#include "mbedtls/error.h"
Gabor Mezeic0ae1cf2021-10-20 12:09:35 +020032#include "constant_time_internal.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000033
Tom Cosgrove58efe612021-11-15 09:59:53 +000034#include <limits.h>
Rich Evans00ab4702015-02-06 13:43:58 +000035#include <string.h>
36
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000037#include "mbedtls/platform.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020038
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010039#define MPI_VALIDATE_RET(cond) \
40 MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)
41#define MPI_VALIDATE(cond) \
42 MBEDTLS_INTERNAL_VALIDATE(cond)
Hanno Becker73d7d792018-12-11 10:35:51 +000043
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020044#define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
Paul Bakker5121ce52009-01-03 21:22:43 +000045#define biL (ciL << 3) /* bits in limb */
46#define biH (ciL << 2) /* half limb size */
47
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010048#define MPI_SIZE_T_MAX ((size_t) -1) /* SIZE_T_MAX is not standard */
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +010049
Paul Bakker5121ce52009-01-03 21:22:43 +000050/*
51 * Convert between bits/chars and number of limbs
Manuel Pégourié-Gonnard58fb4952015-09-28 13:48:04 +020052 * Divide first in order to avoid potential overflows
Paul Bakker5121ce52009-01-03 21:22:43 +000053 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010054#define BITS_TO_LIMBS(i) ((i) / biL + ((i) % biL != 0))
55#define CHARS_TO_LIMBS(i) ((i) / ciL + ((i) % ciL != 0))
Paul Bakker5121ce52009-01-03 21:22:43 +000056
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050057/* Implementation that should never be optimized out by the compiler */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010058static void mbedtls_mpi_zeroize(mbedtls_mpi_uint *v, size_t n)
Andres Amaya Garcia6698d2f2018-04-24 08:39:07 -050059{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010060 mbedtls_platform_zeroize(v, ciL * n);
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050061}
62
Paul Bakker5121ce52009-01-03 21:22:43 +000063/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000064 * Initialize one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000065 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010066void mbedtls_mpi_init(mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +000067{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010068 MPI_VALIDATE(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +000069
Paul Bakker6c591fa2011-05-05 11:49:20 +000070 X->s = 1;
71 X->n = 0;
72 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000073}
74
75/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000076 * Unallocate one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000077 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010078void mbedtls_mpi_free(mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +000079{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010080 if (X == NULL) {
Paul Bakker6c591fa2011-05-05 11:49:20 +000081 return;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010082 }
Paul Bakker5121ce52009-01-03 21:22:43 +000083
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010084 if (X->p != NULL) {
85 mbedtls_mpi_zeroize(X->p, X->n);
86 mbedtls_free(X->p);
Paul Bakker5121ce52009-01-03 21:22:43 +000087 }
88
Paul Bakker6c591fa2011-05-05 11:49:20 +000089 X->s = 1;
90 X->n = 0;
91 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000092}
93
94/*
95 * Enlarge to the specified number of limbs
96 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010097int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)
Paul Bakker5121ce52009-01-03 21:22:43 +000098{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020099 mbedtls_mpi_uint *p;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100100 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000101
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100102 if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
103 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
104 }
Paul Bakkerf9688572011-05-05 10:00:45 +0000105
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100106 if (X->n < nblimbs) {
107 if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) {
108 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
109 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000110
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100111 if (X->p != NULL) {
112 memcpy(p, X->p, X->n * ciL);
113 mbedtls_mpi_zeroize(X->p, X->n);
114 mbedtls_free(X->p);
Paul Bakker5121ce52009-01-03 21:22:43 +0000115 }
116
117 X->n = nblimbs;
118 X->p = p;
119 }
120
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100121 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000122}
123
124/*
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100125 * Resize down as much as possible,
126 * while keeping at least the specified number of limbs
127 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100128int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100129{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200130 mbedtls_mpi_uint *p;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100131 size_t i;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100132 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000133
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100134 if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
135 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
136 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100137
Gilles Peskinee2f563e2020-01-20 21:17:43 +0100138 /* Actually resize up if there are currently fewer than nblimbs limbs. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100139 if (X->n <= nblimbs) {
140 return mbedtls_mpi_grow(X, nblimbs);
141 }
Gilles Peskine322752b2020-01-21 13:59:51 +0100142 /* After this point, then X->n > nblimbs and in particular X->n > 0. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100143
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100144 for (i = X->n - 1; i > 0; i--) {
145 if (X->p[i] != 0) {
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100146 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100147 }
148 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100149 i++;
150
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100151 if (i < nblimbs) {
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100152 i = nblimbs;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100153 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100154
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100155 if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) {
156 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
157 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100158
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100159 if (X->p != NULL) {
160 memcpy(p, X->p, i * ciL);
161 mbedtls_mpi_zeroize(X->p, X->n);
162 mbedtls_free(X->p);
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100163 }
164
165 X->n = i;
166 X->p = p;
167
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100168 return 0;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100169}
170
Gilles Peskine3130ce22021-06-02 22:17:52 +0200171/* Resize X to have exactly n limbs and set it to 0. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100172static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)
Gilles Peskine3130ce22021-06-02 22:17:52 +0200173{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100174 if (limbs == 0) {
175 mbedtls_mpi_free(X);
176 return 0;
177 } else if (X->n == limbs) {
178 memset(X->p, 0, limbs * ciL);
Gilles Peskine3130ce22021-06-02 22:17:52 +0200179 X->s = 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100180 return 0;
181 } else {
182 mbedtls_mpi_free(X);
183 return mbedtls_mpi_grow(X, limbs);
Gilles Peskine3130ce22021-06-02 22:17:52 +0200184 }
185}
186
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100187/*
Gilles Peskinef643e8e2021-06-08 23:17:42 +0200188 * Copy the contents of Y into X.
189 *
190 * This function is not constant-time. Leading zeros in Y may be removed.
191 *
192 * Ensure that X does not shrink. This is not guaranteed by the public API,
193 * but some code in the bignum module relies on this property, for example
194 * in mbedtls_mpi_exp_mod().
Paul Bakker5121ce52009-01-03 21:22:43 +0000195 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100196int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000197{
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100198 int ret = 0;
Paul Bakker23986e52011-04-24 08:57:21 +0000199 size_t i;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100200 MPI_VALIDATE_RET(X != NULL);
201 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000202
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100203 if (X == Y) {
204 return 0;
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200205 }
206
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100207 if (Y->n == 0) {
208 if (X->n != 0) {
209 X->s = 1;
210 memset(X->p, 0, X->n * ciL);
211 }
212 return 0;
213 }
214
215 for (i = Y->n - 1; i > 0; i--) {
216 if (Y->p[i] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000217 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100218 }
219 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000220 i++;
221
222 X->s = Y->s;
223
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100224 if (X->n < i) {
225 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
226 } else {
227 memset(X->p + i, 0, (X->n - i) * ciL);
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100228 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000229
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100230 memcpy(X->p, Y->p, i * ciL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000231
232cleanup:
233
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100234 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000235}
236
237/*
238 * Swap the contents of X and Y
239 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100240void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000241{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200242 mbedtls_mpi T;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100243 MPI_VALIDATE(X != NULL);
244 MPI_VALIDATE(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000245
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100246 memcpy(&T, X, sizeof(mbedtls_mpi));
247 memcpy(X, Y, sizeof(mbedtls_mpi));
248 memcpy(Y, &T, sizeof(mbedtls_mpi));
Paul Bakker5121ce52009-01-03 21:22:43 +0000249}
250
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100251static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)
Gilles Peskineae7cbd72022-11-15 23:25:27 +0100252{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100253 if (z >= 0) {
254 return z;
255 }
Gilles Peskineae7cbd72022-11-15 23:25:27 +0100256 /* Take care to handle the most negative value (-2^(biL-1)) correctly.
257 * A naive -z would have undefined behavior.
258 * Write this in a way that makes popular compilers happy (GCC, Clang,
259 * MSVC). */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100260 return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;
Gilles Peskineae7cbd72022-11-15 23:25:27 +0100261}
262
Paul Bakker5121ce52009-01-03 21:22:43 +0000263/*
264 * Set value from integer
265 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100266int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)
Paul Bakker5121ce52009-01-03 21:22:43 +0000267{
Janos Follath24eed8d2019-11-22 13:21:35 +0000268 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100269 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000270
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100271 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
272 memset(X->p, 0, X->n * ciL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000273
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100274 X->p[0] = mpi_sint_abs(z);
275 X->s = (z < 0) ? -1 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000276
277cleanup:
278
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100279 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000280}
281
282/*
Paul Bakker2f5947e2011-05-18 15:47:11 +0000283 * Get a specific bit
284 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100285int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)
Paul Bakker2f5947e2011-05-18 15:47:11 +0000286{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100287 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000288
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100289 if (X->n * biL <= pos) {
290 return 0;
291 }
Paul Bakker2f5947e2011-05-18 15:47:11 +0000292
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100293 return (X->p[pos / biL] >> (pos % biL)) & 0x01;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000294}
295
Gilles Peskine11cdb052018-11-20 16:47:47 +0100296/* Get a specific byte, without range checks. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100297#define GET_BYTE(X, i) \
298 (((X)->p[(i) / ciL] >> (((i) % ciL) * 8)) & 0xff)
Gilles Peskine11cdb052018-11-20 16:47:47 +0100299
Paul Bakker2f5947e2011-05-18 15:47:11 +0000300/*
301 * Set a bit to a specific value of 0 or 1
302 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100303int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)
Paul Bakker2f5947e2011-05-18 15:47:11 +0000304{
305 int ret = 0;
306 size_t off = pos / biL;
307 size_t idx = pos % biL;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100308 MPI_VALIDATE_RET(X != NULL);
Paul Bakker2f5947e2011-05-18 15:47:11 +0000309
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100310 if (val != 0 && val != 1) {
311 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000312 }
313
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100314 if (X->n * biL <= pos) {
315 if (val == 0) {
316 return 0;
317 }
318
319 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
320 }
321
322 X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200323 X->p[off] |= (mbedtls_mpi_uint) val << idx;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000324
325cleanup:
Paul Bakker9af723c2014-05-01 13:03:14 +0200326
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100327 return ret;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000328}
329
330/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200331 * Return the number of less significant zero-bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000332 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100333size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000334{
Paul Bakker23986e52011-04-24 08:57:21 +0000335 size_t i, j, count = 0;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100336 MBEDTLS_INTERNAL_VALIDATE_RET(X != NULL, 0);
Paul Bakker5121ce52009-01-03 21:22:43 +0000337
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100338 for (i = 0; i < X->n; i++) {
339 for (j = 0; j < biL; j++, count++) {
340 if (((X->p[i] >> j) & 1) != 0) {
341 return count;
342 }
343 }
344 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000345
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100346 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000347}
348
349/*
Simon Butcher15b15d12015-11-26 19:35:03 +0000350 * Count leading zero bits in a given integer
351 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100352static size_t mbedtls_clz(const mbedtls_mpi_uint x)
Simon Butcher15b15d12015-11-26 19:35:03 +0000353{
354 size_t j;
Manuel Pégourié-Gonnarde3e8edf2015-12-01 09:31:52 +0100355 mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
Simon Butcher15b15d12015-11-26 19:35:03 +0000356
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100357 for (j = 0; j < biL; j++) {
358 if (x & mask) {
359 break;
360 }
Simon Butcher15b15d12015-11-26 19:35:03 +0000361
362 mask >>= 1;
363 }
364
365 return j;
366}
367
368/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200369 * Return the number of bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000370 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100371size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000372{
Paul Bakker23986e52011-04-24 08:57:21 +0000373 size_t i, j;
Paul Bakker5121ce52009-01-03 21:22:43 +0000374
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100375 if (X->n == 0) {
376 return 0;
377 }
Manuel Pégourié-Gonnard770b5e12015-04-29 17:02:01 +0200378
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100379 for (i = X->n - 1; i > 0; i--) {
380 if (X->p[i] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000381 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100382 }
383 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000384
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100385 j = biL - mbedtls_clz(X->p[i]);
Paul Bakker5121ce52009-01-03 21:22:43 +0000386
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100387 return (i * biL) + j;
Paul Bakker5121ce52009-01-03 21:22:43 +0000388}
389
390/*
391 * Return the total size in bytes
392 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100393size_t mbedtls_mpi_size(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000394{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100395 return (mbedtls_mpi_bitlen(X) + 7) >> 3;
Paul Bakker5121ce52009-01-03 21:22:43 +0000396}
397
398/*
399 * Convert an ASCII character to digit value
400 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100401static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)
Paul Bakker5121ce52009-01-03 21:22:43 +0000402{
403 *d = 255;
404
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100405 if (c >= 0x30 && c <= 0x39) {
406 *d = c - 0x30;
407 }
408 if (c >= 0x41 && c <= 0x46) {
409 *d = c - 0x37;
410 }
411 if (c >= 0x61 && c <= 0x66) {
412 *d = c - 0x57;
413 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000414
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100415 if (*d >= (mbedtls_mpi_uint) radix) {
416 return MBEDTLS_ERR_MPI_INVALID_CHARACTER;
417 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000418
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100419 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000420}
421
422/*
423 * Import from an ASCII string
424 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100425int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)
Paul Bakker5121ce52009-01-03 21:22:43 +0000426{
Janos Follath24eed8d2019-11-22 13:21:35 +0000427 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000428 size_t i, j, slen, n;
Gilles Peskine80f56732021-04-03 18:26:13 +0200429 int sign = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200430 mbedtls_mpi_uint d;
431 mbedtls_mpi T;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100432 MPI_VALIDATE_RET(X != NULL);
433 MPI_VALIDATE_RET(s != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000434
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100435 if (radix < 2 || radix > 16) {
436 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskined4876132021-06-08 18:32:34 +0200437 }
438
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100439 mbedtls_mpi_init(&T);
440
441 if (s[0] == 0) {
442 mbedtls_mpi_free(X);
443 return 0;
444 }
445
446 if (s[0] == '-') {
Gilles Peskine80f56732021-04-03 18:26:13 +0200447 ++s;
448 sign = -1;
449 }
450
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100451 slen = strlen(s);
Paul Bakkerff60ee62010-03-16 21:09:09 +0000452
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100453 if (radix == 16) {
454 if (slen > MPI_SIZE_T_MAX >> 2) {
455 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Paul Bakker5121ce52009-01-03 21:22:43 +0000456 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000457
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100458 n = BITS_TO_LIMBS(slen << 2);
459
460 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
461 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
462
463 for (i = slen, j = 0; i > 0; i--, j++) {
464 MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
465 X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
466 }
467 } else {
468 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
469
470 for (i = 0; i < slen; i++) {
471 MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
472 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
473 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
Paul Bakker5121ce52009-01-03 21:22:43 +0000474 }
475 }
476
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100477 if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) {
Gilles Peskine80f56732021-04-03 18:26:13 +0200478 X->s = -1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100479 }
Gilles Peskine80f56732021-04-03 18:26:13 +0200480
Paul Bakker5121ce52009-01-03 21:22:43 +0000481cleanup:
482
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100483 mbedtls_mpi_free(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000484
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100485 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000486}
487
488/*
Ron Eldora16fa292018-11-20 14:07:01 +0200489 * Helper to write the digits high-order first.
Paul Bakker5121ce52009-01-03 21:22:43 +0000490 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100491static int mpi_write_hlp(mbedtls_mpi *X, int radix,
492 char **p, const size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000493{
Janos Follath24eed8d2019-11-22 13:21:35 +0000494 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200495 mbedtls_mpi_uint r;
Ron Eldora16fa292018-11-20 14:07:01 +0200496 size_t length = 0;
497 char *p_end = *p + buflen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000498
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100499 do {
500 if (length >= buflen) {
501 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
Ron Eldora16fa292018-11-20 14:07:01 +0200502 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000503
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100504 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
505 MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
Ron Eldora16fa292018-11-20 14:07:01 +0200506 /*
507 * Write the residue in the current position, as an ASCII character.
508 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100509 if (r < 0xA) {
510 *(--p_end) = (char) ('0' + r);
511 } else {
512 *(--p_end) = (char) ('A' + (r - 0xA));
513 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000514
Ron Eldora16fa292018-11-20 14:07:01 +0200515 length++;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100516 } while (mbedtls_mpi_cmp_int(X, 0) != 0);
Paul Bakker5121ce52009-01-03 21:22:43 +0000517
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100518 memmove(*p, p_end, length);
Ron Eldora16fa292018-11-20 14:07:01 +0200519 *p += length;
Paul Bakker5121ce52009-01-03 21:22:43 +0000520
521cleanup:
522
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100523 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000524}
525
526/*
527 * Export into an ASCII string
528 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100529int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
530 char *buf, size_t buflen, size_t *olen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000531{
Paul Bakker23986e52011-04-24 08:57:21 +0000532 int ret = 0;
533 size_t n;
Paul Bakker5121ce52009-01-03 21:22:43 +0000534 char *p;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200535 mbedtls_mpi T;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100536 MPI_VALIDATE_RET(X != NULL);
537 MPI_VALIDATE_RET(olen != NULL);
538 MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000539
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100540 if (radix < 2 || radix > 16) {
541 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
542 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000543
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100544 n = mbedtls_mpi_bitlen(X); /* Number of bits necessary to present `n`. */
545 if (radix >= 4) {
546 n >>= 1; /* Number of 4-adic digits necessary to present
Hanno Becker23cfea02019-02-04 09:45:07 +0000547 * `n`. If radix > 4, this might be a strict
548 * overapproximation of the number of
549 * radix-adic digits needed to present `n`. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100550 }
551 if (radix >= 16) {
552 n >>= 1; /* Number of hexadecimal digits necessary to
Hanno Becker23cfea02019-02-04 09:45:07 +0000553 * present `n`. */
554
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100555 }
Janos Follath80470622019-03-06 13:43:02 +0000556 n += 1; /* Terminating null byte */
Hanno Becker23cfea02019-02-04 09:45:07 +0000557 n += 1; /* Compensate for the divisions above, which round down `n`
558 * in case it's not even. */
559 n += 1; /* Potential '-'-sign. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100560 n += (n & 1); /* Make n even to have enough space for hexadecimal writing,
Hanno Becker23cfea02019-02-04 09:45:07 +0000561 * which always uses an even number of hex-digits. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000562
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100563 if (buflen < n) {
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100564 *olen = n;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100565 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
Paul Bakker5121ce52009-01-03 21:22:43 +0000566 }
567
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100568 p = buf;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100569 mbedtls_mpi_init(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000570
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100571 if (X->s == -1) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000572 *p++ = '-';
Hanno Beckerc983c812019-02-01 16:41:30 +0000573 buflen--;
574 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000575
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100576 if (radix == 16) {
Paul Bakker23986e52011-04-24 08:57:21 +0000577 int c;
578 size_t i, j, k;
Paul Bakker5121ce52009-01-03 21:22:43 +0000579
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100580 for (i = X->n, k = 0; i > 0; i--) {
581 for (j = ciL; j > 0; j--) {
582 c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
Paul Bakker5121ce52009-01-03 21:22:43 +0000583
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100584 if (c == 0 && k == 0 && (i + j) != 2) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000585 continue;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100586 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000587
Paul Bakker98fe5ea2012-10-24 11:17:48 +0000588 *(p++) = "0123456789ABCDEF" [c / 16];
Paul Bakkerd2c167e2012-10-30 07:49:19 +0000589 *(p++) = "0123456789ABCDEF" [c % 16];
Paul Bakker5121ce52009-01-03 21:22:43 +0000590 k = 1;
591 }
592 }
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100593 } else {
594 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000595
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100596 if (T.s == -1) {
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000597 T.s = 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100598 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000599
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100600 MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));
Paul Bakker5121ce52009-01-03 21:22:43 +0000601 }
602
603 *p++ = '\0';
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100604 *olen = p - buf;
Paul Bakker5121ce52009-01-03 21:22:43 +0000605
606cleanup:
607
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100608 mbedtls_mpi_free(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000609
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100610 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000611}
612
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200613#if defined(MBEDTLS_FS_IO)
Paul Bakker5121ce52009-01-03 21:22:43 +0000614/*
615 * Read X from an opened file
616 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100617int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)
Paul Bakker5121ce52009-01-03 21:22:43 +0000618{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200619 mbedtls_mpi_uint d;
Paul Bakker23986e52011-04-24 08:57:21 +0000620 size_t slen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000621 char *p;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000622 /*
Paul Bakkercb37aa52011-11-30 16:00:20 +0000623 * Buffer should have space for (short) label and decimal formatted MPI,
624 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000625 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100626 char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
Paul Bakker5121ce52009-01-03 21:22:43 +0000627
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100628 MPI_VALIDATE_RET(X != NULL);
629 MPI_VALIDATE_RET(fin != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000630
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100631 if (radix < 2 || radix > 16) {
632 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
633 }
Hanno Becker73d7d792018-12-11 10:35:51 +0000634
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100635 memset(s, 0, sizeof(s));
636 if (fgets(s, sizeof(s) - 1, fin) == NULL) {
637 return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
638 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000639
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100640 slen = strlen(s);
641 if (slen == sizeof(s) - 2) {
642 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
643 }
Paul Bakkercb37aa52011-11-30 16:00:20 +0000644
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100645 if (slen > 0 && s[slen - 1] == '\n') {
646 slen--; s[slen] = '\0';
647 }
648 if (slen > 0 && s[slen - 1] == '\r') {
649 slen--; s[slen] = '\0';
650 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000651
652 p = s + slen;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100653 while (p-- > s) {
654 if (mpi_get_digit(&d, radix, *p) != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000655 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100656 }
657 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000658
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100659 return mbedtls_mpi_read_string(X, radix, p + 1);
Paul Bakker5121ce52009-01-03 21:22:43 +0000660}
661
662/*
663 * Write X into an opened file (or stdout if fout == NULL)
664 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100665int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)
Paul Bakker5121ce52009-01-03 21:22:43 +0000666{
Janos Follath24eed8d2019-11-22 13:21:35 +0000667 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000668 size_t n, slen, plen;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000669 /*
Paul Bakker5531c6d2012-09-26 19:20:46 +0000670 * Buffer should have space for (short) label and decimal formatted MPI,
671 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000672 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100673 char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
674 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000675
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100676 if (radix < 2 || radix > 16) {
677 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
678 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000679
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100680 memset(s, 0, sizeof(s));
Paul Bakker5121ce52009-01-03 21:22:43 +0000681
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100682 MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
Paul Bakker5121ce52009-01-03 21:22:43 +0000683
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100684 if (p == NULL) {
685 p = "";
686 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000687
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100688 plen = strlen(p);
689 slen = strlen(s);
Paul Bakker5121ce52009-01-03 21:22:43 +0000690 s[slen++] = '\r';
691 s[slen++] = '\n';
692
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100693 if (fout != NULL) {
694 if (fwrite(p, 1, plen, fout) != plen ||
695 fwrite(s, 1, slen, fout) != slen) {
696 return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
697 }
698 } else {
699 mbedtls_printf("%s%s", p, s);
Paul Bakker5121ce52009-01-03 21:22:43 +0000700 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000701
702cleanup:
703
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100704 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000705}
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200706#endif /* MBEDTLS_FS_IO */
Paul Bakker5121ce52009-01-03 21:22:43 +0000707
Hanno Beckerda1655a2017-10-18 14:21:44 +0100708
709/* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
710 * into the storage form used by mbedtls_mpi. */
Hanno Beckerf8720072018-11-08 11:53:49 +0000711
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100712static mbedtls_mpi_uint mpi_uint_bigendian_to_host_c(mbedtls_mpi_uint x)
Hanno Beckerf8720072018-11-08 11:53:49 +0000713{
714 uint8_t i;
Hanno Becker031d6332019-05-01 17:09:11 +0100715 unsigned char *x_ptr;
Hanno Beckerf8720072018-11-08 11:53:49 +0000716 mbedtls_mpi_uint tmp = 0;
Hanno Becker031d6332019-05-01 17:09:11 +0100717
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100718 for (i = 0, x_ptr = (unsigned char *) &x; i < ciL; i++, x_ptr++) {
Hanno Becker031d6332019-05-01 17:09:11 +0100719 tmp <<= CHAR_BIT;
720 tmp |= (mbedtls_mpi_uint) *x_ptr;
721 }
722
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100723 return tmp;
Hanno Beckerf8720072018-11-08 11:53:49 +0000724}
725
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100726static mbedtls_mpi_uint mpi_uint_bigendian_to_host(mbedtls_mpi_uint x)
Hanno Beckerf8720072018-11-08 11:53:49 +0000727{
728#if defined(__BYTE_ORDER__)
729
730/* Nothing to do on bigendian systems. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100731#if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
732 return x;
Hanno Beckerf8720072018-11-08 11:53:49 +0000733#endif /* __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ */
734
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100735#if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
Hanno Beckerf8720072018-11-08 11:53:49 +0000736
737/* For GCC and Clang, have builtins for byte swapping. */
Hanno Becker9f6d16a2019-01-02 17:15:06 +0000738#if defined(__GNUC__) && defined(__GNUC_PREREQ)
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100739#if __GNUC_PREREQ(4, 3)
Hanno Beckerf8720072018-11-08 11:53:49 +0000740#define have_bswap
741#endif
Hanno Becker9f6d16a2019-01-02 17:15:06 +0000742#endif
743
744#if defined(__clang__) && defined(__has_builtin)
745#if __has_builtin(__builtin_bswap32) && \
746 __has_builtin(__builtin_bswap64)
747#define have_bswap
748#endif
749#endif
750
Hanno Beckerf8720072018-11-08 11:53:49 +0000751#if defined(have_bswap)
752 /* The compiler is hopefully able to statically evaluate this! */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100753 switch (sizeof(mbedtls_mpi_uint)) {
Hanno Beckerf8720072018-11-08 11:53:49 +0000754 case 4:
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100755 return __builtin_bswap32(x);
Hanno Beckerf8720072018-11-08 11:53:49 +0000756 case 8:
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100757 return __builtin_bswap64(x);
Hanno Beckerf8720072018-11-08 11:53:49 +0000758 }
759#endif
760#endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */
761#endif /* __BYTE_ORDER__ */
762
763 /* Fall back to C-based reordering if we don't know the byte order
764 * or we couldn't use a compiler-specific builtin. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100765 return mpi_uint_bigendian_to_host_c(x);
Hanno Beckerf8720072018-11-08 11:53:49 +0000766}
767
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100768static void mpi_bigendian_to_host(mbedtls_mpi_uint * const p, size_t limbs)
Hanno Beckerda1655a2017-10-18 14:21:44 +0100769{
Hanno Beckerda1655a2017-10-18 14:21:44 +0100770 mbedtls_mpi_uint *cur_limb_left;
771 mbedtls_mpi_uint *cur_limb_right;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100772 if (limbs == 0) {
Hanno Becker2be8a552018-10-25 12:40:09 +0100773 return;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100774 }
Hanno Beckerda1655a2017-10-18 14:21:44 +0100775
776 /*
777 * Traverse limbs and
778 * - adapt byte-order in each limb
779 * - swap the limbs themselves.
780 * For that, simultaneously traverse the limbs from left to right
781 * and from right to left, as long as the left index is not bigger
782 * than the right index (it's not a problem if limbs is odd and the
783 * indices coincide in the last iteration).
784 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100785 for (cur_limb_left = p, cur_limb_right = p + (limbs - 1);
Hanno Beckerda1655a2017-10-18 14:21:44 +0100786 cur_limb_left <= cur_limb_right;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100787 cur_limb_left++, cur_limb_right--) {
Hanno Beckerf8720072018-11-08 11:53:49 +0000788 mbedtls_mpi_uint tmp;
789 /* Note that if cur_limb_left == cur_limb_right,
790 * this code effectively swaps the bytes only once. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100791 tmp = mpi_uint_bigendian_to_host(*cur_limb_left);
792 *cur_limb_left = mpi_uint_bigendian_to_host(*cur_limb_right);
Hanno Beckerf8720072018-11-08 11:53:49 +0000793 *cur_limb_right = tmp;
Hanno Beckerda1655a2017-10-18 14:21:44 +0100794 }
Hanno Beckerda1655a2017-10-18 14:21:44 +0100795}
796
Paul Bakker5121ce52009-01-03 21:22:43 +0000797/*
Janos Follatha778a942019-02-13 10:28:28 +0000798 * Import X from unsigned binary data, little endian
799 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100800int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,
801 const unsigned char *buf, size_t buflen)
Janos Follatha778a942019-02-13 10:28:28 +0000802{
Janos Follath24eed8d2019-11-22 13:21:35 +0000803 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follatha778a942019-02-13 10:28:28 +0000804 size_t i;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100805 size_t const limbs = CHARS_TO_LIMBS(buflen);
Janos Follatha778a942019-02-13 10:28:28 +0000806
807 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100808 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
Janos Follatha778a942019-02-13 10:28:28 +0000809
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100810 for (i = 0; i < buflen; i++) {
Janos Follatha778a942019-02-13 10:28:28 +0000811 X->p[i / ciL] |= ((mbedtls_mpi_uint) buf[i]) << ((i % ciL) << 3);
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100812 }
Janos Follatha778a942019-02-13 10:28:28 +0000813
814cleanup:
815
Janos Follath171a7ef2019-02-15 16:17:45 +0000816 /*
817 * This function is also used to import keys. However, wiping the buffers
818 * upon failure is not necessary because failure only can happen before any
819 * input is copied.
820 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100821 return ret;
Janos Follatha778a942019-02-13 10:28:28 +0000822}
823
824/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000825 * Import X from unsigned binary data, big endian
826 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100827int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000828{
Janos Follath24eed8d2019-11-22 13:21:35 +0000829 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100830 size_t const limbs = CHARS_TO_LIMBS(buflen);
831 size_t const overhead = (limbs * ciL) - buflen;
Hanno Beckerda1655a2017-10-18 14:21:44 +0100832 unsigned char *Xp;
Paul Bakker5121ce52009-01-03 21:22:43 +0000833
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100834 MPI_VALIDATE_RET(X != NULL);
835 MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000836
Hanno Becker073c1992017-10-17 15:17:27 +0100837 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100838 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
Paul Bakker5121ce52009-01-03 21:22:43 +0000839
Gilles Peskine3130ce22021-06-02 22:17:52 +0200840 /* Avoid calling `memcpy` with NULL source or destination argument,
Hanno Becker0e810b92019-01-03 17:13:11 +0000841 * even if buflen is 0. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100842 if (buflen != 0) {
843 Xp = (unsigned char *) X->p;
844 memcpy(Xp + overhead, buf, buflen);
Hanno Beckerda1655a2017-10-18 14:21:44 +0100845
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100846 mpi_bigendian_to_host(X->p, limbs);
Hanno Becker0e810b92019-01-03 17:13:11 +0000847 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000848
849cleanup:
850
Janos Follath171a7ef2019-02-15 16:17:45 +0000851 /*
852 * This function is also used to import keys. However, wiping the buffers
853 * upon failure is not necessary because failure only can happen before any
854 * input is copied.
855 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100856 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000857}
858
859/*
Janos Follathe344d0f2019-02-19 16:17:40 +0000860 * Export X into unsigned binary data, little endian
861 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100862int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,
863 unsigned char *buf, size_t buflen)
Janos Follathe344d0f2019-02-19 16:17:40 +0000864{
865 size_t stored_bytes = X->n * ciL;
866 size_t bytes_to_copy;
867 size_t i;
868
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100869 if (stored_bytes < buflen) {
Janos Follathe344d0f2019-02-19 16:17:40 +0000870 bytes_to_copy = stored_bytes;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100871 } else {
Janos Follathe344d0f2019-02-19 16:17:40 +0000872 bytes_to_copy = buflen;
873
874 /* The output buffer is smaller than the allocated size of X.
875 * However X may fit if its leading bytes are zero. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100876 for (i = bytes_to_copy; i < stored_bytes; i++) {
877 if (GET_BYTE(X, i) != 0) {
878 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
879 }
Janos Follathe344d0f2019-02-19 16:17:40 +0000880 }
881 }
882
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100883 for (i = 0; i < bytes_to_copy; i++) {
884 buf[i] = GET_BYTE(X, i);
Janos Follathe344d0f2019-02-19 16:17:40 +0000885 }
886
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100887 if (stored_bytes < buflen) {
888 /* Write trailing 0 bytes */
889 memset(buf + stored_bytes, 0, buflen - stored_bytes);
890 }
891
892 return 0;
Janos Follathe344d0f2019-02-19 16:17:40 +0000893}
894
895/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000896 * Export X into unsigned binary data, big endian
897 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100898int mbedtls_mpi_write_binary(const mbedtls_mpi *X,
899 unsigned char *buf, size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000900{
Hanno Becker73d7d792018-12-11 10:35:51 +0000901 size_t stored_bytes;
Gilles Peskine11cdb052018-11-20 16:47:47 +0100902 size_t bytes_to_copy;
903 unsigned char *p;
904 size_t i;
Paul Bakker5121ce52009-01-03 21:22:43 +0000905
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100906 MPI_VALIDATE_RET(X != NULL);
907 MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000908
909 stored_bytes = X->n * ciL;
910
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100911 if (stored_bytes < buflen) {
Gilles Peskine11cdb052018-11-20 16:47:47 +0100912 /* There is enough space in the output buffer. Write initial
913 * null bytes and record the position at which to start
914 * writing the significant bytes. In this case, the execution
915 * trace of this function does not depend on the value of the
916 * number. */
917 bytes_to_copy = stored_bytes;
918 p = buf + buflen - stored_bytes;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100919 memset(buf, 0, buflen - stored_bytes);
920 } else {
Gilles Peskine11cdb052018-11-20 16:47:47 +0100921 /* The output buffer is smaller than the allocated size of X.
922 * However X may fit if its leading bytes are zero. */
923 bytes_to_copy = buflen;
924 p = buf;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100925 for (i = bytes_to_copy; i < stored_bytes; i++) {
926 if (GET_BYTE(X, i) != 0) {
927 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
928 }
Gilles Peskine11cdb052018-11-20 16:47:47 +0100929 }
930 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000931
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100932 for (i = 0; i < bytes_to_copy; i++) {
933 p[bytes_to_copy - i - 1] = GET_BYTE(X, i);
934 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000935
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100936 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000937}
938
939/*
940 * Left-shift: X <<= count
941 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100942int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)
Paul Bakker5121ce52009-01-03 21:22:43 +0000943{
Janos Follath24eed8d2019-11-22 13:21:35 +0000944 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000945 size_t i, v0, t1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200946 mbedtls_mpi_uint r0 = 0, r1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100947 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000948
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100949 v0 = count / (biL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000950 t1 = count & (biL - 1);
951
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100952 i = mbedtls_mpi_bitlen(X) + count;
Paul Bakker5121ce52009-01-03 21:22:43 +0000953
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100954 if (X->n * biL < i) {
955 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
956 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000957
958 ret = 0;
959
960 /*
961 * shift by count / limb_size
962 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100963 if (v0 > 0) {
964 for (i = X->n; i > v0; i--) {
Paul Bakker23986e52011-04-24 08:57:21 +0000965 X->p[i - 1] = X->p[i - v0 - 1];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100966 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000967
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100968 for (; i > 0; i--) {
Paul Bakker23986e52011-04-24 08:57:21 +0000969 X->p[i - 1] = 0;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100970 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000971 }
972
973 /*
974 * shift by count % limb_size
975 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100976 if (t1 > 0) {
977 for (i = v0; i < X->n; i++) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000978 r1 = X->p[i] >> (biL - t1);
979 X->p[i] <<= t1;
980 X->p[i] |= r0;
981 r0 = r1;
982 }
983 }
984
985cleanup:
986
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100987 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000988}
989
990/*
991 * Right-shift: X >>= count
992 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100993int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)
Paul Bakker5121ce52009-01-03 21:22:43 +0000994{
Paul Bakker23986e52011-04-24 08:57:21 +0000995 size_t i, v0, v1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200996 mbedtls_mpi_uint r0 = 0, r1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100997 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000998
999 v0 = count / biL;
1000 v1 = count & (biL - 1);
1001
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001002 if (v0 > X->n || (v0 == X->n && v1 > 0)) {
1003 return mbedtls_mpi_lset(X, 0);
1004 }
Manuel Pégourié-Gonnarde44ec102012-11-17 12:42:51 +01001005
Paul Bakker5121ce52009-01-03 21:22:43 +00001006 /*
1007 * shift by count / limb_size
1008 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001009 if (v0 > 0) {
1010 for (i = 0; i < X->n - v0; i++) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001011 X->p[i] = X->p[i + v0];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001012 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001013
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001014 for (; i < X->n; i++) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001015 X->p[i] = 0;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001016 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001017 }
1018
1019 /*
1020 * shift by count % limb_size
1021 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001022 if (v1 > 0) {
1023 for (i = X->n; i > 0; i--) {
Paul Bakker23986e52011-04-24 08:57:21 +00001024 r1 = X->p[i - 1] << (biL - v1);
1025 X->p[i - 1] >>= v1;
1026 X->p[i - 1] |= r0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001027 r0 = r1;
1028 }
1029 }
1030
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001031 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001032}
1033
1034/*
1035 * Compare unsigned values
1036 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001037int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +00001038{
Paul Bakker23986e52011-04-24 08:57:21 +00001039 size_t i, j;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001040 MPI_VALIDATE_RET(X != NULL);
1041 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001042
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001043 for (i = X->n; i > 0; i--) {
1044 if (X->p[i - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001045 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001046 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001047 }
1048
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001049 for (j = Y->n; j > 0; j--) {
1050 if (Y->p[j - 1] != 0) {
1051 break;
1052 }
1053 }
1054
1055 if (i == 0 && j == 0) {
1056 return 0;
1057 }
1058
1059 if (i > j) {
1060 return 1;
1061 }
1062 if (j > i) {
1063 return -1;
1064 }
1065
1066 for (; i > 0; i--) {
1067 if (X->p[i - 1] > Y->p[i - 1]) {
1068 return 1;
1069 }
1070 if (X->p[i - 1] < Y->p[i - 1]) {
1071 return -1;
1072 }
1073 }
1074
1075 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001076}
1077
1078/*
1079 * Compare signed values
1080 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001081int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +00001082{
Paul Bakker23986e52011-04-24 08:57:21 +00001083 size_t i, j;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001084 MPI_VALIDATE_RET(X != NULL);
1085 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001086
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001087 for (i = X->n; i > 0; i--) {
1088 if (X->p[i - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001089 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001090 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001091 }
1092
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001093 for (j = Y->n; j > 0; j--) {
1094 if (Y->p[j - 1] != 0) {
1095 break;
1096 }
1097 }
1098
1099 if (i == 0 && j == 0) {
1100 return 0;
1101 }
1102
1103 if (i > j) {
1104 return X->s;
1105 }
1106 if (j > i) {
1107 return -Y->s;
1108 }
1109
1110 if (X->s > 0 && Y->s < 0) {
1111 return 1;
1112 }
1113 if (Y->s > 0 && X->s < 0) {
1114 return -1;
1115 }
1116
1117 for (; i > 0; i--) {
1118 if (X->p[i - 1] > Y->p[i - 1]) {
1119 return X->s;
1120 }
1121 if (X->p[i - 1] < Y->p[i - 1]) {
1122 return -X->s;
1123 }
1124 }
1125
1126 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001127}
1128
Janos Follathee6abce2019-09-05 14:47:19 +01001129/*
Paul Bakker5121ce52009-01-03 21:22:43 +00001130 * Compare signed values
1131 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001132int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)
Paul Bakker5121ce52009-01-03 21:22:43 +00001133{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001134 mbedtls_mpi Y;
1135 mbedtls_mpi_uint p[1];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001136 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001137
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001138 *p = mpi_sint_abs(z);
1139 Y.s = (z < 0) ? -1 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001140 Y.n = 1;
1141 Y.p = p;
1142
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001143 return mbedtls_mpi_cmp_mpi(X, &Y);
Paul Bakker5121ce52009-01-03 21:22:43 +00001144}
1145
1146/*
1147 * Unsigned addition: X = |A| + |B| (HAC 14.7)
1148 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001149int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001150{
Janos Follath24eed8d2019-11-22 13:21:35 +00001151 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001152 size_t i, j;
Janos Follath6c922682015-10-30 17:43:11 +01001153 mbedtls_mpi_uint *o, *p, c, tmp;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001154 MPI_VALIDATE_RET(X != NULL);
1155 MPI_VALIDATE_RET(A != NULL);
1156 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001157
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001158 if (X == B) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001159 const mbedtls_mpi *T = A; A = X; B = T;
Paul Bakker5121ce52009-01-03 21:22:43 +00001160 }
1161
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001162 if (X != A) {
1163 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
1164 }
Paul Bakker9af723c2014-05-01 13:03:14 +02001165
Paul Bakkerf7ca7b92009-06-20 10:31:06 +00001166 /*
1167 * X should always be positive as a result of unsigned additions.
1168 */
1169 X->s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001170
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001171 for (j = B->n; j > 0; j--) {
1172 if (B->p[j - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001173 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001174 }
1175 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001176
Gilles Peskine103cf592022-11-15 22:59:00 +01001177 /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
1178 * and B is 0 (of any size). */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001179 if (j == 0) {
1180 return 0;
1181 }
Gilles Peskine103cf592022-11-15 22:59:00 +01001182
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001183 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
Paul Bakker5121ce52009-01-03 21:22:43 +00001184
1185 o = B->p; p = X->p; c = 0;
1186
Janos Follath6c922682015-10-30 17:43:11 +01001187 /*
1188 * tmp is used because it might happen that p == o
1189 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001190 for (i = 0; i < j; i++, o++, p++) {
1191 tmp = *o;
1192 *p += c; c = (*p < c);
1193 *p += tmp; c += (*p < tmp);
Paul Bakker5121ce52009-01-03 21:22:43 +00001194 }
1195
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001196 while (c != 0) {
1197 if (i >= X->n) {
1198 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00001199 p = X->p + i;
1200 }
1201
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001202 *p += c; c = (*p < c); i++; p++;
Paul Bakker5121ce52009-01-03 21:22:43 +00001203 }
1204
1205cleanup:
1206
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001207 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001208}
1209
Gilles Peskine09ec10a2020-06-09 10:39:38 +02001210/**
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001211 * Helper for mbedtls_mpi subtraction.
1212 *
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001213 * Calculate l - r where l and r have the same size.
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001214 * This function operates modulo (2^ciL)^n and returns the carry
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001215 * (1 if there was a wraparound, i.e. if `l < r`, and 0 otherwise).
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001216 *
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001217 * d may be aliased to l or r.
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001218 *
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001219 * \param n Number of limbs of \p d, \p l and \p r.
1220 * \param[out] d The result of the subtraction.
1221 * \param[in] l The left operand.
1222 * \param[in] r The right operand.
1223 *
1224 * \return 1 if `l < r`.
1225 * 0 if `l >= r`.
Paul Bakker5121ce52009-01-03 21:22:43 +00001226 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001227static mbedtls_mpi_uint mpi_sub_hlp(size_t n,
1228 mbedtls_mpi_uint *d,
1229 const mbedtls_mpi_uint *l,
1230 const mbedtls_mpi_uint *r)
Paul Bakker5121ce52009-01-03 21:22:43 +00001231{
Paul Bakker23986e52011-04-24 08:57:21 +00001232 size_t i;
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001233 mbedtls_mpi_uint c = 0, t, z;
Paul Bakker5121ce52009-01-03 21:22:43 +00001234
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001235 for (i = 0; i < n; i++) {
1236 z = (l[i] < c); t = l[i] - c;
1237 c = (t < r[i]) + z; d[i] = t - r[i];
Paul Bakker5121ce52009-01-03 21:22:43 +00001238 }
1239
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001240 return c;
Paul Bakker5121ce52009-01-03 21:22:43 +00001241}
1242
1243/*
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001244 * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
Paul Bakker5121ce52009-01-03 21:22:43 +00001245 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001246int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001247{
Janos Follath24eed8d2019-11-22 13:21:35 +00001248 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001249 size_t n;
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001250 mbedtls_mpi_uint carry;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001251 MPI_VALIDATE_RET(X != NULL);
1252 MPI_VALIDATE_RET(A != NULL);
1253 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001254
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001255 for (n = B->n; n > 0; n--) {
1256 if (B->p[n - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001257 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001258 }
1259 }
1260 if (n > A->n) {
Gilles Peskinec8a91772021-01-27 22:30:43 +01001261 /* B >= (2^ciL)^n > A */
1262 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1263 goto cleanup;
1264 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001265
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001266 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001267
1268 /* Set the high limbs of X to match A. Don't touch the lower limbs
1269 * because X might be aliased to B, and we must not overwrite the
1270 * significant digits of B. */
Aaron M. Ucko78b823a2023-01-31 15:45:44 -05001271 if (A->n > n && A != X) {
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001272 memcpy(X->p + n, A->p + n, (A->n - n) * ciL);
1273 }
1274 if (X->n > A->n) {
1275 memset(X->p + A->n, 0, (X->n - A->n) * ciL);
1276 }
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001277
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001278 carry = mpi_sub_hlp(n, X->p, A->p, B->p);
1279 if (carry != 0) {
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001280 /* Propagate the carry to the first nonzero limb of X. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001281 for (; n < X->n && X->p[n] == 0; n++) {
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001282 --X->p[n];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001283 }
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001284 /* If we ran out of space for the carry, it means that the result
1285 * is negative. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001286 if (n == X->n) {
Gilles Peskine89b41302020-07-23 01:16:46 +02001287 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1288 goto cleanup;
1289 }
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001290 --X->p[n];
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001291 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001292
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001293 /* X should always be positive as a result of unsigned subtractions. */
1294 X->s = 1;
1295
Paul Bakker5121ce52009-01-03 21:22:43 +00001296cleanup:
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001297 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001298}
1299
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001300/* Common function for signed addition and subtraction.
1301 * Calculate A + B * flip_B where flip_B is 1 or -1.
Paul Bakker5121ce52009-01-03 21:22:43 +00001302 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001303static int add_sub_mpi(mbedtls_mpi *X,
1304 const mbedtls_mpi *A, const mbedtls_mpi *B,
1305 int flip_B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001306{
Hanno Becker73d7d792018-12-11 10:35:51 +00001307 int ret, s;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001308 MPI_VALIDATE_RET(X != NULL);
1309 MPI_VALIDATE_RET(A != NULL);
1310 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001311
Hanno Becker73d7d792018-12-11 10:35:51 +00001312 s = A->s;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001313 if (A->s * B->s * flip_B < 0) {
1314 int cmp = mbedtls_mpi_cmp_abs(A, B);
1315 if (cmp >= 0) {
1316 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
Gilles Peskine581c4602022-11-09 22:02:16 +01001317 /* If |A| = |B|, the result is 0 and we must set the sign bit
1318 * to +1 regardless of which of A or B was negative. Otherwise,
1319 * since |A| > |B|, the sign is the sign of A. */
1320 X->s = cmp == 0 ? 1 : s;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001321 } else {
1322 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
Gilles Peskine581c4602022-11-09 22:02:16 +01001323 /* Since |A| < |B|, the sign is the opposite of A. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001324 X->s = -s;
1325 }
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001326 } else {
1327 MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001328 X->s = s;
1329 }
1330
1331cleanup:
1332
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001333 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001334}
1335
1336/*
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001337 * Signed addition: X = A + B
1338 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001339int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001340{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001341 return add_sub_mpi(X, A, B, 1);
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001342}
1343
1344/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001345 * Signed subtraction: X = A - B
Paul Bakker5121ce52009-01-03 21:22:43 +00001346 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001347int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001348{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001349 return add_sub_mpi(X, A, B, -1);
Paul Bakker5121ce52009-01-03 21:22:43 +00001350}
1351
1352/*
1353 * Signed addition: X = A + b
1354 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001355int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001356{
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001357 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001358 mbedtls_mpi_uint p[1];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001359 MPI_VALIDATE_RET(X != NULL);
1360 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001361
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001362 p[0] = mpi_sint_abs(b);
1363 B.s = (b < 0) ? -1 : 1;
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001364 B.n = 1;
1365 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001366
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001367 return mbedtls_mpi_add_mpi(X, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001368}
1369
1370/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001371 * Signed subtraction: X = A - b
Paul Bakker5121ce52009-01-03 21:22:43 +00001372 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001373int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001374{
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001375 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001376 mbedtls_mpi_uint p[1];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001377 MPI_VALIDATE_RET(X != NULL);
1378 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001379
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001380 p[0] = mpi_sint_abs(b);
1381 B.s = (b < 0) ? -1 : 1;
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001382 B.n = 1;
1383 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001384
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001385 return mbedtls_mpi_sub_mpi(X, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001386}
1387
Gilles Peskinea5d8d892020-07-23 21:27:15 +02001388/** Helper for mbedtls_mpi multiplication.
1389 *
1390 * Add \p b * \p s to \p d.
1391 *
1392 * \param i The number of limbs of \p s.
1393 * \param[in] s A bignum to multiply, of size \p i.
1394 * It may overlap with \p d, but only if
1395 * \p d <= \p s.
1396 * Its leading limb must not be \c 0.
1397 * \param[in,out] d The bignum to add to.
1398 * It must be sufficiently large to store the
1399 * result of the multiplication. This means
1400 * \p i + 1 limbs if \p d[\p i - 1] started as 0 and \p b
1401 * is not known a priori.
1402 * \param b A scalar to multiply.
Paul Bakkerfc4f46f2013-06-24 19:23:56 +02001403 */
1404static
1405#if defined(__APPLE__) && defined(__arm__)
1406/*
1407 * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn)
1408 * appears to need this to prevent bad ARM code generation at -O3.
1409 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001410__attribute__((noinline))
Paul Bakkerfc4f46f2013-06-24 19:23:56 +02001411#endif
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001412void mpi_mul_hlp(size_t i,
1413 const mbedtls_mpi_uint *s,
1414 mbedtls_mpi_uint *d,
1415 mbedtls_mpi_uint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001416{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001417 mbedtls_mpi_uint c = 0, t = 0;
Gilles Peskined7848332023-02-24 12:08:01 +01001418 (void) t; /* Unused in some architectures */
Paul Bakker5121ce52009-01-03 21:22:43 +00001419
1420#if defined(MULADDC_HUIT)
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001421 for (; i >= 8; i -= 8) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001422 MULADDC_INIT
1423 MULADDC_HUIT
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001424 MULADDC_STOP
Paul Bakker5121ce52009-01-03 21:22:43 +00001425 }
1426
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001427 for (; i > 0; i--) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001428 MULADDC_INIT
1429 MULADDC_CORE
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001430 MULADDC_STOP
Paul Bakker5121ce52009-01-03 21:22:43 +00001431 }
Paul Bakker9af723c2014-05-01 13:03:14 +02001432#else /* MULADDC_HUIT */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001433 for (; i >= 16; i -= 16) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001434 MULADDC_INIT
1435 MULADDC_CORE MULADDC_CORE
1436 MULADDC_CORE MULADDC_CORE
1437 MULADDC_CORE MULADDC_CORE
1438 MULADDC_CORE MULADDC_CORE
1439
1440 MULADDC_CORE MULADDC_CORE
1441 MULADDC_CORE MULADDC_CORE
1442 MULADDC_CORE MULADDC_CORE
1443 MULADDC_CORE MULADDC_CORE
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001444 MULADDC_STOP
Paul Bakker5121ce52009-01-03 21:22:43 +00001445 }
1446
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001447 for (; i >= 8; i -= 8) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001448 MULADDC_INIT
1449 MULADDC_CORE MULADDC_CORE
1450 MULADDC_CORE MULADDC_CORE
1451
1452 MULADDC_CORE MULADDC_CORE
1453 MULADDC_CORE MULADDC_CORE
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001454 MULADDC_STOP
Paul Bakker5121ce52009-01-03 21:22:43 +00001455 }
1456
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001457 for (; i > 0; i--) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001458 MULADDC_INIT
1459 MULADDC_CORE
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001460 MULADDC_STOP
Paul Bakker5121ce52009-01-03 21:22:43 +00001461 }
Paul Bakker9af723c2014-05-01 13:03:14 +02001462#endif /* MULADDC_HUIT */
Paul Bakker5121ce52009-01-03 21:22:43 +00001463
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001464 while (c != 0) {
1465 *d += c; c = (*d < c); d++;
Paul Bakker5121ce52009-01-03 21:22:43 +00001466 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001467}
1468
1469/*
1470 * Baseline multiplication: X = A * B (HAC 14.12)
1471 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001472int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001473{
Janos Follath24eed8d2019-11-22 13:21:35 +00001474 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001475 size_t i, j;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001476 mbedtls_mpi TA, TB;
Gilles Peskined65b5002021-06-15 21:44:32 +02001477 int result_is_zero = 0;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001478 MPI_VALIDATE_RET(X != NULL);
1479 MPI_VALIDATE_RET(A != NULL);
1480 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001481
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001482 mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00001483
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001484 if (X == A) {
1485 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;
1486 }
1487 if (X == B) {
1488 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;
1489 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001490
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001491 for (i = A->n; i > 0; i--) {
1492 if (A->p[i - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001493 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001494 }
1495 }
1496 if (i == 0) {
Gilles Peskined65b5002021-06-15 21:44:32 +02001497 result_is_zero = 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001498 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001499
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001500 for (j = B->n; j > 0; j--) {
1501 if (B->p[j - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001502 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001503 }
1504 }
1505 if (j == 0) {
Gilles Peskined65b5002021-06-15 21:44:32 +02001506 result_is_zero = 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001507 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001508
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001509 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
1510 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
Paul Bakker5121ce52009-01-03 21:22:43 +00001511
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001512 for (; j > 0; j--) {
1513 mpi_mul_hlp(i, A->p, X->p + j - 1, B->p[j - 1]);
1514 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001515
Gilles Peskine70a7dcd2021-06-10 15:51:54 +02001516 /* If the result is 0, we don't shortcut the operation, which reduces
1517 * but does not eliminate side channels leaking the zero-ness. We do
1518 * need to take care to set the sign bit properly since the library does
1519 * not fully support an MPI object with a value of 0 and s == -1. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001520 if (result_is_zero) {
Gilles Peskine70a7dcd2021-06-10 15:51:54 +02001521 X->s = 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001522 } else {
Gilles Peskine70a7dcd2021-06-10 15:51:54 +02001523 X->s = A->s * B->s;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001524 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001525
1526cleanup:
1527
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001528 mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);
Paul Bakker5121ce52009-01-03 21:22:43 +00001529
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001530 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001531}
1532
1533/*
1534 * Baseline multiplication: X = A * b
1535 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001536int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001537{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001538 MPI_VALIDATE_RET(X != NULL);
1539 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001540
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001541 /* mpi_mul_hlp can't deal with a leading 0. */
1542 size_t n = A->n;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001543 while (n > 0 && A->p[n - 1] == 0) {
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001544 --n;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001545 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001546
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001547 /* The general method below doesn't work if n==0 or b==0. By chance
1548 * calculating the result is trivial in those cases. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001549 if (b == 0 || n == 0) {
1550 return mbedtls_mpi_lset(X, 0);
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001551 }
1552
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001553 /* Calculate A*b as A + A*(b-1) to take advantage of mpi_mul_hlp */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001554 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001555 /* In general, A * b requires 1 limb more than b. If
1556 * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1557 * number of limbs as A and the call to grow() is not required since
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001558 * copy() will take care of the growth if needed. However, experimentally,
1559 * making the call to grow() unconditional causes slightly fewer
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001560 * calls to calloc() in ECP code, presumably because it reuses the
1561 * same mpi for a while and this way the mpi is more likely to directly
1562 * grow to its final size. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001563 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));
1564 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
1565 mpi_mul_hlp(n, A->p, X->p, b - 1);
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001566
1567cleanup:
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001568 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001569}
1570
1571/*
Simon Butcherf5ba0452015-12-27 23:01:55 +00001572 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1573 * mbedtls_mpi_uint divisor, d
Simon Butcher15b15d12015-11-26 19:35:03 +00001574 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001575static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
1576 mbedtls_mpi_uint u0,
1577 mbedtls_mpi_uint d,
1578 mbedtls_mpi_uint *r)
Simon Butcher15b15d12015-11-26 19:35:03 +00001579{
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001580#if defined(MBEDTLS_HAVE_UDBL)
1581 mbedtls_t_udbl dividend, quotient;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001582#else
Simon Butcher9803d072016-01-03 00:24:34 +00001583 const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001584 const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001585 mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1586 mbedtls_mpi_uint u0_msw, u0_lsw;
Simon Butcher9803d072016-01-03 00:24:34 +00001587 size_t s;
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001588#endif
1589
Simon Butcher15b15d12015-11-26 19:35:03 +00001590 /*
1591 * Check for overflow
1592 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001593 if (0 == d || u1 >= d) {
1594 if (r != NULL) {
1595 *r = ~(mbedtls_mpi_uint) 0u;
1596 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001597
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001598 return ~(mbedtls_mpi_uint) 0u;
Simon Butcher15b15d12015-11-26 19:35:03 +00001599 }
1600
1601#if defined(MBEDTLS_HAVE_UDBL)
Simon Butcher15b15d12015-11-26 19:35:03 +00001602 dividend = (mbedtls_t_udbl) u1 << biL;
1603 dividend |= (mbedtls_t_udbl) u0;
1604 quotient = dividend / d;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001605 if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) {
1606 quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
1607 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001608
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001609 if (r != NULL) {
1610 *r = (mbedtls_mpi_uint) (dividend - (quotient * d));
1611 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001612
1613 return (mbedtls_mpi_uint) quotient;
1614#else
Simon Butcher15b15d12015-11-26 19:35:03 +00001615
1616 /*
1617 * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1618 * Vol. 2 - Seminumerical Algorithms, Knuth
1619 */
1620
1621 /*
1622 * Normalize the divisor, d, and dividend, u0, u1
1623 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001624 s = mbedtls_clz(d);
Simon Butcher15b15d12015-11-26 19:35:03 +00001625 d = d << s;
1626
1627 u1 = u1 << s;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001628 u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));
Simon Butcher15b15d12015-11-26 19:35:03 +00001629 u0 = u0 << s;
1630
1631 d1 = d >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001632 d0 = d & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001633
1634 u0_msw = u0 >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001635 u0_lsw = u0 & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001636
1637 /*
1638 * Find the first quotient and remainder
1639 */
1640 q1 = u1 / d1;
1641 r0 = u1 - d1 * q1;
1642
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001643 while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
Simon Butcher15b15d12015-11-26 19:35:03 +00001644 q1 -= 1;
1645 r0 += d1;
1646
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001647 if (r0 >= radix) {
1648 break;
1649 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001650 }
1651
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001652 rAX = (u1 * radix) + (u0_msw - q1 * d);
Simon Butcher15b15d12015-11-26 19:35:03 +00001653 q0 = rAX / d1;
1654 r0 = rAX - q0 * d1;
1655
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001656 while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
Simon Butcher15b15d12015-11-26 19:35:03 +00001657 q0 -= 1;
1658 r0 += d1;
1659
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001660 if (r0 >= radix) {
1661 break;
1662 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001663 }
1664
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001665 if (r != NULL) {
1666 *r = (rAX * radix + u0_lsw - q0 * d) >> s;
1667 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001668
1669 quotient = q1 * radix + q0;
1670
1671 return quotient;
1672#endif
1673}
1674
1675/*
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001676 * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
Paul Bakker5121ce52009-01-03 21:22:43 +00001677 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001678int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1679 const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001680{
Janos Follath24eed8d2019-11-22 13:21:35 +00001681 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001682 size_t i, n, t, k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001683 mbedtls_mpi X, Y, Z, T1, T2;
Alexander Kd19a1932019-11-01 18:20:42 +03001684 mbedtls_mpi_uint TP2[3];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001685 MPI_VALIDATE_RET(A != NULL);
1686 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001687
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001688 if (mbedtls_mpi_cmp_int(B, 0) == 0) {
1689 return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1690 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001691
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001692 mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
1693 mbedtls_mpi_init(&T1);
Alexander Kd19a1932019-11-01 18:20:42 +03001694 /*
1695 * Avoid dynamic memory allocations for constant-size T2.
1696 *
1697 * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1698 * so nobody increase the size of the MPI and we're safe to use an on-stack
1699 * buffer.
1700 */
Alexander K35d6d462019-10-31 14:46:45 +03001701 T2.s = 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001702 T2.n = sizeof(TP2) / sizeof(*TP2);
Alexander Kd19a1932019-11-01 18:20:42 +03001703 T2.p = TP2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001704
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001705 if (mbedtls_mpi_cmp_abs(A, B) < 0) {
1706 if (Q != NULL) {
1707 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
1708 }
1709 if (R != NULL) {
1710 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
1711 }
1712 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001713 }
1714
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001715 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
1716 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001717 X.s = Y.s = 1;
1718
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001719 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
1720 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z, 0));
1721 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001722
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001723 k = mbedtls_mpi_bitlen(&Y) % biL;
1724 if (k < biL - 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001725 k = biL - 1 - k;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001726 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
1727 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
1728 } else {
1729 k = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001730 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001731
1732 n = X.n - 1;
1733 t = Y.n - 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001734 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001735
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001736 while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001737 Z.p[n - t]++;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001738 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
Paul Bakker5121ce52009-01-03 21:22:43 +00001739 }
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001740 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001741
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001742 for (i = n; i > t; i--) {
1743 if (X.p[i] >= Y.p[t]) {
1744 Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;
1745 } else {
1746 Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
1747 Y.p[t], NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001748 }
1749
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001750 T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
1751 T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
Alexander K35d6d462019-10-31 14:46:45 +03001752 T2.p[2] = X.p[i];
1753
Paul Bakker5121ce52009-01-03 21:22:43 +00001754 Z.p[i - t - 1]++;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001755 do {
Paul Bakker5121ce52009-01-03 21:22:43 +00001756 Z.p[i - t - 1]--;
1757
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001758 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
1759 T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001760 T1.p[1] = Y.p[t];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001761 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
1762 } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
Paul Bakker5121ce52009-01-03 21:22:43 +00001763
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001764 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
1765 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1766 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
Paul Bakker5121ce52009-01-03 21:22:43 +00001767
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001768 if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
1769 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
1770 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1771 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
Paul Bakker5121ce52009-01-03 21:22:43 +00001772 Z.p[i - t - 1]--;
1773 }
1774 }
1775
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001776 if (Q != NULL) {
1777 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
Paul Bakker5121ce52009-01-03 21:22:43 +00001778 Q->s = A->s * B->s;
1779 }
1780
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001781 if (R != NULL) {
1782 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
Paul Bakkerf02c5642012-11-13 10:25:21 +00001783 X.s = A->s;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001784 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
Paul Bakker5121ce52009-01-03 21:22:43 +00001785
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001786 if (mbedtls_mpi_cmp_int(R, 0) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001787 R->s = 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001788 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001789 }
1790
1791cleanup:
1792
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001793 mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
1794 mbedtls_mpi_free(&T1);
1795 mbedtls_platform_zeroize(TP2, sizeof(TP2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001796
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001797 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001798}
1799
1800/*
1801 * Division by int: A = Q * b + R
Paul Bakker5121ce52009-01-03 21:22:43 +00001802 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001803int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,
1804 const mbedtls_mpi *A,
1805 mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001806{
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001807 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001808 mbedtls_mpi_uint p[1];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001809 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001810
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001811 p[0] = mpi_sint_abs(b);
1812 B.s = (b < 0) ? -1 : 1;
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001813 B.n = 1;
1814 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001815
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001816 return mbedtls_mpi_div_mpi(Q, R, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001817}
1818
1819/*
1820 * Modulo: R = A mod B
1821 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001822int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001823{
Janos Follath24eed8d2019-11-22 13:21:35 +00001824 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001825 MPI_VALIDATE_RET(R != NULL);
1826 MPI_VALIDATE_RET(A != NULL);
1827 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001828
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001829 if (mbedtls_mpi_cmp_int(B, 0) < 0) {
1830 return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1831 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001832
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001833 MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001834
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001835 while (mbedtls_mpi_cmp_int(R, 0) < 0) {
1836 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
1837 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001838
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001839 while (mbedtls_mpi_cmp_mpi(R, B) >= 0) {
1840 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
1841 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001842
1843cleanup:
1844
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001845 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001846}
1847
1848/*
1849 * Modulo: r = A mod b
1850 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001851int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001852{
Paul Bakker23986e52011-04-24 08:57:21 +00001853 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001854 mbedtls_mpi_uint x, y, z;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001855 MPI_VALIDATE_RET(r != NULL);
1856 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001857
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001858 if (b == 0) {
1859 return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1860 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001861
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001862 if (b < 0) {
1863 return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1864 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001865
1866 /*
1867 * handle trivial cases
1868 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001869 if (b == 1 || A->n == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001870 *r = 0;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001871 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001872 }
1873
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001874 if (b == 2) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001875 *r = A->p[0] & 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001876 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001877 }
1878
1879 /*
1880 * general case
1881 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001882 for (i = A->n, y = 0; i > 0; i--) {
Paul Bakker23986e52011-04-24 08:57:21 +00001883 x = A->p[i - 1];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001884 y = (y << biH) | (x >> biH);
Paul Bakker5121ce52009-01-03 21:22:43 +00001885 z = y / b;
1886 y -= z * b;
1887
1888 x <<= biH;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001889 y = (y << biH) | (x >> biH);
Paul Bakker5121ce52009-01-03 21:22:43 +00001890 z = y / b;
1891 y -= z * b;
1892 }
1893
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001894 /*
1895 * If A is negative, then the current y represents a negative value.
1896 * Flipping it to the positive side.
1897 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001898 if (A->s < 0 && y != 0) {
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001899 y = b - y;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001900 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001901
Paul Bakker5121ce52009-01-03 21:22:43 +00001902 *r = y;
1903
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001904 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001905}
1906
1907/*
1908 * Fast Montgomery initialization (thanks to Tom St Denis)
1909 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001910static void mpi_montg_init(mbedtls_mpi_uint *mm, const mbedtls_mpi *N)
Paul Bakker5121ce52009-01-03 21:22:43 +00001911{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001912 mbedtls_mpi_uint x, m0 = N->p[0];
Manuel Pégourié-Gonnardfdf3f0e2014-03-11 13:47:05 +01001913 unsigned int i;
Paul Bakker5121ce52009-01-03 21:22:43 +00001914
1915 x = m0;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001916 x += ((m0 + 2) & 4) << 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001917
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001918 for (i = biL; i >= 8; i /= 2) {
1919 x *= (2 - (m0 * x));
1920 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001921
1922 *mm = ~x + 1;
1923}
1924
Gilles Peskine2a82f722020-06-04 15:00:49 +02001925/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
1926 *
1927 * \param[in,out] A One of the numbers to multiply.
Gilles Peskine221626f2020-06-08 22:37:50 +02001928 * It must have at least as many limbs as N
1929 * (A->n >= N->n), and any limbs beyond n are ignored.
Gilles Peskine2a82f722020-06-04 15:00:49 +02001930 * On successful completion, A contains the result of
1931 * the multiplication A * B * R^-1 mod N where
1932 * R = (2^ciL)^n.
1933 * \param[in] B One of the numbers to multiply.
1934 * It must be nonzero and must not have more limbs than N
1935 * (B->n <= N->n).
1936 * \param[in] N The modulo. N must be odd.
1937 * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
1938 * This is -N^-1 mod 2^ciL.
1939 * \param[in,out] T A bignum for temporary storage.
1940 * It must be at least twice the limb size of N plus 2
1941 * (T->n >= 2 * (N->n + 1)).
1942 * Its initial content is unused and
1943 * its final content is indeterminate.
1944 * Note that unlike the usual convention in the library
1945 * for `const mbedtls_mpi*`, the content of T can change.
Paul Bakker5121ce52009-01-03 21:22:43 +00001946 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001947static void mpi_montmul(mbedtls_mpi *A,
1948 const mbedtls_mpi *B,
1949 const mbedtls_mpi *N,
1950 mbedtls_mpi_uint mm,
1951 const mbedtls_mpi *T)
Paul Bakker5121ce52009-01-03 21:22:43 +00001952{
Paul Bakker23986e52011-04-24 08:57:21 +00001953 size_t i, n, m;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001954 mbedtls_mpi_uint u0, u1, *d;
Paul Bakker5121ce52009-01-03 21:22:43 +00001955
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001956 memset(T->p, 0, T->n * ciL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001957
1958 d = T->p;
1959 n = N->n;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001960 m = (B->n < n) ? B->n : n;
Paul Bakker5121ce52009-01-03 21:22:43 +00001961
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001962 for (i = 0; i < n; i++) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001963 /*
1964 * T = (T + u0*B + u1*N) / 2^biL
1965 */
1966 u0 = A->p[i];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001967 u1 = (d[0] + u0 * B->p[0]) * mm;
Paul Bakker5121ce52009-01-03 21:22:43 +00001968
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001969 mpi_mul_hlp(m, B->p, d, u0);
1970 mpi_mul_hlp(n, N->p, d, u1);
Paul Bakker5121ce52009-01-03 21:22:43 +00001971
1972 *d++ = u0; d[n + 1] = 0;
1973 }
1974
Gilles Peskine221626f2020-06-08 22:37:50 +02001975 /* At this point, d is either the desired result or the desired result
1976 * plus N. We now potentially subtract N, avoiding leaking whether the
1977 * subtraction is performed through side channels. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001978
Gilles Peskine221626f2020-06-08 22:37:50 +02001979 /* Copy the n least significant limbs of d to A, so that
1980 * A = d if d < N (recall that N has n limbs). */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001981 memcpy(A->p, d, n * ciL);
Gilles Peskine09ec10a2020-06-09 10:39:38 +02001982 /* If d >= N then we want to set A to d - N. To prevent timing attacks,
Gilles Peskine221626f2020-06-08 22:37:50 +02001983 * do the calculation without using conditional tests. */
1984 /* Set d to d0 + (2^biL)^n - N where d0 is the current value of d. */
Gilles Peskine132c0972020-06-04 21:05:24 +02001985 d[n] += 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001986 d[n] -= mpi_sub_hlp(n, d, d, N->p);
Gilles Peskine221626f2020-06-08 22:37:50 +02001987 /* If d0 < N then d < (2^biL)^n
1988 * so d[n] == 0 and we want to keep A as it is.
1989 * If d0 >= N then d >= (2^biL)^n, and d <= (2^biL)^n + N < 2 * (2^biL)^n
1990 * so d[n] == 1 and we want to set A to the result of the subtraction
1991 * which is d - (2^biL)^n, i.e. the n least significant limbs of d.
1992 * This exactly corresponds to a conditional assignment. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001993 mbedtls_ct_mpi_uint_cond_assign(n, A->p, d, (unsigned char) d[n]);
Paul Bakker5121ce52009-01-03 21:22:43 +00001994}
1995
1996/*
1997 * Montgomery reduction: A = A * R^-1 mod N
Gilles Peskine2a82f722020-06-04 15:00:49 +02001998 *
1999 * See mpi_montmul() regarding constraints and guarantees on the parameters.
Paul Bakker5121ce52009-01-03 21:22:43 +00002000 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002001static void mpi_montred(mbedtls_mpi *A, const mbedtls_mpi *N,
2002 mbedtls_mpi_uint mm, const mbedtls_mpi *T)
Paul Bakker5121ce52009-01-03 21:22:43 +00002003{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002004 mbedtls_mpi_uint z = 1;
2005 mbedtls_mpi U;
Paul Bakker5121ce52009-01-03 21:22:43 +00002006
Paul Bakker8ddb6452013-02-27 14:56:33 +01002007 U.n = U.s = (int) z;
Paul Bakker5121ce52009-01-03 21:22:43 +00002008 U.p = &z;
2009
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002010 mpi_montmul(A, &U, N, mm, T);
Paul Bakker5121ce52009-01-03 21:22:43 +00002011}
2012
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01002013/**
2014 * Select an MPI from a table without leaking the index.
2015 *
2016 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
2017 * reads the entire table in order to avoid leaking the value of idx to an
2018 * attacker able to observe memory access patterns.
2019 *
2020 * \param[out] R Where to write the selected MPI.
2021 * \param[in] T The table to read from.
2022 * \param[in] T_size The number of elements in the table.
2023 * \param[in] idx The index of the element to select;
2024 * this must satisfy 0 <= idx < T_size.
2025 *
2026 * \return \c 0 on success, or a negative error code.
2027 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002028static int mpi_select(mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx)
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01002029{
2030 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2031
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002032 for (size_t i = 0; i < T_size; i++) {
2033 MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(R, &T[i],
2034 (unsigned char) mbedtls_ct_size_bool_eq(i,
2035 idx)));
Manuel Pégourié-Gonnardeaafa492021-06-03 10:42:46 +02002036 }
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01002037
2038cleanup:
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002039 return ret;
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01002040}
2041
Janos Follath42175032024-01-08 13:45:49 +00002042int mbedtls_mpi_get_mont_r2_unsafe(mbedtls_mpi *X,
2043 const mbedtls_mpi *N)
2044{
2045 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2046
2047 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 1));
2048 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, N->n * 2 * biL));
2049 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(X, X, N));
2050 MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(X, N->n));
2051
2052cleanup:
2053 return ret;
2054}
2055
Paul Bakker5121ce52009-01-03 21:22:43 +00002056/*
2057 * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
2058 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002059int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
2060 const mbedtls_mpi *E, const mbedtls_mpi *N,
2061 mbedtls_mpi *prec_RR)
Paul Bakker5121ce52009-01-03 21:22:43 +00002062{
Janos Follath24eed8d2019-11-22 13:21:35 +00002063 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follathd88e2192022-11-21 15:54:20 +00002064 size_t window_bitsize;
Paul Bakker23986e52011-04-24 08:57:21 +00002065 size_t i, j, nblimbs;
2066 size_t bufsize, nbits;
Paul Elliottfc820d92023-01-13 16:29:30 +00002067 size_t exponent_bits_in_window = 0;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002068 mbedtls_mpi_uint ei, mm, state;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002069 mbedtls_mpi RR, T, W[(size_t) 1 << MBEDTLS_MPI_WINDOW_SIZE], WW, Apos;
Paul Bakkerf6198c12012-05-16 08:02:29 +00002070 int neg;
Paul Bakker5121ce52009-01-03 21:22:43 +00002071
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002072 MPI_VALIDATE_RET(X != NULL);
2073 MPI_VALIDATE_RET(A != NULL);
2074 MPI_VALIDATE_RET(E != NULL);
2075 MPI_VALIDATE_RET(N != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002076
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002077 if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) {
2078 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2079 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002080
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002081 if (mbedtls_mpi_cmp_int(E, 0) < 0) {
2082 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2083 }
Paul Bakkerf6198c12012-05-16 08:02:29 +00002084
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002085 if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||
2086 mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) {
2087 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2088 }
Chris Jones9246d042020-11-25 15:12:39 +00002089
Paul Bakkerf6198c12012-05-16 08:02:29 +00002090 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00002091 * Init temps and window size
2092 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002093 mpi_montg_init(&mm, N);
2094 mbedtls_mpi_init(&RR); mbedtls_mpi_init(&T);
2095 mbedtls_mpi_init(&Apos);
2096 mbedtls_mpi_init(&WW);
2097 memset(W, 0, sizeof(W));
Paul Bakker5121ce52009-01-03 21:22:43 +00002098
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002099 i = mbedtls_mpi_bitlen(E);
Paul Bakker5121ce52009-01-03 21:22:43 +00002100
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002101 window_bitsize = (i > 671) ? 6 : (i > 239) ? 5 :
2102 (i > 79) ? 4 : (i > 23) ? 3 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00002103
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002104#if (MBEDTLS_MPI_WINDOW_SIZE < 6)
2105 if (window_bitsize > MBEDTLS_MPI_WINDOW_SIZE) {
Janos Follath66323832022-11-21 14:48:02 +00002106 window_bitsize = MBEDTLS_MPI_WINDOW_SIZE;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002107 }
Peter Kolbuse6bcad32018-12-11 14:01:44 -06002108#endif
Paul Bakkerb6d5f082011-11-25 11:52:11 +00002109
Janos Follath6c5b5ad2022-11-22 10:47:10 +00002110 const size_t w_table_used_size = (size_t) 1 << window_bitsize;
Janos Follath6fa7a762022-11-22 10:18:06 +00002111
Paul Bakker5121ce52009-01-03 21:22:43 +00002112 /*
Janos Follath6e2d8e32022-11-21 16:14:54 +00002113 * This function is not constant-trace: its memory accesses depend on the
2114 * exponent value. To defend against timing attacks, callers (such as RSA
2115 * and DHM) should use exponent blinding. However this is not enough if the
2116 * adversary can find the exponent in a single trace, so this function
2117 * takes extra precautions against adversaries who can observe memory
2118 * access patterns.
Janos Follath3a3c50c2022-11-11 15:56:38 +00002119 *
Janos Follath6e2d8e32022-11-21 16:14:54 +00002120 * This function performs a series of multiplications by table elements and
2121 * squarings, and we want the prevent the adversary from finding out which
2122 * table element was used, and from distinguishing between multiplications
2123 * and squarings. Firstly, when multiplying by an element of the window
2124 * W[i], we do a constant-trace table lookup to obfuscate i. This leaves
2125 * squarings as having a different memory access patterns from other
Gilles Peskine20d54e32023-08-10 15:59:28 +02002126 * multiplications. So secondly, we put the accumulator in the table as
2127 * well, and also do a constant-trace table lookup to multiply by the
2128 * accumulator which is W[x_index].
Janos Follath6e2d8e32022-11-21 16:14:54 +00002129 *
2130 * This way, all multiplications take the form of a lookup-and-multiply.
2131 * The number of lookup-and-multiply operations inside each iteration of
2132 * the main loop still depends on the bits of the exponent, but since the
2133 * other operations in the loop don't have an easily recognizable memory
2134 * trace, an adversary is unlikely to be able to observe the exact
2135 * patterns.
2136 *
2137 * An adversary may still be able to recover the exponent if they can
2138 * observe both memory accesses and branches. However, branch prediction
2139 * exploitation typically requires many traces of execution over the same
2140 * data, which is defeated by randomized blinding.
Janos Follath91c02862022-10-04 13:27:40 +01002141 */
Janos Follath6c5b5ad2022-11-22 10:47:10 +00002142 const size_t x_index = 0;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002143 mbedtls_mpi_init(&W[x_index]);
Janos Follathf0ceb1c2022-11-21 14:31:22 +00002144
2145 j = N->n + 1;
Gilles Peskine20d54e32023-08-10 15:59:28 +02002146 /* All W[i] including the accumulator must have at least N->n limbs for
2147 * the mpi_montmul() and mpi_montred() calls later. Here we ensure that
2148 * W[1] and the accumulator W[x_index] are large enough. later we'll grow
2149 * other W[i] to the same length. They must not be shrunk midway through
2150 * this function!
Janos Follath3a3c50c2022-11-11 15:56:38 +00002151 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002152 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[x_index], j));
2153 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], j));
2154 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T, j * 2));
Janos Follath91c02862022-10-04 13:27:40 +01002155
2156 /*
Paul Bakker50546922012-05-19 08:40:49 +00002157 * Compensate for negative A (and correct at the end)
2158 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002159 neg = (A->s == -1);
2160 if (neg) {
2161 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Apos, A));
Paul Bakker50546922012-05-19 08:40:49 +00002162 Apos.s = 1;
2163 A = &Apos;
2164 }
2165
2166 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00002167 * If 1st call, pre-compute R^2 mod N
2168 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002169 if (prec_RR == NULL || prec_RR->p == NULL) {
Janos Follath42175032024-01-08 13:45:49 +00002170 mbedtls_mpi_get_mont_r2_unsafe(&RR, N);
Paul Bakker5121ce52009-01-03 21:22:43 +00002171
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002172 if (prec_RR != NULL) {
2173 memcpy(prec_RR, &RR, sizeof(mbedtls_mpi));
2174 }
2175 } else {
2176 memcpy(&RR, prec_RR, sizeof(mbedtls_mpi));
Paul Bakker5121ce52009-01-03 21:22:43 +00002177 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002178
2179 /*
2180 * W[1] = A * R^2 * R^-1 mod N = A * R mod N
2181 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002182 if (mbedtls_mpi_cmp_mpi(A, N) >= 0) {
2183 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&W[1], A, N));
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002184 /* This should be a no-op because W[1] is already that large before
2185 * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
2186 * in mpi_montmul() below, so let's make sure. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002187 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], N->n + 1));
2188 } else {
2189 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[1], A));
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002190 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002191
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002192 /* Note that this is safe because W[1] always has at least N->n limbs
2193 * (it grew above and was preserved by mbedtls_mpi_copy()). */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002194 mpi_montmul(&W[1], &RR, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00002195
2196 /*
Janos Follath91c02862022-10-04 13:27:40 +01002197 * W[x_index] = R^2 * R^-1 mod N = R mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00002198 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002199 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[x_index], &RR));
2200 mpi_montred(&W[x_index], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00002201
Janos Follath6c5b5ad2022-11-22 10:47:10 +00002202
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002203 if (window_bitsize > 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002204 /*
Janos Follathd88e2192022-11-21 15:54:20 +00002205 * W[i] = W[1] ^ i
2206 *
2207 * The first bit of the sliding window is always 1 and therefore we
2208 * only need to store the second half of the table.
Janos Follath6c5b5ad2022-11-22 10:47:10 +00002209 *
2210 * (There are two special elements in the table: W[0] for the
2211 * accumulator/result and W[1] for A in Montgomery form. Both of these
2212 * are already set at this point.)
Paul Bakker5121ce52009-01-03 21:22:43 +00002213 */
Janos Follathd88e2192022-11-21 15:54:20 +00002214 j = w_table_used_size / 2;
Paul Bakker5121ce52009-01-03 21:22:43 +00002215
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002216 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[j], N->n + 1));
2217 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[j], &W[1]));
Paul Bakker5121ce52009-01-03 21:22:43 +00002218
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002219 for (i = 0; i < window_bitsize - 1; i++) {
2220 mpi_montmul(&W[j], &W[j], N, mm, &T);
2221 }
Paul Bakker0d7702c2013-10-29 16:18:35 +01002222
Paul Bakker5121ce52009-01-03 21:22:43 +00002223 /*
2224 * W[i] = W[i - 1] * W[1]
2225 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002226 for (i = j + 1; i < w_table_used_size; i++) {
2227 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[i], N->n + 1));
2228 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[i], &W[i - 1]));
Paul Bakker5121ce52009-01-03 21:22:43 +00002229
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002230 mpi_montmul(&W[i], &W[1], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00002231 }
2232 }
2233
2234 nblimbs = E->n;
2235 bufsize = 0;
2236 nbits = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00002237 state = 0;
2238
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002239 while (1) {
2240 if (bufsize == 0) {
2241 if (nblimbs == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002242 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002243 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002244
Paul Bakker0d7702c2013-10-29 16:18:35 +01002245 nblimbs--;
2246
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002247 bufsize = sizeof(mbedtls_mpi_uint) << 3;
Paul Bakker5121ce52009-01-03 21:22:43 +00002248 }
2249
2250 bufsize--;
2251
2252 ei = (E->p[nblimbs] >> bufsize) & 1;
2253
2254 /*
2255 * skip leading 0s
2256 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002257 if (ei == 0 && state == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002258 continue;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002259 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002260
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002261 if (ei == 0 && state == 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002262 /*
Janos Follath91c02862022-10-04 13:27:40 +01002263 * out of window, square W[x_index]
Paul Bakker5121ce52009-01-03 21:22:43 +00002264 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002265 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
2266 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00002267 continue;
2268 }
2269
2270 /*
2271 * add ei to current window
2272 */
2273 state = 2;
2274
2275 nbits++;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002276 exponent_bits_in_window |= (ei << (window_bitsize - nbits));
Paul Bakker5121ce52009-01-03 21:22:43 +00002277
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002278 if (nbits == window_bitsize) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002279 /*
Janos Follath66323832022-11-21 14:48:02 +00002280 * W[x_index] = W[x_index]^window_bitsize R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00002281 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002282 for (i = 0; i < window_bitsize; i++) {
2283 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
2284 x_index));
2285 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Janos Follath95655a22022-10-04 14:00:09 +01002286 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002287
2288 /*
Janos Follath66323832022-11-21 14:48:02 +00002289 * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00002290 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002291 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
2292 exponent_bits_in_window));
2293 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00002294
2295 state--;
2296 nbits = 0;
Janos Follath66323832022-11-21 14:48:02 +00002297 exponent_bits_in_window = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00002298 }
2299 }
2300
2301 /*
2302 * process the remaining bits
2303 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002304 for (i = 0; i < nbits; i++) {
2305 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
2306 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00002307
Janos Follath66323832022-11-21 14:48:02 +00002308 exponent_bits_in_window <<= 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00002309
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002310 if ((exponent_bits_in_window & ((size_t) 1 << window_bitsize)) != 0) {
2311 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, 1));
2312 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Janos Follath95655a22022-10-04 14:00:09 +01002313 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002314 }
2315
2316 /*
Janos Follath91c02862022-10-04 13:27:40 +01002317 * W[x_index] = A^E * R * R^-1 mod N = A^E mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00002318 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002319 mpi_montred(&W[x_index], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00002320
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002321 if (neg && E->n != 0 && (E->p[0] & 1) != 0) {
Janos Follath91c02862022-10-04 13:27:40 +01002322 W[x_index].s = -1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002323 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&W[x_index], N, &W[x_index]));
Paul Bakkerf6198c12012-05-16 08:02:29 +00002324 }
2325
Janos Follath91c02862022-10-04 13:27:40 +01002326 /*
2327 * Load the result in the output variable.
2328 */
Chien Wong0118a1d2023-08-01 21:38:46 +08002329 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &W[x_index]));
Janos Follath91c02862022-10-04 13:27:40 +01002330
Paul Bakker5121ce52009-01-03 21:22:43 +00002331cleanup:
2332
Janos Follatha92f9152022-11-21 15:05:31 +00002333 /* The first bit of the sliding window is always 1 and therefore the first
2334 * half of the table was unused. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002335 for (i = w_table_used_size/2; i < w_table_used_size; i++) {
2336 mbedtls_mpi_free(&W[i]);
2337 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002338
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002339 mbedtls_mpi_free(&W[x_index]);
2340 mbedtls_mpi_free(&W[1]);
2341 mbedtls_mpi_free(&T);
2342 mbedtls_mpi_free(&Apos);
2343 mbedtls_mpi_free(&WW);
Paul Bakker6c591fa2011-05-05 11:49:20 +00002344
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002345 if (prec_RR == NULL || prec_RR->p == NULL) {
2346 mbedtls_mpi_free(&RR);
2347 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002348
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002349 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002350}
2351
Paul Bakker5121ce52009-01-03 21:22:43 +00002352/*
2353 * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
2354 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002355int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00002356{
Janos Follath24eed8d2019-11-22 13:21:35 +00002357 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00002358 size_t lz, lzt;
Alexander Ke8ad49f2019-08-16 16:16:07 +03002359 mbedtls_mpi TA, TB;
Paul Bakker5121ce52009-01-03 21:22:43 +00002360
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002361 MPI_VALIDATE_RET(G != NULL);
2362 MPI_VALIDATE_RET(A != NULL);
2363 MPI_VALIDATE_RET(B != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002364
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002365 mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00002366
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002367 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
2368 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00002369
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002370 lz = mbedtls_mpi_lsb(&TA);
2371 lzt = mbedtls_mpi_lsb(&TB);
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002372
Gilles Peskineb5e56ec2021-06-09 13:26:43 +02002373 /* The loop below gives the correct result when A==0 but not when B==0.
2374 * So have a special case for B==0. Leverage the fact that we just
2375 * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
2376 * slightly more efficient than cmp_int(). */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002377 if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
2378 ret = mbedtls_mpi_copy(G, A);
Gilles Peskineb5e56ec2021-06-09 13:26:43 +02002379 goto cleanup;
2380 }
2381
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002382 if (lzt < lz) {
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002383 lz = lzt;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002384 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002385
Paul Bakker5121ce52009-01-03 21:22:43 +00002386 TA.s = TB.s = 1;
2387
Gilles Peskineea9aa142021-06-16 13:42:04 +02002388 /* We mostly follow the procedure described in HAC 14.54, but with some
2389 * minor differences:
2390 * - Sequences of multiplications or divisions by 2 are grouped into a
2391 * single shift operation.
Gilles Peskine37d690c2021-06-21 18:58:39 +02002392 * - The procedure in HAC assumes that 0 < TB <= TA.
2393 * - The condition TB <= TA is not actually necessary for correctness.
2394 * TA and TB have symmetric roles except for the loop termination
2395 * condition, and the shifts at the beginning of the loop body
2396 * remove any significance from the ordering of TA vs TB before
2397 * the shifts.
2398 * - If TA = 0, the loop goes through 0 iterations and the result is
2399 * correctly TB.
2400 * - The case TB = 0 was short-circuited above.
Gilles Peskineea9aa142021-06-16 13:42:04 +02002401 *
2402 * For the correctness proof below, decompose the original values of
2403 * A and B as
2404 * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
2405 * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
2406 * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
2407 * and gcd(A',B') is odd or 0.
2408 *
2409 * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
2410 * The code maintains the following invariant:
2411 * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
Gilles Peskine6537bdb2021-06-15 22:09:39 +02002412 */
2413
Gilles Peskineea9aa142021-06-16 13:42:04 +02002414 /* Proof that the loop terminates:
2415 * At each iteration, either the right-shift by 1 is made on a nonzero
2416 * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
2417 * by at least 1, or the right-shift by 1 is made on zero and then
2418 * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
2419 * since in that case TB is calculated from TB-TA with the condition TB>TA).
2420 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002421 while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
Gilles Peskineea9aa142021-06-16 13:42:04 +02002422 /* Divisions by 2 preserve the invariant (I). */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002423 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
2424 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
Paul Bakker5121ce52009-01-03 21:22:43 +00002425
Gilles Peskineea9aa142021-06-16 13:42:04 +02002426 /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
2427 * TA-TB is even so the division by 2 has an integer result.
2428 * Invariant (I) is preserved since any odd divisor of both TA and TB
2429 * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
Shaun Case0e7791f2021-12-20 21:14:10 -08002430 * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
Gilles Peskineea9aa142021-06-16 13:42:04 +02002431 * divides TA.
2432 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002433 if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
2434 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
2435 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
2436 } else {
2437 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
2438 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002439 }
Gilles Peskineea9aa142021-06-16 13:42:04 +02002440 /* Note that one of TA or TB is still odd. */
Paul Bakker5121ce52009-01-03 21:22:43 +00002441 }
2442
Gilles Peskineea9aa142021-06-16 13:42:04 +02002443 /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
2444 * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
2445 * - If there was at least one loop iteration, then one of TA or TB is odd,
2446 * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
2447 * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
2448 * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
Gilles Peskineb798b352021-06-21 11:40:38 +02002449 * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
Gilles Peskineea9aa142021-06-16 13:42:04 +02002450 */
2451
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002452 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
2453 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
Paul Bakker5121ce52009-01-03 21:22:43 +00002454
2455cleanup:
2456
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002457 mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00002458
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002459 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002460}
2461
Gilles Peskine8f454702021-04-01 15:57:18 +02002462/* Fill X with n_bytes random bytes.
2463 * X must already have room for those bytes.
Gilles Peskine23422e42021-06-03 11:51:09 +02002464 * The ordering of the bytes returned from the RNG is suitable for
2465 * deterministic ECDSA (see RFC 6979 §3.3 and mbedtls_mpi_random()).
Gilles Peskinea16001e2021-04-13 21:55:35 +02002466 * The size and sign of X are unchanged.
Gilles Peskine8f454702021-04-01 15:57:18 +02002467 * n_bytes must not be 0.
2468 */
2469static int mpi_fill_random_internal(
2470 mbedtls_mpi *X, size_t n_bytes,
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002471 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
Gilles Peskine8f454702021-04-01 15:57:18 +02002472{
2473 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002474 const size_t limbs = CHARS_TO_LIMBS(n_bytes);
2475 const size_t overhead = (limbs * ciL) - n_bytes;
Gilles Peskine8f454702021-04-01 15:57:18 +02002476
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002477 if (X->n < limbs) {
2478 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2479 }
Gilles Peskine8f454702021-04-01 15:57:18 +02002480
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002481 memset(X->p, 0, overhead);
2482 memset((unsigned char *) X->p + limbs * ciL, 0, (X->n - limbs) * ciL);
2483 MBEDTLS_MPI_CHK(f_rng(p_rng, (unsigned char *) X->p + overhead, n_bytes));
2484 mpi_bigendian_to_host(X->p, limbs);
Gilles Peskine8f454702021-04-01 15:57:18 +02002485
2486cleanup:
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002487 return ret;
Gilles Peskine8f454702021-04-01 15:57:18 +02002488}
2489
Paul Bakker33dc46b2014-04-30 16:11:39 +02002490/*
2491 * Fill X with size bytes of random.
2492 *
2493 * Use a temporary bytes representation to make sure the result is the same
Paul Bakkerc37b0ac2014-05-01 14:19:23 +02002494 * regardless of the platform endianness (useful when f_rng is actually
Paul Bakker33dc46b2014-04-30 16:11:39 +02002495 * deterministic, eg for tests).
2496 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002497int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
2498 int (*f_rng)(void *, unsigned char *, size_t),
2499 void *p_rng)
Paul Bakker287781a2011-03-26 13:18:49 +00002500{
Janos Follath24eed8d2019-11-22 13:21:35 +00002501 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002502 size_t const limbs = CHARS_TO_LIMBS(size);
Hanno Beckerda1655a2017-10-18 14:21:44 +01002503
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002504 MPI_VALIDATE_RET(X != NULL);
2505 MPI_VALIDATE_RET(f_rng != NULL);
Paul Bakker33dc46b2014-04-30 16:11:39 +02002506
Hanno Beckerda1655a2017-10-18 14:21:44 +01002507 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002508 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
2509 if (size == 0) {
2510 return 0;
2511 }
Paul Bakker287781a2011-03-26 13:18:49 +00002512
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002513 ret = mpi_fill_random_internal(X, size, f_rng, p_rng);
Paul Bakker287781a2011-03-26 13:18:49 +00002514
2515cleanup:
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002516 return ret;
Paul Bakker287781a2011-03-26 13:18:49 +00002517}
2518
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002519int mbedtls_mpi_random(mbedtls_mpi *X,
2520 mbedtls_mpi_sint min,
2521 const mbedtls_mpi *N,
2522 int (*f_rng)(void *, unsigned char *, size_t),
2523 void *p_rng)
Gilles Peskine4699fa42021-03-29 22:02:55 +02002524{
Gilles Peskine4699fa42021-03-29 22:02:55 +02002525 int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002526 int count;
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002527 unsigned lt_lower = 1, lt_upper = 0;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002528 size_t n_bits = mbedtls_mpi_bitlen(N);
2529 size_t n_bytes = (n_bits + 7) / 8;
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002530 mbedtls_mpi lower_bound;
Gilles Peskine4699fa42021-03-29 22:02:55 +02002531
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002532 if (min < 0) {
2533 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2534 }
2535 if (mbedtls_mpi_cmp_int(N, min) <= 0) {
2536 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2537 }
Gilles Peskine9312ba52021-03-29 22:14:51 +02002538
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002539 /*
2540 * When min == 0, each try has at worst a probability 1/2 of failing
2541 * (the msb has a probability 1/2 of being 0, and then the result will
2542 * be < N), so after 30 tries failure probability is a most 2**(-30).
2543 *
2544 * When N is just below a power of 2, as is the case when generating
Gilles Peskine3f613632021-04-15 11:45:19 +02002545 * a random scalar on most elliptic curves, 1 try is enough with
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002546 * overwhelming probability. When N is just above a power of 2,
Gilles Peskine3f613632021-04-15 11:45:19 +02002547 * as when generating a random scalar on secp224k1, each try has
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002548 * a probability of failing that is almost 1/2.
2549 *
2550 * The probabilities are almost the same if min is nonzero but negligible
2551 * compared to N. This is always the case when N is crypto-sized, but
2552 * it's convenient to support small N for testing purposes. When N
2553 * is small, use a higher repeat count, otherwise the probability of
2554 * failure is macroscopic.
2555 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002556 count = (n_bytes > 4 ? 30 : 250);
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002557
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002558 mbedtls_mpi_init(&lower_bound);
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002559
Gilles Peskine8f454702021-04-01 15:57:18 +02002560 /* Ensure that target MPI has exactly the same number of limbs
2561 * as the upper bound, even if the upper bound has leading zeros.
2562 * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002563 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, N->n));
2564 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&lower_bound, N->n));
2565 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&lower_bound, min));
Gilles Peskine8f454702021-04-01 15:57:18 +02002566
Gilles Peskine4699fa42021-03-29 22:02:55 +02002567 /*
2568 * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
2569 * when f_rng is a suitably parametrized instance of HMAC_DRBG:
2570 * - use the same byte ordering;
2571 * - keep the leftmost n_bits bits of the generated octet string;
2572 * - try until result is in the desired range.
2573 * This also avoids any bias, which is especially important for ECDSA.
2574 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002575 do {
2576 MBEDTLS_MPI_CHK(mpi_fill_random_internal(X, n_bytes, f_rng, p_rng));
2577 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, 8 * n_bytes - n_bits));
Gilles Peskine4699fa42021-03-29 22:02:55 +02002578
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002579 if (--count == 0) {
Gilles Peskine4699fa42021-03-29 22:02:55 +02002580 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2581 goto cleanup;
2582 }
2583
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002584 MBEDTLS_MPI_CHK(mbedtls_mpi_lt_mpi_ct(X, &lower_bound, &lt_lower));
2585 MBEDTLS_MPI_CHK(mbedtls_mpi_lt_mpi_ct(X, N, &lt_upper));
2586 } while (lt_lower != 0 || lt_upper == 0);
Gilles Peskine4699fa42021-03-29 22:02:55 +02002587
2588cleanup:
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002589 mbedtls_mpi_free(&lower_bound);
2590 return ret;
Gilles Peskine4699fa42021-03-29 22:02:55 +02002591}
2592
Paul Bakker5121ce52009-01-03 21:22:43 +00002593/*
2594 * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
2595 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002596int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
Paul Bakker5121ce52009-01-03 21:22:43 +00002597{
Janos Follath24eed8d2019-11-22 13:21:35 +00002598 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002599 mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002600 MPI_VALIDATE_RET(X != NULL);
2601 MPI_VALIDATE_RET(A != NULL);
2602 MPI_VALIDATE_RET(N != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00002603
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002604 if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
2605 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2606 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002607
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002608 mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
2609 mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
2610 mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
Paul Bakker5121ce52009-01-03 21:22:43 +00002611
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002612 MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002613
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002614 if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002615 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002616 goto cleanup;
2617 }
2618
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002619 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
2620 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
2621 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
2622 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002623
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002624 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
2625 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
2626 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
2627 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002628
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002629 do {
2630 while ((TU.p[0] & 1) == 0) {
2631 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002632
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002633 if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
2634 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
2635 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
Paul Bakker5121ce52009-01-03 21:22:43 +00002636 }
2637
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002638 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
2639 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002640 }
2641
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002642 while ((TV.p[0] & 1) == 0) {
2643 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002644
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002645 if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
2646 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
2647 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
Paul Bakker5121ce52009-01-03 21:22:43 +00002648 }
2649
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002650 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
2651 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002652 }
2653
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002654 if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
2655 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
2656 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
2657 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
2658 } else {
2659 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
2660 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
2661 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
Paul Bakker5121ce52009-01-03 21:22:43 +00002662 }
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002663 } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
2664
2665 while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
2666 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002667 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002668
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002669 while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
2670 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
2671 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002672
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002673 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002674
2675cleanup:
2676
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002677 mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
2678 mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
2679 mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
Paul Bakker5121ce52009-01-03 21:22:43 +00002680
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002681 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002682}
2683
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002684#if defined(MBEDTLS_GENPRIME)
Paul Bakkerd9374b02012-11-02 11:02:58 +00002685
Paul Bakker5121ce52009-01-03 21:22:43 +00002686static const int small_prime[] =
2687{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002688 3, 5, 7, 11, 13, 17, 19, 23,
2689 29, 31, 37, 41, 43, 47, 53, 59,
2690 61, 67, 71, 73, 79, 83, 89, 97,
2691 101, 103, 107, 109, 113, 127, 131, 137,
2692 139, 149, 151, 157, 163, 167, 173, 179,
2693 181, 191, 193, 197, 199, 211, 223, 227,
2694 229, 233, 239, 241, 251, 257, 263, 269,
2695 271, 277, 281, 283, 293, 307, 311, 313,
2696 317, 331, 337, 347, 349, 353, 359, 367,
2697 373, 379, 383, 389, 397, 401, 409, 419,
2698 421, 431, 433, 439, 443, 449, 457, 461,
2699 463, 467, 479, 487, 491, 499, 503, 509,
2700 521, 523, 541, 547, 557, 563, 569, 571,
2701 577, 587, 593, 599, 601, 607, 613, 617,
2702 619, 631, 641, 643, 647, 653, 659, 661,
2703 673, 677, 683, 691, 701, 709, 719, 727,
2704 733, 739, 743, 751, 757, 761, 769, 773,
2705 787, 797, 809, 811, 821, 823, 827, 829,
2706 839, 853, 857, 859, 863, 877, 881, 883,
2707 887, 907, 911, 919, 929, 937, 941, 947,
2708 953, 967, 971, 977, 983, 991, 997, -103
Paul Bakker5121ce52009-01-03 21:22:43 +00002709};
2710
2711/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002712 * Small divisors test (X must be positive)
2713 *
2714 * Return values:
2715 * 0: no small factor (possible prime, more tests needed)
2716 * 1: certain prime
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002717 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002718 * other negative: error
Paul Bakker5121ce52009-01-03 21:22:43 +00002719 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002720static int mpi_check_small_factors(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +00002721{
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002722 int ret = 0;
2723 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002724 mbedtls_mpi_uint r;
Paul Bakker5121ce52009-01-03 21:22:43 +00002725
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002726 if ((X->p[0] & 1) == 0) {
2727 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2728 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002729
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002730 for (i = 0; small_prime[i] > 0; i++) {
2731 if (mbedtls_mpi_cmp_int(X, small_prime[i]) <= 0) {
2732 return 1;
2733 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002734
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002735 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, small_prime[i]));
Paul Bakker5121ce52009-01-03 21:22:43 +00002736
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002737 if (r == 0) {
2738 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2739 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002740 }
2741
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002742cleanup:
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002743 return ret;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002744}
2745
2746/*
2747 * Miller-Rabin pseudo-primality test (HAC 4.24)
2748 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002749static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,
2750 int (*f_rng)(void *, unsigned char *, size_t),
2751 void *p_rng)
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002752{
Pascal Junodb99183d2015-03-11 16:49:45 +01002753 int ret, count;
Janos Follathda31fa12018-09-03 14:45:23 +01002754 size_t i, j, k, s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002755 mbedtls_mpi W, R, T, A, RR;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002756
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002757 MPI_VALIDATE_RET(X != NULL);
2758 MPI_VALIDATE_RET(f_rng != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002759
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002760 mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);
2761 mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);
2762 mbedtls_mpi_init(&RR);
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002763
Paul Bakker5121ce52009-01-03 21:22:43 +00002764 /*
2765 * W = |X| - 1
2766 * R = W >> lsb( W )
2767 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002768 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
2769 s = mbedtls_mpi_lsb(&W);
2770 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
2771 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
Paul Bakker5121ce52009-01-03 21:22:43 +00002772
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002773 for (i = 0; i < rounds; i++) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002774 /*
2775 * pick a random A, 1 < A < |X| - 1
2776 */
Pascal Junodb99183d2015-03-11 16:49:45 +01002777 count = 0;
2778 do {
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002779 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
Pascal Junodb99183d2015-03-11 16:49:45 +01002780
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002781 j = mbedtls_mpi_bitlen(&A);
2782 k = mbedtls_mpi_bitlen(&W);
Pascal Junodb99183d2015-03-11 16:49:45 +01002783 if (j > k) {
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002784 A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;
Pascal Junodb99183d2015-03-11 16:49:45 +01002785 }
2786
2787 if (count++ > 30) {
Jens Wiklanderf08aa3e2019-01-17 13:30:57 +01002788 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2789 goto cleanup;
Pascal Junodb99183d2015-03-11 16:49:45 +01002790 }
2791
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002792 } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
2793 mbedtls_mpi_cmp_int(&A, 1) <= 0);
Paul Bakker5121ce52009-01-03 21:22:43 +00002794
2795 /*
2796 * A = A^R mod |X|
2797 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002798 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
Paul Bakker5121ce52009-01-03 21:22:43 +00002799
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002800 if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
2801 mbedtls_mpi_cmp_int(&A, 1) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002802 continue;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002803 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002804
2805 j = 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002806 while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002807 /*
2808 * A = A * A mod |X|
2809 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002810 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
2811 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
Paul Bakker5121ce52009-01-03 21:22:43 +00002812
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002813 if (mbedtls_mpi_cmp_int(&A, 1) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002814 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002815 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002816
2817 j++;
2818 }
2819
2820 /*
2821 * not prime if A != |X| - 1 or A == 1
2822 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002823 if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
2824 mbedtls_mpi_cmp_int(&A, 1) == 0) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002825 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002826 break;
2827 }
2828 }
2829
2830cleanup:
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002831 mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);
2832 mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);
2833 mbedtls_mpi_free(&RR);
Paul Bakker5121ce52009-01-03 21:22:43 +00002834
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002835 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002836}
2837
2838/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002839 * Pseudo-primality test: small factors, then Miller-Rabin
2840 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002841int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,
2842 int (*f_rng)(void *, unsigned char *, size_t),
2843 void *p_rng)
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002844{
Janos Follath24eed8d2019-11-22 13:21:35 +00002845 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002846 mbedtls_mpi XX;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002847 MPI_VALIDATE_RET(X != NULL);
2848 MPI_VALIDATE_RET(f_rng != NULL);
Manuel Pégourié-Gonnard7f4ed672014-10-14 20:56:02 +02002849
2850 XX.s = 1;
2851 XX.n = X->n;
2852 XX.p = X->p;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002853
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002854 if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
2855 mbedtls_mpi_cmp_int(&XX, 1) == 0) {
2856 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002857 }
2858
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002859 if (mbedtls_mpi_cmp_int(&XX, 2) == 0) {
2860 return 0;
2861 }
2862
2863 if ((ret = mpi_check_small_factors(&XX)) != 0) {
2864 if (ret == 1) {
2865 return 0;
2866 }
2867
2868 return ret;
2869 }
2870
2871 return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);
Janos Follathf301d232018-08-14 13:34:01 +01002872}
2873
Janos Follatha0b67c22018-09-18 14:48:23 +01002874#if !defined(MBEDTLS_DEPRECATED_REMOVED)
Janos Follathf301d232018-08-14 13:34:01 +01002875/*
2876 * Pseudo-primality test, error probability 2^-80
2877 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002878int mbedtls_mpi_is_prime(const mbedtls_mpi *X,
2879 int (*f_rng)(void *, unsigned char *, size_t),
2880 void *p_rng)
Janos Follathf301d232018-08-14 13:34:01 +01002881{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002882 MPI_VALIDATE_RET(X != NULL);
2883 MPI_VALIDATE_RET(f_rng != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002884
Janos Follatha0b67c22018-09-18 14:48:23 +01002885 /*
2886 * In the past our key generation aimed for an error rate of at most
2887 * 2^-80. Since this function is deprecated, aim for the same certainty
2888 * here as well.
2889 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002890 return mbedtls_mpi_is_prime_ext(X, 40, f_rng, p_rng);
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002891}
Janos Follatha0b67c22018-09-18 14:48:23 +01002892#endif
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002893
2894/*
Paul Bakker5121ce52009-01-03 21:22:43 +00002895 * Prime number generation
Jethro Beekman66689272018-02-14 19:24:10 -08002896 *
Janos Follathf301d232018-08-14 13:34:01 +01002897 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2898 * be either 1024 bits or 1536 bits long, and flags must contain
2899 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
Paul Bakker5121ce52009-01-03 21:22:43 +00002900 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002901int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,
2902 int (*f_rng)(void *, unsigned char *, size_t),
2903 void *p_rng)
Paul Bakker5121ce52009-01-03 21:22:43 +00002904{
Jethro Beekman66689272018-02-14 19:24:10 -08002905#ifdef MBEDTLS_HAVE_INT64
2906// ceil(2^63.5)
2907#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2908#else
2909// ceil(2^31.5)
2910#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2911#endif
2912 int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker23986e52011-04-24 08:57:21 +00002913 size_t k, n;
Janos Follathda31fa12018-09-03 14:45:23 +01002914 int rounds;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002915 mbedtls_mpi_uint r;
2916 mbedtls_mpi Y;
Paul Bakker5121ce52009-01-03 21:22:43 +00002917
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002918 MPI_VALIDATE_RET(X != NULL);
2919 MPI_VALIDATE_RET(f_rng != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002920
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002921 if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) {
2922 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2923 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002924
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002925 mbedtls_mpi_init(&Y);
Paul Bakker5121ce52009-01-03 21:22:43 +00002926
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002927 n = BITS_TO_LIMBS(nbits);
Paul Bakker5121ce52009-01-03 21:22:43 +00002928
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002929 if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) {
Janos Follathda31fa12018-09-03 14:45:23 +01002930 /*
2931 * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2932 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002933 rounds = ((nbits >= 1300) ? 2 : (nbits >= 850) ? 3 :
2934 (nbits >= 650) ? 4 : (nbits >= 350) ? 8 :
2935 (nbits >= 250) ? 12 : (nbits >= 150) ? 18 : 27);
2936 } else {
Janos Follathda31fa12018-09-03 14:45:23 +01002937 /*
2938 * 2^-100 error probability, number of rounds computed based on HAC,
2939 * fact 4.48
2940 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002941 rounds = ((nbits >= 1450) ? 4 : (nbits >= 1150) ? 5 :
2942 (nbits >= 1000) ? 6 : (nbits >= 850) ? 7 :
2943 (nbits >= 750) ? 8 : (nbits >= 500) ? 13 :
2944 (nbits >= 250) ? 28 : (nbits >= 150) ? 40 : 51);
Janos Follathda31fa12018-09-03 14:45:23 +01002945 }
2946
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002947 while (1) {
2948 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
Jethro Beekman66689272018-02-14 19:24:10 -08002949 /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002950 if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) {
2951 continue;
2952 }
Jethro Beekman66689272018-02-14 19:24:10 -08002953
2954 k = n * biL;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002955 if (k > nbits) {
2956 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
2957 }
Jethro Beekman66689272018-02-14 19:24:10 -08002958 X->p[0] |= 1;
2959
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002960 if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) {
2961 ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);
Jethro Beekman66689272018-02-14 19:24:10 -08002962
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002963 if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002964 goto cleanup;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002965 }
2966 } else {
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002967 /*
Tom Cosgrove5205c972022-07-28 06:12:08 +01002968 * A necessary condition for Y and X = 2Y + 1 to be prime
Jethro Beekman66689272018-02-14 19:24:10 -08002969 * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2970 * Make sure it is satisfied, while keeping X = 3 mod 4
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002971 */
Jethro Beekman66689272018-02-14 19:24:10 -08002972
2973 X->p[0] |= 2;
2974
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002975 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
2976 if (r == 0) {
2977 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
2978 } else if (r == 1) {
2979 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
2980 }
Jethro Beekman66689272018-02-14 19:24:10 -08002981
2982 /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002983 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
2984 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
Jethro Beekman66689272018-02-14 19:24:10 -08002985
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002986 while (1) {
Jethro Beekman66689272018-02-14 19:24:10 -08002987 /*
2988 * First, check small factors for X and Y
2989 * before doing Miller-Rabin on any of them
2990 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002991 if ((ret = mpi_check_small_factors(X)) == 0 &&
2992 (ret = mpi_check_small_factors(&Y)) == 0 &&
2993 (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))
2994 == 0 &&
2995 (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))
2996 == 0) {
Jethro Beekman66689272018-02-14 19:24:10 -08002997 goto cleanup;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002998 }
Jethro Beekman66689272018-02-14 19:24:10 -08002999
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003000 if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
Jethro Beekman66689272018-02-14 19:24:10 -08003001 goto cleanup;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003002 }
Jethro Beekman66689272018-02-14 19:24:10 -08003003
3004 /*
3005 * Next candidates. We want to preserve Y = (X-1) / 2 and
3006 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
3007 * so up Y by 6 and X by 12.
3008 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003009 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 12));
3010 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
Paul Bakker5121ce52009-01-03 21:22:43 +00003011 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003012 }
3013 }
3014
3015cleanup:
3016
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003017 mbedtls_mpi_free(&Y);
Paul Bakker5121ce52009-01-03 21:22:43 +00003018
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003019 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00003020}
3021
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003022#endif /* MBEDTLS_GENPRIME */
Paul Bakker5121ce52009-01-03 21:22:43 +00003023
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003024#if defined(MBEDTLS_SELF_TEST)
Paul Bakker5121ce52009-01-03 21:22:43 +00003025
Paul Bakker23986e52011-04-24 08:57:21 +00003026#define GCD_PAIR_COUNT 3
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003027
3028static const int gcd_pairs[GCD_PAIR_COUNT][3] =
3029{
3030 { 693, 609, 21 },
3031 { 1764, 868, 28 },
3032 { 768454923, 542167814, 1 }
3033};
3034
Paul Bakker5121ce52009-01-03 21:22:43 +00003035/*
3036 * Checkup routine
3037 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003038int mbedtls_mpi_self_test(int verbose)
Paul Bakker5121ce52009-01-03 21:22:43 +00003039{
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003040 int ret, i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003041 mbedtls_mpi A, E, N, X, Y, U, V;
Paul Bakker5121ce52009-01-03 21:22:43 +00003042
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003043 mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);
3044 mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);
Paul Bakker5121ce52009-01-03 21:22:43 +00003045
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003046 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
3047 "EFE021C2645FD1DC586E69184AF4A31E" \
3048 "D5F53E93B5F123FA41680867BA110131" \
3049 "944FE7952E2517337780CB0DB80E61AA" \
3050 "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
Paul Bakker5121ce52009-01-03 21:22:43 +00003051
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003052 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
3053 "B2E7EFD37075B9F03FF989C7C5051C20" \
3054 "34D2A323810251127E7BF8625A4F49A5" \
3055 "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
3056 "5B5C25763222FEFCCFC38B832366C29E"));
Paul Bakker5121ce52009-01-03 21:22:43 +00003057
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003058 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
3059 "0066A198186C18C10B2F5ED9B522752A" \
3060 "9830B69916E535C8F047518A889A43A5" \
3061 "94B6BED27A168D31D4A52F88925AA8F5"));
Paul Bakker5121ce52009-01-03 21:22:43 +00003062
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003063 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00003064
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003065 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
3066 "602AB7ECA597A3D6B56FF9829A5E8B85" \
3067 "9E857EA95A03512E2BAE7391688D264A" \
3068 "A5663B0341DB9CCFD2C4C5F421FEC814" \
3069 "8001B72E848A38CAE1C65F78E56ABDEF" \
3070 "E12D3C039B8A02D6BE593F0BBBDA56F1" \
3071 "ECF677152EF804370C1A305CAF3B5BF1" \
3072 "30879B56C61DE584A0F53A2447A51E"));
Paul Bakker5121ce52009-01-03 21:22:43 +00003073
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003074 if (verbose != 0) {
3075 mbedtls_printf(" MPI test #1 (mul_mpi): ");
3076 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003077
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003078 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
3079 if (verbose != 0) {
3080 mbedtls_printf("failed\n");
3081 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003082
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003083 ret = 1;
3084 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00003085 }
3086
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003087 if (verbose != 0) {
3088 mbedtls_printf("passed\n");
3089 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003090
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003091 MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00003092
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003093 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
3094 "256567336059E52CAE22925474705F39A94"));
Paul Bakker5121ce52009-01-03 21:22:43 +00003095
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003096 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
3097 "6613F26162223DF488E9CD48CC132C7A" \
3098 "0AC93C701B001B092E4E5B9F73BCD27B" \
3099 "9EE50D0657C77F374E903CDFA4C642"));
Paul Bakker5121ce52009-01-03 21:22:43 +00003100
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003101 if (verbose != 0) {
3102 mbedtls_printf(" MPI test #2 (div_mpi): ");
3103 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003104
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003105 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
3106 mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
3107 if (verbose != 0) {
3108 mbedtls_printf("failed\n");
3109 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003110
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003111 ret = 1;
3112 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00003113 }
3114
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003115 if (verbose != 0) {
3116 mbedtls_printf("passed\n");
3117 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003118
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003119 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
Paul Bakker5121ce52009-01-03 21:22:43 +00003120
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003121 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
3122 "36E139AEA55215609D2816998ED020BB" \
3123 "BD96C37890F65171D948E9BC7CBAA4D9" \
3124 "325D24D6A3C12710F10A09FA08AB87"));
Paul Bakker5121ce52009-01-03 21:22:43 +00003125
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003126 if (verbose != 0) {
3127 mbedtls_printf(" MPI test #3 (exp_mod): ");
3128 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003129
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003130 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
3131 if (verbose != 0) {
3132 mbedtls_printf("failed\n");
3133 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003134
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003135 ret = 1;
3136 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00003137 }
3138
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003139 if (verbose != 0) {
3140 mbedtls_printf("passed\n");
3141 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003142
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003143 MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00003144
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003145 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
3146 "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
3147 "C3DBA76456363A10869622EAC2DD84EC" \
3148 "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
Paul Bakker5121ce52009-01-03 21:22:43 +00003149
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003150 if (verbose != 0) {
3151 mbedtls_printf(" MPI test #4 (inv_mod): ");
3152 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003153
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003154 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
3155 if (verbose != 0) {
3156 mbedtls_printf("failed\n");
3157 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003158
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003159 ret = 1;
3160 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00003161 }
3162
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003163 if (verbose != 0) {
3164 mbedtls_printf("passed\n");
3165 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003166
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003167 if (verbose != 0) {
3168 mbedtls_printf(" MPI test #5 (simple gcd): ");
3169 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003170
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003171 for (i = 0; i < GCD_PAIR_COUNT; i++) {
3172 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
3173 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003174
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003175 MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003176
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003177 if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
3178 if (verbose != 0) {
3179 mbedtls_printf("failed at %d\n", i);
3180 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003181
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003182 ret = 1;
3183 goto cleanup;
3184 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003185 }
3186
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003187 if (verbose != 0) {
3188 mbedtls_printf("passed\n");
3189 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003190
Paul Bakker5121ce52009-01-03 21:22:43 +00003191cleanup:
3192
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003193 if (ret != 0 && verbose != 0) {
3194 mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
3195 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003196
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003197 mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);
3198 mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);
Paul Bakker5121ce52009-01-03 21:22:43 +00003199
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003200 if (verbose != 0) {
3201 mbedtls_printf("\n");
3202 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003203
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003204 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00003205}
3206
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003207#endif /* MBEDTLS_SELF_TEST */
Paul Bakker5121ce52009-01-03 21:22:43 +00003208
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003209#endif /* MBEDTLS_BIGNUM_C */