blob: 0e9ff196eb52b16de306df61589ee6b609e2c622 [file] [log] [blame]
Paul Bakker5121ce52009-01-03 21:22:43 +00001/*
2 * Multi-precision integer library
3 *
Bence Szépkúti1e148272020-08-07 13:07:28 +02004 * Copyright The Mbed TLS Contributors
Manuel Pégourié-Gonnard37ff1402015-09-04 14:21:07 +02005 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
Paul Bakker5121ce52009-01-03 21:22:43 +000018 */
Simon Butcher15b15d12015-11-26 19:35:03 +000019
Paul Bakker5121ce52009-01-03 21:22:43 +000020/*
Simon Butcher15b15d12015-11-26 19:35:03 +000021 * The following sources were referenced in the design of this Multi-precision
22 * Integer library:
Paul Bakker5121ce52009-01-03 21:22:43 +000023 *
Simon Butcher15b15d12015-11-26 19:35:03 +000024 * [1] Handbook of Applied Cryptography - 1997
25 * Menezes, van Oorschot and Vanstone
26 *
27 * [2] Multi-Precision Math
28 * Tom St Denis
29 * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
30 *
31 * [3] GNU Multi-Precision Arithmetic Library
32 * https://gmplib.org/manual/index.html
33 *
Simon Butcherf5ba0452015-12-27 23:01:55 +000034 */
Paul Bakker5121ce52009-01-03 21:22:43 +000035
Gilles Peskinedb09ef62020-06-03 01:43:33 +020036#include "common.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000037
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020038#if defined(MBEDTLS_BIGNUM_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000039
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000040#include "mbedtls/bignum.h"
41#include "mbedtls/bn_mul.h"
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050042#include "mbedtls/platform_util.h"
Janos Follath24eed8d2019-11-22 13:21:35 +000043#include "mbedtls/error.h"
Gabor Mezeic0ae1cf2021-10-20 12:09:35 +020044#include "constant_time_internal.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000045
Tom Cosgrove58efe612021-11-15 09:59:53 +000046#include <limits.h>
Rich Evans00ab4702015-02-06 13:43:58 +000047#include <string.h>
48
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000049#include "mbedtls/platform.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020050
Hanno Becker73d7d792018-12-11 10:35:51 +000051#define MPI_VALIDATE_RET( cond ) \
52 MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
53#define MPI_VALIDATE( cond ) \
54 MBEDTLS_INTERNAL_VALIDATE( cond )
55
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020056#define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
Paul Bakker5121ce52009-01-03 21:22:43 +000057#define biL (ciL << 3) /* bits in limb */
58#define biH (ciL << 2) /* half limb size */
59
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +010060#define MPI_SIZE_T_MAX ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
61
Paul Bakker5121ce52009-01-03 21:22:43 +000062/*
63 * Convert between bits/chars and number of limbs
Manuel Pégourié-Gonnard58fb4952015-09-28 13:48:04 +020064 * Divide first in order to avoid potential overflows
Paul Bakker5121ce52009-01-03 21:22:43 +000065 */
Manuel Pégourié-Gonnard58fb4952015-09-28 13:48:04 +020066#define BITS_TO_LIMBS(i) ( (i) / biL + ( (i) % biL != 0 ) )
67#define CHARS_TO_LIMBS(i) ( (i) / ciL + ( (i) % ciL != 0 ) )
Paul Bakker5121ce52009-01-03 21:22:43 +000068
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050069/* Implementation that should never be optimized out by the compiler */
Andres Amaya Garcia6698d2f2018-04-24 08:39:07 -050070static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n )
71{
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050072 mbedtls_platform_zeroize( v, ciL * n );
73}
74
Paul Bakker5121ce52009-01-03 21:22:43 +000075/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000076 * Initialize one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000077 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020078void mbedtls_mpi_init( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000079{
Hanno Becker73d7d792018-12-11 10:35:51 +000080 MPI_VALIDATE( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +000081
Paul Bakker6c591fa2011-05-05 11:49:20 +000082 X->s = 1;
83 X->n = 0;
84 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000085}
86
87/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000088 * Unallocate one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000089 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020090void mbedtls_mpi_free( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000091{
Paul Bakker6c591fa2011-05-05 11:49:20 +000092 if( X == NULL )
93 return;
Paul Bakker5121ce52009-01-03 21:22:43 +000094
Paul Bakker6c591fa2011-05-05 11:49:20 +000095 if( X->p != NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +000096 {
Alexey Skalozube17a8da2016-01-13 17:19:33 +020097 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020098 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +000099 }
100
Paul Bakker6c591fa2011-05-05 11:49:20 +0000101 X->s = 1;
102 X->n = 0;
103 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +0000104}
105
106/*
107 * Enlarge to the specified number of limbs
108 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200109int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs )
Paul Bakker5121ce52009-01-03 21:22:43 +0000110{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200111 mbedtls_mpi_uint *p;
Hanno Becker73d7d792018-12-11 10:35:51 +0000112 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000113
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200114 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200115 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakkerf9688572011-05-05 10:00:45 +0000116
Paul Bakker5121ce52009-01-03 21:22:43 +0000117 if( X->n < nblimbs )
118 {
Simon Butcher29176892016-05-20 00:19:09 +0100119 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200120 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakker5121ce52009-01-03 21:22:43 +0000121
Paul Bakker5121ce52009-01-03 21:22:43 +0000122 if( X->p != NULL )
123 {
124 memcpy( p, X->p, X->n * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200125 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200126 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +0000127 }
128
129 X->n = nblimbs;
130 X->p = p;
131 }
132
133 return( 0 );
134}
135
136/*
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100137 * Resize down as much as possible,
138 * while keeping at least the specified number of limbs
139 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200140int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100141{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200142 mbedtls_mpi_uint *p;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100143 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000144 MPI_VALIDATE_RET( X != NULL );
145
146 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
147 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100148
Gilles Peskinee2f563e2020-01-20 21:17:43 +0100149 /* Actually resize up if there are currently fewer than nblimbs limbs. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100150 if( X->n <= nblimbs )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200151 return( mbedtls_mpi_grow( X, nblimbs ) );
Gilles Peskine322752b2020-01-21 13:59:51 +0100152 /* After this point, then X->n > nblimbs and in particular X->n > 0. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100153
154 for( i = X->n - 1; i > 0; i-- )
155 if( X->p[i] != 0 )
156 break;
157 i++;
158
159 if( i < nblimbs )
160 i = nblimbs;
161
Simon Butcher29176892016-05-20 00:19:09 +0100162 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200163 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100164
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100165 if( X->p != NULL )
166 {
167 memcpy( p, X->p, i * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200168 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200169 mbedtls_free( X->p );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100170 }
171
172 X->n = i;
173 X->p = p;
174
175 return( 0 );
176}
177
Gilles Peskine3130ce22021-06-02 22:17:52 +0200178/* Resize X to have exactly n limbs and set it to 0. */
179static int mbedtls_mpi_resize_clear( mbedtls_mpi *X, size_t limbs )
180{
181 if( limbs == 0 )
182 {
183 mbedtls_mpi_free( X );
184 return( 0 );
185 }
186 else if( X->n == limbs )
187 {
188 memset( X->p, 0, limbs * ciL );
189 X->s = 1;
190 return( 0 );
191 }
192 else
193 {
194 mbedtls_mpi_free( X );
195 return( mbedtls_mpi_grow( X, limbs ) );
196 }
197}
198
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100199/*
Gilles Peskinef643e8e2021-06-08 23:17:42 +0200200 * Copy the contents of Y into X.
201 *
202 * This function is not constant-time. Leading zeros in Y may be removed.
203 *
204 * Ensure that X does not shrink. This is not guaranteed by the public API,
205 * but some code in the bignum module relies on this property, for example
206 * in mbedtls_mpi_exp_mod().
Paul Bakker5121ce52009-01-03 21:22:43 +0000207 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200208int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000209{
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100210 int ret = 0;
Paul Bakker23986e52011-04-24 08:57:21 +0000211 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000212 MPI_VALIDATE_RET( X != NULL );
213 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000214
215 if( X == Y )
216 return( 0 );
217
Gilles Peskinedb420622020-01-20 21:12:50 +0100218 if( Y->n == 0 )
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200219 {
Gilles Peskinef643e8e2021-06-08 23:17:42 +0200220 if( X->n != 0 )
221 {
222 X->s = 1;
223 memset( X->p, 0, X->n * ciL );
224 }
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200225 return( 0 );
226 }
227
Paul Bakker5121ce52009-01-03 21:22:43 +0000228 for( i = Y->n - 1; i > 0; i-- )
229 if( Y->p[i] != 0 )
230 break;
231 i++;
232
233 X->s = Y->s;
234
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100235 if( X->n < i )
236 {
237 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
238 }
239 else
240 {
241 memset( X->p + i, 0, ( X->n - i ) * ciL );
242 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000243
Paul Bakker5121ce52009-01-03 21:22:43 +0000244 memcpy( X->p, Y->p, i * ciL );
245
246cleanup:
247
248 return( ret );
249}
250
251/*
252 * Swap the contents of X and Y
253 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200254void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000255{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200256 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000257 MPI_VALIDATE( X != NULL );
258 MPI_VALIDATE( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000259
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200260 memcpy( &T, X, sizeof( mbedtls_mpi ) );
261 memcpy( X, Y, sizeof( mbedtls_mpi ) );
262 memcpy( Y, &T, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000263}
264
265/*
266 * Set value from integer
267 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200268int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +0000269{
Janos Follath24eed8d2019-11-22 13:21:35 +0000270 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +0000271 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000272
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200273 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000274 memset( X->p, 0, X->n * ciL );
275
276 X->p[0] = ( z < 0 ) ? -z : z;
277 X->s = ( z < 0 ) ? -1 : 1;
278
279cleanup:
280
281 return( ret );
282}
283
284/*
Paul Bakker2f5947e2011-05-18 15:47:11 +0000285 * Get a specific bit
286 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200287int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000288{
Hanno Becker73d7d792018-12-11 10:35:51 +0000289 MPI_VALIDATE_RET( X != NULL );
290
Paul Bakker2f5947e2011-05-18 15:47:11 +0000291 if( X->n * biL <= pos )
292 return( 0 );
293
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200294 return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000295}
296
Gilles Peskine11cdb052018-11-20 16:47:47 +0100297/* Get a specific byte, without range checks. */
298#define GET_BYTE( X, i ) \
299 ( ( ( X )->p[( i ) / ciL] >> ( ( ( i ) % ciL ) * 8 ) ) & 0xff )
300
Paul Bakker2f5947e2011-05-18 15:47:11 +0000301/*
302 * Set a bit to a specific value of 0 or 1
303 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200304int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000305{
306 int ret = 0;
307 size_t off = pos / biL;
308 size_t idx = pos % biL;
Hanno Becker73d7d792018-12-11 10:35:51 +0000309 MPI_VALIDATE_RET( X != NULL );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000310
311 if( val != 0 && val != 1 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200312 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker9af723c2014-05-01 13:03:14 +0200313
Paul Bakker2f5947e2011-05-18 15:47:11 +0000314 if( X->n * biL <= pos )
315 {
316 if( val == 0 )
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200317 return( 0 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000318
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200319 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000320 }
321
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200322 X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );
323 X->p[off] |= (mbedtls_mpi_uint) val << idx;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000324
325cleanup:
Paul Bakker9af723c2014-05-01 13:03:14 +0200326
Paul Bakker2f5947e2011-05-18 15:47:11 +0000327 return( ret );
328}
329
330/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200331 * Return the number of less significant zero-bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000332 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200333size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000334{
Paul Bakker23986e52011-04-24 08:57:21 +0000335 size_t i, j, count = 0;
Hanno Beckerf25ee7f2018-12-19 16:51:02 +0000336 MBEDTLS_INTERNAL_VALIDATE_RET( X != NULL, 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000337
338 for( i = 0; i < X->n; i++ )
Paul Bakkerf9688572011-05-05 10:00:45 +0000339 for( j = 0; j < biL; j++, count++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000340 if( ( ( X->p[i] >> j ) & 1 ) != 0 )
341 return( count );
342
343 return( 0 );
344}
345
346/*
Simon Butcher15b15d12015-11-26 19:35:03 +0000347 * Count leading zero bits in a given integer
348 */
349static size_t mbedtls_clz( const mbedtls_mpi_uint x )
350{
351 size_t j;
Manuel Pégourié-Gonnarde3e8edf2015-12-01 09:31:52 +0100352 mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
Simon Butcher15b15d12015-11-26 19:35:03 +0000353
354 for( j = 0; j < biL; j++ )
355 {
356 if( x & mask ) break;
357
358 mask >>= 1;
359 }
360
361 return j;
362}
363
364/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200365 * Return the number of bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000366 */
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200367size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000368{
Paul Bakker23986e52011-04-24 08:57:21 +0000369 size_t i, j;
Paul Bakker5121ce52009-01-03 21:22:43 +0000370
Manuel Pégourié-Gonnard770b5e12015-04-29 17:02:01 +0200371 if( X->n == 0 )
372 return( 0 );
373
Paul Bakker5121ce52009-01-03 21:22:43 +0000374 for( i = X->n - 1; i > 0; i-- )
375 if( X->p[i] != 0 )
376 break;
377
Simon Butcher15b15d12015-11-26 19:35:03 +0000378 j = biL - mbedtls_clz( X->p[i] );
Paul Bakker5121ce52009-01-03 21:22:43 +0000379
Paul Bakker23986e52011-04-24 08:57:21 +0000380 return( ( i * biL ) + j );
Paul Bakker5121ce52009-01-03 21:22:43 +0000381}
382
383/*
384 * Return the total size in bytes
385 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200386size_t mbedtls_mpi_size( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000387{
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200388 return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000389}
390
391/*
392 * Convert an ASCII character to digit value
393 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200394static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c )
Paul Bakker5121ce52009-01-03 21:22:43 +0000395{
396 *d = 255;
397
398 if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
399 if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
400 if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
401
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200402 if( *d >= (mbedtls_mpi_uint) radix )
403 return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );
Paul Bakker5121ce52009-01-03 21:22:43 +0000404
405 return( 0 );
406}
407
408/*
409 * Import from an ASCII string
410 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200411int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000412{
Janos Follath24eed8d2019-11-22 13:21:35 +0000413 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000414 size_t i, j, slen, n;
Gilles Peskine80f56732021-04-03 18:26:13 +0200415 int sign = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200416 mbedtls_mpi_uint d;
417 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000418 MPI_VALIDATE_RET( X != NULL );
419 MPI_VALIDATE_RET( s != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000420
421 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000422 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000423
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200424 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000425
Gilles Peskined4876132021-06-08 18:32:34 +0200426 if( s[0] == 0 )
427 {
428 mbedtls_mpi_free( X );
429 return( 0 );
430 }
431
Gilles Peskine80f56732021-04-03 18:26:13 +0200432 if( s[0] == '-' )
433 {
434 ++s;
435 sign = -1;
436 }
437
Paul Bakkerff60ee62010-03-16 21:09:09 +0000438 slen = strlen( s );
439
Paul Bakker5121ce52009-01-03 21:22:43 +0000440 if( radix == 16 )
441 {
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +0100442 if( slen > MPI_SIZE_T_MAX >> 2 )
Manuel Pégourié-Gonnard58fb4952015-09-28 13:48:04 +0200443 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
444
Paul Bakkerff60ee62010-03-16 21:09:09 +0000445 n = BITS_TO_LIMBS( slen << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000446
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200447 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );
448 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000449
Paul Bakker23986e52011-04-24 08:57:21 +0000450 for( i = slen, j = 0; i > 0; i--, j++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000451 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200452 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
Paul Bakker66d5d072014-06-17 16:39:18 +0200453 X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000454 }
455 }
456 else
457 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200458 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000459
Paul Bakkerff60ee62010-03-16 21:09:09 +0000460 for( i = 0; i < slen; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000461 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200462 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
463 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );
Gilles Peskine80f56732021-04-03 18:26:13 +0200464 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000465 }
466 }
467
Gilles Peskine80f56732021-04-03 18:26:13 +0200468 if( sign < 0 && mbedtls_mpi_bitlen( X ) != 0 )
469 X->s = -1;
470
Paul Bakker5121ce52009-01-03 21:22:43 +0000471cleanup:
472
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200473 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000474
475 return( ret );
476}
477
478/*
Ron Eldora16fa292018-11-20 14:07:01 +0200479 * Helper to write the digits high-order first.
Paul Bakker5121ce52009-01-03 21:22:43 +0000480 */
Ron Eldora16fa292018-11-20 14:07:01 +0200481static int mpi_write_hlp( mbedtls_mpi *X, int radix,
482 char **p, const size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000483{
Janos Follath24eed8d2019-11-22 13:21:35 +0000484 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200485 mbedtls_mpi_uint r;
Ron Eldora16fa292018-11-20 14:07:01 +0200486 size_t length = 0;
487 char *p_end = *p + buflen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000488
Ron Eldora16fa292018-11-20 14:07:01 +0200489 do
490 {
491 if( length >= buflen )
492 {
493 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
494 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000495
Ron Eldora16fa292018-11-20 14:07:01 +0200496 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );
497 MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );
498 /*
499 * Write the residue in the current position, as an ASCII character.
500 */
501 if( r < 0xA )
502 *(--p_end) = (char)( '0' + r );
503 else
504 *(--p_end) = (char)( 'A' + ( r - 0xA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000505
Ron Eldora16fa292018-11-20 14:07:01 +0200506 length++;
507 } while( mbedtls_mpi_cmp_int( X, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000508
Ron Eldora16fa292018-11-20 14:07:01 +0200509 memmove( *p, p_end, length );
510 *p += length;
Paul Bakker5121ce52009-01-03 21:22:43 +0000511
512cleanup:
513
514 return( ret );
515}
516
517/*
518 * Export into an ASCII string
519 */
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100520int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,
521 char *buf, size_t buflen, size_t *olen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000522{
Paul Bakker23986e52011-04-24 08:57:21 +0000523 int ret = 0;
524 size_t n;
Paul Bakker5121ce52009-01-03 21:22:43 +0000525 char *p;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200526 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000527 MPI_VALIDATE_RET( X != NULL );
528 MPI_VALIDATE_RET( olen != NULL );
529 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000530
531 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000532 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000533
Hanno Becker23cfea02019-02-04 09:45:07 +0000534 n = mbedtls_mpi_bitlen( X ); /* Number of bits necessary to present `n`. */
535 if( radix >= 4 ) n >>= 1; /* Number of 4-adic digits necessary to present
536 * `n`. If radix > 4, this might be a strict
537 * overapproximation of the number of
538 * radix-adic digits needed to present `n`. */
539 if( radix >= 16 ) n >>= 1; /* Number of hexadecimal digits necessary to
540 * present `n`. */
541
Janos Follath80470622019-03-06 13:43:02 +0000542 n += 1; /* Terminating null byte */
Hanno Becker23cfea02019-02-04 09:45:07 +0000543 n += 1; /* Compensate for the divisions above, which round down `n`
544 * in case it's not even. */
545 n += 1; /* Potential '-'-sign. */
546 n += ( n & 1 ); /* Make n even to have enough space for hexadecimal writing,
547 * which always uses an even number of hex-digits. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000548
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100549 if( buflen < n )
Paul Bakker5121ce52009-01-03 21:22:43 +0000550 {
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100551 *olen = n;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200552 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000553 }
554
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100555 p = buf;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200556 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000557
558 if( X->s == -1 )
Hanno Beckerc983c812019-02-01 16:41:30 +0000559 {
Paul Bakker5121ce52009-01-03 21:22:43 +0000560 *p++ = '-';
Hanno Beckerc983c812019-02-01 16:41:30 +0000561 buflen--;
562 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000563
564 if( radix == 16 )
565 {
Paul Bakker23986e52011-04-24 08:57:21 +0000566 int c;
567 size_t i, j, k;
Paul Bakker5121ce52009-01-03 21:22:43 +0000568
Paul Bakker23986e52011-04-24 08:57:21 +0000569 for( i = X->n, k = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000570 {
Paul Bakker23986e52011-04-24 08:57:21 +0000571 for( j = ciL; j > 0; j-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000572 {
Paul Bakker23986e52011-04-24 08:57:21 +0000573 c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
Paul Bakker5121ce52009-01-03 21:22:43 +0000574
Paul Bakker6c343d72014-07-10 14:36:19 +0200575 if( c == 0 && k == 0 && ( i + j ) != 2 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000576 continue;
577
Paul Bakker98fe5ea2012-10-24 11:17:48 +0000578 *(p++) = "0123456789ABCDEF" [c / 16];
Paul Bakkerd2c167e2012-10-30 07:49:19 +0000579 *(p++) = "0123456789ABCDEF" [c % 16];
Paul Bakker5121ce52009-01-03 21:22:43 +0000580 k = 1;
581 }
582 }
583 }
584 else
585 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200586 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000587
588 if( T.s == -1 )
589 T.s = 1;
590
Ron Eldora16fa292018-11-20 14:07:01 +0200591 MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000592 }
593
594 *p++ = '\0';
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100595 *olen = p - buf;
Paul Bakker5121ce52009-01-03 21:22:43 +0000596
597cleanup:
598
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200599 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000600
601 return( ret );
602}
603
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200604#if defined(MBEDTLS_FS_IO)
Paul Bakker5121ce52009-01-03 21:22:43 +0000605/*
606 * Read X from an opened file
607 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200608int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin )
Paul Bakker5121ce52009-01-03 21:22:43 +0000609{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200610 mbedtls_mpi_uint d;
Paul Bakker23986e52011-04-24 08:57:21 +0000611 size_t slen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000612 char *p;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000613 /*
Paul Bakkercb37aa52011-11-30 16:00:20 +0000614 * Buffer should have space for (short) label and decimal formatted MPI,
615 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000616 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200617 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Paul Bakker5121ce52009-01-03 21:22:43 +0000618
Hanno Becker73d7d792018-12-11 10:35:51 +0000619 MPI_VALIDATE_RET( X != NULL );
620 MPI_VALIDATE_RET( fin != NULL );
621
622 if( radix < 2 || radix > 16 )
623 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
624
Paul Bakker5121ce52009-01-03 21:22:43 +0000625 memset( s, 0, sizeof( s ) );
626 if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200627 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000628
629 slen = strlen( s );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000630 if( slen == sizeof( s ) - 2 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200631 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000632
Hanno Beckerb2034b72017-04-26 11:46:46 +0100633 if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
634 if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
Paul Bakker5121ce52009-01-03 21:22:43 +0000635
636 p = s + slen;
Hanno Beckerb2034b72017-04-26 11:46:46 +0100637 while( p-- > s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000638 if( mpi_get_digit( &d, radix, *p ) != 0 )
639 break;
640
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200641 return( mbedtls_mpi_read_string( X, radix, p + 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000642}
643
644/*
645 * Write X into an opened file (or stdout if fout == NULL)
646 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200647int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout )
Paul Bakker5121ce52009-01-03 21:22:43 +0000648{
Janos Follath24eed8d2019-11-22 13:21:35 +0000649 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000650 size_t n, slen, plen;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000651 /*
Paul Bakker5531c6d2012-09-26 19:20:46 +0000652 * Buffer should have space for (short) label and decimal formatted MPI,
653 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000654 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200655 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Hanno Becker73d7d792018-12-11 10:35:51 +0000656 MPI_VALIDATE_RET( X != NULL );
657
658 if( radix < 2 || radix > 16 )
659 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000660
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100661 memset( s, 0, sizeof( s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000662
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100663 MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000664
665 if( p == NULL ) p = "";
666
667 plen = strlen( p );
668 slen = strlen( s );
669 s[slen++] = '\r';
670 s[slen++] = '\n';
671
672 if( fout != NULL )
673 {
674 if( fwrite( p, 1, plen, fout ) != plen ||
675 fwrite( s, 1, slen, fout ) != slen )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200676 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000677 }
678 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200679 mbedtls_printf( "%s%s", p, s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000680
681cleanup:
682
683 return( ret );
684}
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200685#endif /* MBEDTLS_FS_IO */
Paul Bakker5121ce52009-01-03 21:22:43 +0000686
Hanno Beckerda1655a2017-10-18 14:21:44 +0100687
688/* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
689 * into the storage form used by mbedtls_mpi. */
Hanno Beckerf8720072018-11-08 11:53:49 +0000690
691static mbedtls_mpi_uint mpi_uint_bigendian_to_host_c( mbedtls_mpi_uint x )
692{
693 uint8_t i;
Hanno Becker031d6332019-05-01 17:09:11 +0100694 unsigned char *x_ptr;
Hanno Beckerf8720072018-11-08 11:53:49 +0000695 mbedtls_mpi_uint tmp = 0;
Hanno Becker031d6332019-05-01 17:09:11 +0100696
697 for( i = 0, x_ptr = (unsigned char*) &x; i < ciL; i++, x_ptr++ )
698 {
699 tmp <<= CHAR_BIT;
700 tmp |= (mbedtls_mpi_uint) *x_ptr;
701 }
702
Hanno Beckerf8720072018-11-08 11:53:49 +0000703 return( tmp );
704}
705
706static mbedtls_mpi_uint mpi_uint_bigendian_to_host( mbedtls_mpi_uint x )
707{
708#if defined(__BYTE_ORDER__)
709
710/* Nothing to do on bigendian systems. */
711#if ( __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ )
712 return( x );
713#endif /* __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ */
714
715#if ( __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ )
716
717/* For GCC and Clang, have builtins for byte swapping. */
Hanno Becker9f6d16a2019-01-02 17:15:06 +0000718#if defined(__GNUC__) && defined(__GNUC_PREREQ)
719#if __GNUC_PREREQ(4,3)
Hanno Beckerf8720072018-11-08 11:53:49 +0000720#define have_bswap
721#endif
Hanno Becker9f6d16a2019-01-02 17:15:06 +0000722#endif
723
724#if defined(__clang__) && defined(__has_builtin)
725#if __has_builtin(__builtin_bswap32) && \
726 __has_builtin(__builtin_bswap64)
727#define have_bswap
728#endif
729#endif
730
Hanno Beckerf8720072018-11-08 11:53:49 +0000731#if defined(have_bswap)
732 /* The compiler is hopefully able to statically evaluate this! */
733 switch( sizeof(mbedtls_mpi_uint) )
734 {
735 case 4:
736 return( __builtin_bswap32(x) );
737 case 8:
738 return( __builtin_bswap64(x) );
739 }
740#endif
741#endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */
742#endif /* __BYTE_ORDER__ */
743
744 /* Fall back to C-based reordering if we don't know the byte order
745 * or we couldn't use a compiler-specific builtin. */
746 return( mpi_uint_bigendian_to_host_c( x ) );
747}
748
Hanno Becker2be8a552018-10-25 12:40:09 +0100749static void mpi_bigendian_to_host( mbedtls_mpi_uint * const p, size_t limbs )
Hanno Beckerda1655a2017-10-18 14:21:44 +0100750{
Hanno Beckerda1655a2017-10-18 14:21:44 +0100751 mbedtls_mpi_uint *cur_limb_left;
752 mbedtls_mpi_uint *cur_limb_right;
Hanno Becker2be8a552018-10-25 12:40:09 +0100753 if( limbs == 0 )
754 return;
Hanno Beckerda1655a2017-10-18 14:21:44 +0100755
756 /*
757 * Traverse limbs and
758 * - adapt byte-order in each limb
759 * - swap the limbs themselves.
760 * For that, simultaneously traverse the limbs from left to right
761 * and from right to left, as long as the left index is not bigger
762 * than the right index (it's not a problem if limbs is odd and the
763 * indices coincide in the last iteration).
764 */
Hanno Beckerda1655a2017-10-18 14:21:44 +0100765 for( cur_limb_left = p, cur_limb_right = p + ( limbs - 1 );
766 cur_limb_left <= cur_limb_right;
767 cur_limb_left++, cur_limb_right-- )
768 {
Hanno Beckerf8720072018-11-08 11:53:49 +0000769 mbedtls_mpi_uint tmp;
770 /* Note that if cur_limb_left == cur_limb_right,
771 * this code effectively swaps the bytes only once. */
772 tmp = mpi_uint_bigendian_to_host( *cur_limb_left );
773 *cur_limb_left = mpi_uint_bigendian_to_host( *cur_limb_right );
774 *cur_limb_right = tmp;
Hanno Beckerda1655a2017-10-18 14:21:44 +0100775 }
Hanno Beckerda1655a2017-10-18 14:21:44 +0100776}
777
Paul Bakker5121ce52009-01-03 21:22:43 +0000778/*
Janos Follatha778a942019-02-13 10:28:28 +0000779 * Import X from unsigned binary data, little endian
780 */
781int mbedtls_mpi_read_binary_le( mbedtls_mpi *X,
782 const unsigned char *buf, size_t buflen )
783{
Janos Follath24eed8d2019-11-22 13:21:35 +0000784 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follatha778a942019-02-13 10:28:28 +0000785 size_t i;
786 size_t const limbs = CHARS_TO_LIMBS( buflen );
787
788 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine3130ce22021-06-02 22:17:52 +0200789 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Janos Follatha778a942019-02-13 10:28:28 +0000790
791 for( i = 0; i < buflen; i++ )
792 X->p[i / ciL] |= ((mbedtls_mpi_uint) buf[i]) << ((i % ciL) << 3);
793
794cleanup:
795
Janos Follath171a7ef2019-02-15 16:17:45 +0000796 /*
797 * This function is also used to import keys. However, wiping the buffers
798 * upon failure is not necessary because failure only can happen before any
799 * input is copied.
800 */
Janos Follatha778a942019-02-13 10:28:28 +0000801 return( ret );
802}
803
804/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000805 * Import X from unsigned binary data, big endian
806 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200807int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000808{
Janos Follath24eed8d2019-11-22 13:21:35 +0000809 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Beckerda1655a2017-10-18 14:21:44 +0100810 size_t const limbs = CHARS_TO_LIMBS( buflen );
811 size_t const overhead = ( limbs * ciL ) - buflen;
812 unsigned char *Xp;
Paul Bakker5121ce52009-01-03 21:22:43 +0000813
Hanno Becker8ce11a32018-12-19 16:18:52 +0000814 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +0000815 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
816
Hanno Becker073c1992017-10-17 15:17:27 +0100817 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine3130ce22021-06-02 22:17:52 +0200818 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000819
Gilles Peskine3130ce22021-06-02 22:17:52 +0200820 /* Avoid calling `memcpy` with NULL source or destination argument,
Hanno Becker0e810b92019-01-03 17:13:11 +0000821 * even if buflen is 0. */
Gilles Peskine3130ce22021-06-02 22:17:52 +0200822 if( buflen != 0 )
Hanno Becker0e810b92019-01-03 17:13:11 +0000823 {
824 Xp = (unsigned char*) X->p;
825 memcpy( Xp + overhead, buf, buflen );
Hanno Beckerda1655a2017-10-18 14:21:44 +0100826
Hanno Becker0e810b92019-01-03 17:13:11 +0000827 mpi_bigendian_to_host( X->p, limbs );
828 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000829
830cleanup:
831
Janos Follath171a7ef2019-02-15 16:17:45 +0000832 /*
833 * This function is also used to import keys. However, wiping the buffers
834 * upon failure is not necessary because failure only can happen before any
835 * input is copied.
836 */
Paul Bakker5121ce52009-01-03 21:22:43 +0000837 return( ret );
838}
839
840/*
Janos Follathe344d0f2019-02-19 16:17:40 +0000841 * Export X into unsigned binary data, little endian
842 */
843int mbedtls_mpi_write_binary_le( const mbedtls_mpi *X,
844 unsigned char *buf, size_t buflen )
845{
846 size_t stored_bytes = X->n * ciL;
847 size_t bytes_to_copy;
848 size_t i;
849
850 if( stored_bytes < buflen )
851 {
852 bytes_to_copy = stored_bytes;
853 }
854 else
855 {
856 bytes_to_copy = buflen;
857
858 /* The output buffer is smaller than the allocated size of X.
859 * However X may fit if its leading bytes are zero. */
860 for( i = bytes_to_copy; i < stored_bytes; i++ )
861 {
862 if( GET_BYTE( X, i ) != 0 )
863 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
864 }
865 }
866
867 for( i = 0; i < bytes_to_copy; i++ )
868 buf[i] = GET_BYTE( X, i );
869
870 if( stored_bytes < buflen )
871 {
872 /* Write trailing 0 bytes */
873 memset( buf + stored_bytes, 0, buflen - stored_bytes );
874 }
875
876 return( 0 );
877}
878
879/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000880 * Export X into unsigned binary data, big endian
881 */
Gilles Peskine11cdb052018-11-20 16:47:47 +0100882int mbedtls_mpi_write_binary( const mbedtls_mpi *X,
883 unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000884{
Hanno Becker73d7d792018-12-11 10:35:51 +0000885 size_t stored_bytes;
Gilles Peskine11cdb052018-11-20 16:47:47 +0100886 size_t bytes_to_copy;
887 unsigned char *p;
888 size_t i;
Paul Bakker5121ce52009-01-03 21:22:43 +0000889
Hanno Becker73d7d792018-12-11 10:35:51 +0000890 MPI_VALIDATE_RET( X != NULL );
891 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
892
893 stored_bytes = X->n * ciL;
894
Gilles Peskine11cdb052018-11-20 16:47:47 +0100895 if( stored_bytes < buflen )
896 {
897 /* There is enough space in the output buffer. Write initial
898 * null bytes and record the position at which to start
899 * writing the significant bytes. In this case, the execution
900 * trace of this function does not depend on the value of the
901 * number. */
902 bytes_to_copy = stored_bytes;
903 p = buf + buflen - stored_bytes;
904 memset( buf, 0, buflen - stored_bytes );
905 }
906 else
907 {
908 /* The output buffer is smaller than the allocated size of X.
909 * However X may fit if its leading bytes are zero. */
910 bytes_to_copy = buflen;
911 p = buf;
912 for( i = bytes_to_copy; i < stored_bytes; i++ )
913 {
914 if( GET_BYTE( X, i ) != 0 )
915 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
916 }
917 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000918
Gilles Peskine11cdb052018-11-20 16:47:47 +0100919 for( i = 0; i < bytes_to_copy; i++ )
920 p[bytes_to_copy - i - 1] = GET_BYTE( X, i );
Paul Bakker5121ce52009-01-03 21:22:43 +0000921
922 return( 0 );
923}
924
925/*
926 * Left-shift: X <<= count
927 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200928int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000929{
Janos Follath24eed8d2019-11-22 13:21:35 +0000930 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000931 size_t i, v0, t1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200932 mbedtls_mpi_uint r0 = 0, r1;
Hanno Becker73d7d792018-12-11 10:35:51 +0000933 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000934
935 v0 = count / (biL );
936 t1 = count & (biL - 1);
937
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200938 i = mbedtls_mpi_bitlen( X ) + count;
Paul Bakker5121ce52009-01-03 21:22:43 +0000939
Paul Bakkerf9688572011-05-05 10:00:45 +0000940 if( X->n * biL < i )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200941 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000942
943 ret = 0;
944
945 /*
946 * shift by count / limb_size
947 */
948 if( v0 > 0 )
949 {
Paul Bakker23986e52011-04-24 08:57:21 +0000950 for( i = X->n; i > v0; i-- )
951 X->p[i - 1] = X->p[i - v0 - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +0000952
Paul Bakker23986e52011-04-24 08:57:21 +0000953 for( ; i > 0; i-- )
954 X->p[i - 1] = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000955 }
956
957 /*
958 * shift by count % limb_size
959 */
960 if( t1 > 0 )
961 {
962 for( i = v0; i < X->n; i++ )
963 {
964 r1 = X->p[i] >> (biL - t1);
965 X->p[i] <<= t1;
966 X->p[i] |= r0;
967 r0 = r1;
968 }
969 }
970
971cleanup:
972
973 return( ret );
974}
975
976/*
977 * Right-shift: X >>= count
978 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200979int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000980{
Paul Bakker23986e52011-04-24 08:57:21 +0000981 size_t i, v0, v1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200982 mbedtls_mpi_uint r0 = 0, r1;
Hanno Becker73d7d792018-12-11 10:35:51 +0000983 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000984
985 v0 = count / biL;
986 v1 = count & (biL - 1);
987
Manuel Pégourié-Gonnarde44ec102012-11-17 12:42:51 +0100988 if( v0 > X->n || ( v0 == X->n && v1 > 0 ) )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200989 return mbedtls_mpi_lset( X, 0 );
Manuel Pégourié-Gonnarde44ec102012-11-17 12:42:51 +0100990
Paul Bakker5121ce52009-01-03 21:22:43 +0000991 /*
992 * shift by count / limb_size
993 */
994 if( v0 > 0 )
995 {
996 for( i = 0; i < X->n - v0; i++ )
997 X->p[i] = X->p[i + v0];
998
999 for( ; i < X->n; i++ )
1000 X->p[i] = 0;
1001 }
1002
1003 /*
1004 * shift by count % limb_size
1005 */
1006 if( v1 > 0 )
1007 {
Paul Bakker23986e52011-04-24 08:57:21 +00001008 for( i = X->n; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001009 {
Paul Bakker23986e52011-04-24 08:57:21 +00001010 r1 = X->p[i - 1] << (biL - v1);
1011 X->p[i - 1] >>= v1;
1012 X->p[i - 1] |= r0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001013 r0 = r1;
1014 }
1015 }
1016
1017 return( 0 );
1018}
1019
1020/*
1021 * Compare unsigned values
1022 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001023int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +00001024{
Paul Bakker23986e52011-04-24 08:57:21 +00001025 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +00001026 MPI_VALIDATE_RET( X != NULL );
1027 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001028
Paul Bakker23986e52011-04-24 08:57:21 +00001029 for( i = X->n; i > 0; i-- )
1030 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001031 break;
1032
Paul Bakker23986e52011-04-24 08:57:21 +00001033 for( j = Y->n; j > 0; j-- )
1034 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001035 break;
1036
Paul Bakker23986e52011-04-24 08:57:21 +00001037 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001038 return( 0 );
1039
1040 if( i > j ) return( 1 );
1041 if( j > i ) return( -1 );
1042
Paul Bakker23986e52011-04-24 08:57:21 +00001043 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001044 {
Paul Bakker23986e52011-04-24 08:57:21 +00001045 if( X->p[i - 1] > Y->p[i - 1] ) return( 1 );
1046 if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001047 }
1048
1049 return( 0 );
1050}
1051
1052/*
1053 * Compare signed values
1054 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001055int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +00001056{
Paul Bakker23986e52011-04-24 08:57:21 +00001057 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +00001058 MPI_VALIDATE_RET( X != NULL );
1059 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001060
Paul Bakker23986e52011-04-24 08:57:21 +00001061 for( i = X->n; i > 0; i-- )
1062 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001063 break;
1064
Paul Bakker23986e52011-04-24 08:57:21 +00001065 for( j = Y->n; j > 0; j-- )
1066 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001067 break;
1068
Paul Bakker23986e52011-04-24 08:57:21 +00001069 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001070 return( 0 );
1071
1072 if( i > j ) return( X->s );
Paul Bakker0c8f73b2012-03-22 14:08:57 +00001073 if( j > i ) return( -Y->s );
Paul Bakker5121ce52009-01-03 21:22:43 +00001074
1075 if( X->s > 0 && Y->s < 0 ) return( 1 );
1076 if( Y->s > 0 && X->s < 0 ) return( -1 );
1077
Paul Bakker23986e52011-04-24 08:57:21 +00001078 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001079 {
Paul Bakker23986e52011-04-24 08:57:21 +00001080 if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );
1081 if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
Paul Bakker5121ce52009-01-03 21:22:43 +00001082 }
1083
1084 return( 0 );
1085}
1086
Janos Follathee6abce2019-09-05 14:47:19 +01001087/*
Paul Bakker5121ce52009-01-03 21:22:43 +00001088 * Compare signed values
1089 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001090int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +00001091{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001092 mbedtls_mpi Y;
1093 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001094 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001095
1096 *p = ( z < 0 ) ? -z : z;
1097 Y.s = ( z < 0 ) ? -1 : 1;
1098 Y.n = 1;
1099 Y.p = p;
1100
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001101 return( mbedtls_mpi_cmp_mpi( X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001102}
1103
1104/*
1105 * Unsigned addition: X = |A| + |B| (HAC 14.7)
1106 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001107int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001108{
Janos Follath24eed8d2019-11-22 13:21:35 +00001109 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001110 size_t i, j;
Janos Follath6c922682015-10-30 17:43:11 +01001111 mbedtls_mpi_uint *o, *p, c, tmp;
Hanno Becker73d7d792018-12-11 10:35:51 +00001112 MPI_VALIDATE_RET( X != NULL );
1113 MPI_VALIDATE_RET( A != NULL );
1114 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001115
1116 if( X == B )
1117 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001118 const mbedtls_mpi *T = A; A = X; B = T;
Paul Bakker5121ce52009-01-03 21:22:43 +00001119 }
1120
1121 if( X != A )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001122 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
Paul Bakker9af723c2014-05-01 13:03:14 +02001123
Paul Bakkerf7ca7b92009-06-20 10:31:06 +00001124 /*
1125 * X should always be positive as a result of unsigned additions.
1126 */
1127 X->s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001128
Paul Bakker23986e52011-04-24 08:57:21 +00001129 for( j = B->n; j > 0; j-- )
1130 if( B->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001131 break;
1132
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001133 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001134
1135 o = B->p; p = X->p; c = 0;
1136
Janos Follath6c922682015-10-30 17:43:11 +01001137 /*
1138 * tmp is used because it might happen that p == o
1139 */
Paul Bakker23986e52011-04-24 08:57:21 +00001140 for( i = 0; i < j; i++, o++, p++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00001141 {
Janos Follath6c922682015-10-30 17:43:11 +01001142 tmp= *o;
Paul Bakker5121ce52009-01-03 21:22:43 +00001143 *p += c; c = ( *p < c );
Janos Follath6c922682015-10-30 17:43:11 +01001144 *p += tmp; c += ( *p < tmp );
Paul Bakker5121ce52009-01-03 21:22:43 +00001145 }
1146
1147 while( c != 0 )
1148 {
1149 if( i >= X->n )
1150 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001151 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001152 p = X->p + i;
1153 }
1154
Paul Bakker2d319fd2012-09-16 21:34:26 +00001155 *p += c; c = ( *p < c ); i++; p++;
Paul Bakker5121ce52009-01-03 21:22:43 +00001156 }
1157
1158cleanup:
1159
1160 return( ret );
1161}
1162
Gilles Peskine09ec10a2020-06-09 10:39:38 +02001163/**
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001164 * Helper for mbedtls_mpi subtraction.
1165 *
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001166 * Calculate l - r where l and r have the same size.
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001167 * This function operates modulo (2^ciL)^n and returns the carry
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001168 * (1 if there was a wraparound, i.e. if `l < r`, and 0 otherwise).
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001169 *
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001170 * d may be aliased to l or r.
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001171 *
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001172 * \param n Number of limbs of \p d, \p l and \p r.
1173 * \param[out] d The result of the subtraction.
1174 * \param[in] l The left operand.
1175 * \param[in] r The right operand.
1176 *
1177 * \return 1 if `l < r`.
1178 * 0 if `l >= r`.
Paul Bakker5121ce52009-01-03 21:22:43 +00001179 */
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001180static mbedtls_mpi_uint mpi_sub_hlp( size_t n,
1181 mbedtls_mpi_uint *d,
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001182 const mbedtls_mpi_uint *l,
1183 const mbedtls_mpi_uint *r )
Paul Bakker5121ce52009-01-03 21:22:43 +00001184{
Paul Bakker23986e52011-04-24 08:57:21 +00001185 size_t i;
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001186 mbedtls_mpi_uint c = 0, t, z;
Paul Bakker5121ce52009-01-03 21:22:43 +00001187
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001188 for( i = 0; i < n; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00001189 {
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001190 z = ( l[i] < c ); t = l[i] - c;
1191 c = ( t < r[i] ) + z; d[i] = t - r[i];
Paul Bakker5121ce52009-01-03 21:22:43 +00001192 }
1193
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001194 return( c );
Paul Bakker5121ce52009-01-03 21:22:43 +00001195}
1196
1197/*
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001198 * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
Paul Bakker5121ce52009-01-03 21:22:43 +00001199 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001200int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001201{
Janos Follath24eed8d2019-11-22 13:21:35 +00001202 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001203 size_t n;
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001204 mbedtls_mpi_uint carry;
Hanno Becker73d7d792018-12-11 10:35:51 +00001205 MPI_VALIDATE_RET( X != NULL );
1206 MPI_VALIDATE_RET( A != NULL );
1207 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001208
Paul Bakker23986e52011-04-24 08:57:21 +00001209 for( n = B->n; n > 0; n-- )
1210 if( B->p[n - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001211 break;
Gilles Peskinec8a91772021-01-27 22:30:43 +01001212 if( n > A->n )
1213 {
1214 /* B >= (2^ciL)^n > A */
1215 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1216 goto cleanup;
1217 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001218
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001219 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, A->n ) );
1220
1221 /* Set the high limbs of X to match A. Don't touch the lower limbs
1222 * because X might be aliased to B, and we must not overwrite the
1223 * significant digits of B. */
1224 if( A->n > n )
1225 memcpy( X->p + n, A->p + n, ( A->n - n ) * ciL );
1226 if( X->n > A->n )
1227 memset( X->p + A->n, 0, ( X->n - A->n ) * ciL );
1228
1229 carry = mpi_sub_hlp( n, X->p, A->p, B->p );
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001230 if( carry != 0 )
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001231 {
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001232 /* Propagate the carry to the first nonzero limb of X. */
1233 for( ; n < X->n && X->p[n] == 0; n++ )
1234 --X->p[n];
1235 /* If we ran out of space for the carry, it means that the result
1236 * is negative. */
1237 if( n == X->n )
Gilles Peskine89b41302020-07-23 01:16:46 +02001238 {
1239 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1240 goto cleanup;
1241 }
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001242 --X->p[n];
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001243 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001244
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001245 /* X should always be positive as a result of unsigned subtractions. */
1246 X->s = 1;
1247
Paul Bakker5121ce52009-01-03 21:22:43 +00001248cleanup:
Paul Bakker5121ce52009-01-03 21:22:43 +00001249 return( ret );
1250}
1251
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001252/* Common function for signed addition and subtraction.
1253 * Calculate A + B * flip_B where flip_B is 1 or -1.
Paul Bakker5121ce52009-01-03 21:22:43 +00001254 */
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001255static int add_sub_mpi( mbedtls_mpi *X,
1256 const mbedtls_mpi *A, const mbedtls_mpi *B,
1257 int flip_B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001258{
Hanno Becker73d7d792018-12-11 10:35:51 +00001259 int ret, s;
1260 MPI_VALIDATE_RET( X != NULL );
1261 MPI_VALIDATE_RET( A != NULL );
1262 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001263
Hanno Becker73d7d792018-12-11 10:35:51 +00001264 s = A->s;
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001265 if( A->s * B->s * flip_B < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001266 {
Gilles Peskine581c4602022-11-09 22:02:16 +01001267 int cmp = mbedtls_mpi_cmp_abs( A, B );
1268 if( cmp >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001269 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001270 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
Gilles Peskine581c4602022-11-09 22:02:16 +01001271 /* If |A| = |B|, the result is 0 and we must set the sign bit
1272 * to +1 regardless of which of A or B was negative. Otherwise,
1273 * since |A| > |B|, the sign is the sign of A. */
1274 X->s = cmp == 0 ? 1 : s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001275 }
1276 else
1277 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001278 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
Gilles Peskine581c4602022-11-09 22:02:16 +01001279 /* Since |A| < |B|, the sign is the opposite of A. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001280 X->s = -s;
1281 }
1282 }
1283 else
1284 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001285 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001286 X->s = s;
1287 }
1288
1289cleanup:
1290
1291 return( ret );
1292}
1293
1294/*
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001295 * Signed addition: X = A + B
1296 */
1297int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
1298{
1299 return( add_sub_mpi( X, A, B, 1 ) );
1300}
1301
1302/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001303 * Signed subtraction: X = A - B
Paul Bakker5121ce52009-01-03 21:22:43 +00001304 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001305int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001306{
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001307 return( add_sub_mpi( X, A, B, -1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001308}
1309
1310/*
1311 * Signed addition: X = A + b
1312 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001313int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001314{
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001315 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001316 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001317 MPI_VALIDATE_RET( X != NULL );
1318 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001319
1320 p[0] = ( b < 0 ) ? -b : b;
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001321 B.s = ( b < 0 ) ? -1 : 1;
1322 B.n = 1;
1323 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001324
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001325 return( mbedtls_mpi_add_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001326}
1327
1328/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001329 * Signed subtraction: X = A - b
Paul Bakker5121ce52009-01-03 21:22:43 +00001330 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001331int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001332{
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001333 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001334 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001335 MPI_VALIDATE_RET( X != NULL );
1336 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001337
1338 p[0] = ( b < 0 ) ? -b : b;
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001339 B.s = ( b < 0 ) ? -1 : 1;
1340 B.n = 1;
1341 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001342
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001343 return( mbedtls_mpi_sub_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001344}
1345
Gilles Peskinea5d8d892020-07-23 21:27:15 +02001346/** Helper for mbedtls_mpi multiplication.
1347 *
1348 * Add \p b * \p s to \p d.
1349 *
1350 * \param i The number of limbs of \p s.
1351 * \param[in] s A bignum to multiply, of size \p i.
1352 * It may overlap with \p d, but only if
1353 * \p d <= \p s.
1354 * Its leading limb must not be \c 0.
1355 * \param[in,out] d The bignum to add to.
1356 * It must be sufficiently large to store the
1357 * result of the multiplication. This means
1358 * \p i + 1 limbs if \p d[\p i - 1] started as 0 and \p b
1359 * is not known a priori.
1360 * \param b A scalar to multiply.
Paul Bakkerfc4f46f2013-06-24 19:23:56 +02001361 */
1362static
1363#if defined(__APPLE__) && defined(__arm__)
1364/*
1365 * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn)
1366 * appears to need this to prevent bad ARM code generation at -O3.
1367 */
1368__attribute__ ((noinline))
1369#endif
Gilles Peskinea5d8d892020-07-23 21:27:15 +02001370void mpi_mul_hlp( size_t i,
1371 const mbedtls_mpi_uint *s,
1372 mbedtls_mpi_uint *d,
1373 mbedtls_mpi_uint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001374{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001375 mbedtls_mpi_uint c = 0, t = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001376
1377#if defined(MULADDC_HUIT)
1378 for( ; i >= 8; i -= 8 )
1379 {
1380 MULADDC_INIT
1381 MULADDC_HUIT
1382 MULADDC_STOP
1383 }
1384
1385 for( ; i > 0; i-- )
1386 {
1387 MULADDC_INIT
1388 MULADDC_CORE
1389 MULADDC_STOP
1390 }
Paul Bakker9af723c2014-05-01 13:03:14 +02001391#else /* MULADDC_HUIT */
Paul Bakker5121ce52009-01-03 21:22:43 +00001392 for( ; i >= 16; i -= 16 )
1393 {
1394 MULADDC_INIT
1395 MULADDC_CORE MULADDC_CORE
1396 MULADDC_CORE MULADDC_CORE
1397 MULADDC_CORE MULADDC_CORE
1398 MULADDC_CORE MULADDC_CORE
1399
1400 MULADDC_CORE MULADDC_CORE
1401 MULADDC_CORE MULADDC_CORE
1402 MULADDC_CORE MULADDC_CORE
1403 MULADDC_CORE MULADDC_CORE
1404 MULADDC_STOP
1405 }
1406
1407 for( ; i >= 8; i -= 8 )
1408 {
1409 MULADDC_INIT
1410 MULADDC_CORE MULADDC_CORE
1411 MULADDC_CORE MULADDC_CORE
1412
1413 MULADDC_CORE MULADDC_CORE
1414 MULADDC_CORE MULADDC_CORE
1415 MULADDC_STOP
1416 }
1417
1418 for( ; i > 0; i-- )
1419 {
1420 MULADDC_INIT
1421 MULADDC_CORE
1422 MULADDC_STOP
1423 }
Paul Bakker9af723c2014-05-01 13:03:14 +02001424#endif /* MULADDC_HUIT */
Paul Bakker5121ce52009-01-03 21:22:43 +00001425
1426 t++;
1427
Gilles Peskine8e464c42020-07-24 00:08:38 +02001428 while( c != 0 )
1429 {
Paul Bakker5121ce52009-01-03 21:22:43 +00001430 *d += c; c = ( *d < c ); d++;
1431 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001432}
1433
1434/*
1435 * Baseline multiplication: X = A * B (HAC 14.12)
1436 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001437int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001438{
Janos Follath24eed8d2019-11-22 13:21:35 +00001439 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001440 size_t i, j;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001441 mbedtls_mpi TA, TB;
Gilles Peskined65b5002021-06-15 21:44:32 +02001442 int result_is_zero = 0;
Hanno Becker73d7d792018-12-11 10:35:51 +00001443 MPI_VALIDATE_RET( X != NULL );
1444 MPI_VALIDATE_RET( A != NULL );
1445 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001446
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001447 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001448
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001449 if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
1450 if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
Paul Bakker5121ce52009-01-03 21:22:43 +00001451
Paul Bakker23986e52011-04-24 08:57:21 +00001452 for( i = A->n; i > 0; i-- )
1453 if( A->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001454 break;
Gilles Peskine38a384d2021-06-17 14:35:25 +02001455 if( i == 0 )
Gilles Peskined65b5002021-06-15 21:44:32 +02001456 result_is_zero = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001457
Paul Bakker23986e52011-04-24 08:57:21 +00001458 for( j = B->n; j > 0; j-- )
1459 if( B->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001460 break;
Gilles Peskine38a384d2021-06-17 14:35:25 +02001461 if( j == 0 )
Gilles Peskined65b5002021-06-15 21:44:32 +02001462 result_is_zero = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001463
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001464 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
1465 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001466
Alexey Skalozub8e75e682016-01-13 21:59:27 +02001467 for( ; j > 0; j-- )
1468 mpi_mul_hlp( i, A->p, X->p + j - 1, B->p[j - 1] );
Paul Bakker5121ce52009-01-03 21:22:43 +00001469
Gilles Peskine70a7dcd2021-06-10 15:51:54 +02001470 /* If the result is 0, we don't shortcut the operation, which reduces
1471 * but does not eliminate side channels leaking the zero-ness. We do
1472 * need to take care to set the sign bit properly since the library does
1473 * not fully support an MPI object with a value of 0 and s == -1. */
Gilles Peskined65b5002021-06-15 21:44:32 +02001474 if( result_is_zero )
Gilles Peskine70a7dcd2021-06-10 15:51:54 +02001475 X->s = 1;
Gilles Peskine70a7dcd2021-06-10 15:51:54 +02001476 else
1477 X->s = A->s * B->s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001478
1479cleanup:
1480
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001481 mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
Paul Bakker5121ce52009-01-03 21:22:43 +00001482
1483 return( ret );
1484}
1485
1486/*
1487 * Baseline multiplication: X = A * b
1488 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001489int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001490{
Hanno Becker73d7d792018-12-11 10:35:51 +00001491 MPI_VALIDATE_RET( X != NULL );
1492 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001493
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001494 /* mpi_mul_hlp can't deal with a leading 0. */
1495 size_t n = A->n;
1496 while( n > 0 && A->p[n - 1] == 0 )
1497 --n;
Paul Bakker5121ce52009-01-03 21:22:43 +00001498
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001499 /* The general method below doesn't work if n==0 or b==0. By chance
1500 * calculating the result is trivial in those cases. */
1501 if( b == 0 || n == 0 )
1502 {
Paul Elliott986b55a2021-04-20 21:46:29 +01001503 return( mbedtls_mpi_lset( X, 0 ) );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001504 }
1505
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001506 /* Calculate A*b as A + A*(b-1) to take advantage of mpi_mul_hlp */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001507 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001508 /* In general, A * b requires 1 limb more than b. If
1509 * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1510 * number of limbs as A and the call to grow() is not required since
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001511 * copy() will take care of the growth if needed. However, experimentally,
1512 * making the call to grow() unconditional causes slightly fewer
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001513 * calls to calloc() in ECP code, presumably because it reuses the
1514 * same mpi for a while and this way the mpi is more likely to directly
1515 * grow to its final size. */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001516 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n + 1 ) );
1517 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
1518 mpi_mul_hlp( n, A->p, X->p, b - 1 );
1519
1520cleanup:
1521 return( ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00001522}
1523
1524/*
Simon Butcherf5ba0452015-12-27 23:01:55 +00001525 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1526 * mbedtls_mpi_uint divisor, d
Simon Butcher15b15d12015-11-26 19:35:03 +00001527 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001528static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,
1529 mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r )
Simon Butcher15b15d12015-11-26 19:35:03 +00001530{
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001531#if defined(MBEDTLS_HAVE_UDBL)
1532 mbedtls_t_udbl dividend, quotient;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001533#else
Simon Butcher9803d072016-01-03 00:24:34 +00001534 const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
1535 const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001536 mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1537 mbedtls_mpi_uint u0_msw, u0_lsw;
Simon Butcher9803d072016-01-03 00:24:34 +00001538 size_t s;
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001539#endif
1540
Simon Butcher15b15d12015-11-26 19:35:03 +00001541 /*
1542 * Check for overflow
1543 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001544 if( 0 == d || u1 >= d )
Simon Butcher15b15d12015-11-26 19:35:03 +00001545 {
Simon Butcherf5ba0452015-12-27 23:01:55 +00001546 if (r != NULL) *r = ~0;
Simon Butcher15b15d12015-11-26 19:35:03 +00001547
Simon Butcherf5ba0452015-12-27 23:01:55 +00001548 return ( ~0 );
Simon Butcher15b15d12015-11-26 19:35:03 +00001549 }
1550
1551#if defined(MBEDTLS_HAVE_UDBL)
Simon Butcher15b15d12015-11-26 19:35:03 +00001552 dividend = (mbedtls_t_udbl) u1 << biL;
1553 dividend |= (mbedtls_t_udbl) u0;
1554 quotient = dividend / d;
1555 if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
1556 quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
1557
1558 if( r != NULL )
Simon Butcher9803d072016-01-03 00:24:34 +00001559 *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001560
1561 return (mbedtls_mpi_uint) quotient;
1562#else
Simon Butcher15b15d12015-11-26 19:35:03 +00001563
1564 /*
1565 * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1566 * Vol. 2 - Seminumerical Algorithms, Knuth
1567 */
1568
1569 /*
1570 * Normalize the divisor, d, and dividend, u0, u1
1571 */
1572 s = mbedtls_clz( d );
1573 d = d << s;
1574
1575 u1 = u1 << s;
Simon Butcher9803d072016-01-03 00:24:34 +00001576 u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001577 u0 = u0 << s;
1578
1579 d1 = d >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001580 d0 = d & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001581
1582 u0_msw = u0 >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001583 u0_lsw = u0 & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001584
1585 /*
1586 * Find the first quotient and remainder
1587 */
1588 q1 = u1 / d1;
1589 r0 = u1 - d1 * q1;
1590
1591 while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
1592 {
1593 q1 -= 1;
1594 r0 += d1;
1595
1596 if ( r0 >= radix ) break;
1597 }
1598
Simon Butcherf5ba0452015-12-27 23:01:55 +00001599 rAX = ( u1 * radix ) + ( u0_msw - q1 * d );
Simon Butcher15b15d12015-11-26 19:35:03 +00001600 q0 = rAX / d1;
1601 r0 = rAX - q0 * d1;
1602
1603 while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
1604 {
1605 q0 -= 1;
1606 r0 += d1;
1607
1608 if ( r0 >= radix ) break;
1609 }
1610
1611 if (r != NULL)
Simon Butcherf5ba0452015-12-27 23:01:55 +00001612 *r = ( rAX * radix + u0_lsw - q0 * d ) >> s;
Simon Butcher15b15d12015-11-26 19:35:03 +00001613
1614 quotient = q1 * radix + q0;
1615
1616 return quotient;
1617#endif
1618}
1619
1620/*
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001621 * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
Paul Bakker5121ce52009-01-03 21:22:43 +00001622 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001623int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1624 const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001625{
Janos Follath24eed8d2019-11-22 13:21:35 +00001626 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001627 size_t i, n, t, k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001628 mbedtls_mpi X, Y, Z, T1, T2;
Alexander Kd19a1932019-11-01 18:20:42 +03001629 mbedtls_mpi_uint TP2[3];
Hanno Becker73d7d792018-12-11 10:35:51 +00001630 MPI_VALIDATE_RET( A != NULL );
1631 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001632
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001633 if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )
1634 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001635
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001636 mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001637 mbedtls_mpi_init( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001638 /*
1639 * Avoid dynamic memory allocations for constant-size T2.
1640 *
1641 * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1642 * so nobody increase the size of the MPI and we're safe to use an on-stack
1643 * buffer.
1644 */
Alexander K35d6d462019-10-31 14:46:45 +03001645 T2.s = 1;
Alexander Kd19a1932019-11-01 18:20:42 +03001646 T2.n = sizeof( TP2 ) / sizeof( *TP2 );
1647 T2.p = TP2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001648
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001649 if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001650 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001651 if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );
1652 if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001653 return( 0 );
1654 }
1655
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001656 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );
1657 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001658 X.s = Y.s = 1;
1659
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001660 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
1661 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z, 0 ) );
Gilles Peskine2536aa72020-07-24 00:12:59 +02001662 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, A->n + 2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001663
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02001664 k = mbedtls_mpi_bitlen( &Y ) % biL;
Paul Bakkerf9688572011-05-05 10:00:45 +00001665 if( k < biL - 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001666 {
1667 k = biL - 1 - k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001668 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );
1669 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001670 }
1671 else k = 0;
1672
1673 n = X.n - 1;
1674 t = Y.n - 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001675 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001676
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001677 while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001678 {
1679 Z.p[n - t]++;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001680 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001681 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001682 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001683
1684 for( i = n; i > t ; i-- )
1685 {
1686 if( X.p[i] >= Y.p[t] )
1687 Z.p[i - t - 1] = ~0;
1688 else
1689 {
Simon Butcher15b15d12015-11-26 19:35:03 +00001690 Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
1691 Y.p[t], NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001692 }
1693
Alexander K35d6d462019-10-31 14:46:45 +03001694 T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
1695 T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
1696 T2.p[2] = X.p[i];
1697
Paul Bakker5121ce52009-01-03 21:22:43 +00001698 Z.p[i - t - 1]++;
1699 do
1700 {
1701 Z.p[i - t - 1]--;
1702
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001703 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );
Paul Bakker66d5d072014-06-17 16:39:18 +02001704 T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001705 T1.p[1] = Y.p[t];
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001706 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001707 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001708 while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001709
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001710 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
1711 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1712 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001713
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001714 if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001715 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001716 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );
1717 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1718 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001719 Z.p[i - t - 1]--;
1720 }
1721 }
1722
1723 if( Q != NULL )
1724 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001725 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001726 Q->s = A->s * B->s;
1727 }
1728
1729 if( R != NULL )
1730 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001731 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );
Paul Bakkerf02c5642012-11-13 10:25:21 +00001732 X.s = A->s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001733 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001734
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001735 if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001736 R->s = 1;
1737 }
1738
1739cleanup:
1740
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001741 mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001742 mbedtls_mpi_free( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001743 mbedtls_platform_zeroize( TP2, sizeof( TP2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001744
1745 return( ret );
1746}
1747
1748/*
1749 * Division by int: A = Q * b + R
Paul Bakker5121ce52009-01-03 21:22:43 +00001750 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001751int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R,
1752 const mbedtls_mpi *A,
1753 mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001754{
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001755 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001756 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001757 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001758
1759 p[0] = ( b < 0 ) ? -b : b;
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001760 B.s = ( b < 0 ) ? -1 : 1;
1761 B.n = 1;
1762 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001763
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001764 return( mbedtls_mpi_div_mpi( Q, R, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001765}
1766
1767/*
1768 * Modulo: R = A mod B
1769 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001770int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001771{
Janos Follath24eed8d2019-11-22 13:21:35 +00001772 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +00001773 MPI_VALIDATE_RET( R != NULL );
1774 MPI_VALIDATE_RET( A != NULL );
1775 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001776
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001777 if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )
1778 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001779
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001780 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001781
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001782 while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )
1783 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001784
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001785 while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )
1786 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001787
1788cleanup:
1789
1790 return( ret );
1791}
1792
1793/*
1794 * Modulo: r = A mod b
1795 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001796int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001797{
Paul Bakker23986e52011-04-24 08:57:21 +00001798 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001799 mbedtls_mpi_uint x, y, z;
Hanno Becker73d7d792018-12-11 10:35:51 +00001800 MPI_VALIDATE_RET( r != NULL );
1801 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001802
1803 if( b == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001804 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001805
1806 if( b < 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001807 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakker5121ce52009-01-03 21:22:43 +00001808
1809 /*
1810 * handle trivial cases
1811 */
Gilles Peskinec9529f92022-06-09 19:32:46 +02001812 if( b == 1 || A->n == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001813 {
1814 *r = 0;
1815 return( 0 );
1816 }
1817
1818 if( b == 2 )
1819 {
1820 *r = A->p[0] & 1;
1821 return( 0 );
1822 }
1823
1824 /*
1825 * general case
1826 */
Paul Bakker23986e52011-04-24 08:57:21 +00001827 for( i = A->n, y = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001828 {
Paul Bakker23986e52011-04-24 08:57:21 +00001829 x = A->p[i - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001830 y = ( y << biH ) | ( x >> biH );
1831 z = y / b;
1832 y -= z * b;
1833
1834 x <<= biH;
1835 y = ( y << biH ) | ( x >> biH );
1836 z = y / b;
1837 y -= z * b;
1838 }
1839
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001840 /*
1841 * If A is negative, then the current y represents a negative value.
1842 * Flipping it to the positive side.
1843 */
1844 if( A->s < 0 && y != 0 )
1845 y = b - y;
1846
Paul Bakker5121ce52009-01-03 21:22:43 +00001847 *r = y;
1848
1849 return( 0 );
1850}
1851
1852/*
1853 * Fast Montgomery initialization (thanks to Tom St Denis)
1854 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001855static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00001856{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001857 mbedtls_mpi_uint x, m0 = N->p[0];
Manuel Pégourié-Gonnardfdf3f0e2014-03-11 13:47:05 +01001858 unsigned int i;
Paul Bakker5121ce52009-01-03 21:22:43 +00001859
1860 x = m0;
1861 x += ( ( m0 + 2 ) & 4 ) << 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001862
Manuel Pégourié-Gonnardfdf3f0e2014-03-11 13:47:05 +01001863 for( i = biL; i >= 8; i /= 2 )
1864 x *= ( 2 - ( m0 * x ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001865
1866 *mm = ~x + 1;
1867}
1868
Gilles Peskine2a82f722020-06-04 15:00:49 +02001869/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
1870 *
1871 * \param[in,out] A One of the numbers to multiply.
Gilles Peskine221626f2020-06-08 22:37:50 +02001872 * It must have at least as many limbs as N
1873 * (A->n >= N->n), and any limbs beyond n are ignored.
Gilles Peskine2a82f722020-06-04 15:00:49 +02001874 * On successful completion, A contains the result of
1875 * the multiplication A * B * R^-1 mod N where
1876 * R = (2^ciL)^n.
1877 * \param[in] B One of the numbers to multiply.
1878 * It must be nonzero and must not have more limbs than N
1879 * (B->n <= N->n).
1880 * \param[in] N The modulo. N must be odd.
1881 * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
1882 * This is -N^-1 mod 2^ciL.
1883 * \param[in,out] T A bignum for temporary storage.
1884 * It must be at least twice the limb size of N plus 2
1885 * (T->n >= 2 * (N->n + 1)).
1886 * Its initial content is unused and
1887 * its final content is indeterminate.
1888 * Note that unlike the usual convention in the library
1889 * for `const mbedtls_mpi*`, the content of T can change.
Paul Bakker5121ce52009-01-03 21:22:43 +00001890 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001891static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm,
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001892 const mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001893{
Paul Bakker23986e52011-04-24 08:57:21 +00001894 size_t i, n, m;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001895 mbedtls_mpi_uint u0, u1, *d;
Paul Bakker5121ce52009-01-03 21:22:43 +00001896
1897 memset( T->p, 0, T->n * ciL );
1898
1899 d = T->p;
1900 n = N->n;
1901 m = ( B->n < n ) ? B->n : n;
1902
1903 for( i = 0; i < n; i++ )
1904 {
1905 /*
1906 * T = (T + u0*B + u1*N) / 2^biL
1907 */
1908 u0 = A->p[i];
1909 u1 = ( d[0] + u0 * B->p[0] ) * mm;
1910
1911 mpi_mul_hlp( m, B->p, d, u0 );
1912 mpi_mul_hlp( n, N->p, d, u1 );
1913
1914 *d++ = u0; d[n + 1] = 0;
1915 }
1916
Gilles Peskine221626f2020-06-08 22:37:50 +02001917 /* At this point, d is either the desired result or the desired result
1918 * plus N. We now potentially subtract N, avoiding leaking whether the
1919 * subtraction is performed through side channels. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001920
Gilles Peskine221626f2020-06-08 22:37:50 +02001921 /* Copy the n least significant limbs of d to A, so that
1922 * A = d if d < N (recall that N has n limbs). */
1923 memcpy( A->p, d, n * ciL );
Gilles Peskine09ec10a2020-06-09 10:39:38 +02001924 /* If d >= N then we want to set A to d - N. To prevent timing attacks,
Gilles Peskine221626f2020-06-08 22:37:50 +02001925 * do the calculation without using conditional tests. */
1926 /* Set d to d0 + (2^biL)^n - N where d0 is the current value of d. */
Gilles Peskine132c0972020-06-04 21:05:24 +02001927 d[n] += 1;
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001928 d[n] -= mpi_sub_hlp( n, d, d, N->p );
Gilles Peskine221626f2020-06-08 22:37:50 +02001929 /* If d0 < N then d < (2^biL)^n
1930 * so d[n] == 0 and we want to keep A as it is.
1931 * If d0 >= N then d >= (2^biL)^n, and d <= (2^biL)^n + N < 2 * (2^biL)^n
1932 * so d[n] == 1 and we want to set A to the result of the subtraction
1933 * which is d - (2^biL)^n, i.e. the n least significant limbs of d.
1934 * This exactly corresponds to a conditional assignment. */
Gabor Mezei18a44942021-10-20 11:59:27 +02001935 mbedtls_ct_mpi_uint_cond_assign( n, A->p, d, (unsigned char) d[n] );
Paul Bakker5121ce52009-01-03 21:22:43 +00001936}
1937
1938/*
1939 * Montgomery reduction: A = A * R^-1 mod N
Gilles Peskine2a82f722020-06-04 15:00:49 +02001940 *
1941 * See mpi_montmul() regarding constraints and guarantees on the parameters.
Paul Bakker5121ce52009-01-03 21:22:43 +00001942 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001943static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N,
1944 mbedtls_mpi_uint mm, const mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001945{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001946 mbedtls_mpi_uint z = 1;
1947 mbedtls_mpi U;
Paul Bakker5121ce52009-01-03 21:22:43 +00001948
Paul Bakker8ddb6452013-02-27 14:56:33 +01001949 U.n = U.s = (int) z;
Paul Bakker5121ce52009-01-03 21:22:43 +00001950 U.p = &z;
1951
Gilles Peskine4e91d472020-06-04 20:55:15 +02001952 mpi_montmul( A, &U, N, mm, T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001953}
1954
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01001955/**
1956 * Select an MPI from a table without leaking the index.
1957 *
1958 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
1959 * reads the entire table in order to avoid leaking the value of idx to an
1960 * attacker able to observe memory access patterns.
1961 *
1962 * \param[out] R Where to write the selected MPI.
1963 * \param[in] T The table to read from.
1964 * \param[in] T_size The number of elements in the table.
1965 * \param[in] idx The index of the element to select;
1966 * this must satisfy 0 <= idx < T_size.
1967 *
1968 * \return \c 0 on success, or a negative error code.
1969 */
1970static int mpi_select( mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx )
1971{
1972 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1973
1974 for( size_t i = 0; i < T_size; i++ )
Manuel Pégourié-Gonnardeaafa492021-06-03 10:42:46 +02001975 {
1976 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( R, &T[i],
Gabor Mezei18a44942021-10-20 11:59:27 +02001977 (unsigned char) mbedtls_ct_size_bool_eq( i, idx ) ) );
Manuel Pégourié-Gonnardeaafa492021-06-03 10:42:46 +02001978 }
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01001979
1980cleanup:
1981 return( ret );
1982}
1983
Paul Bakker5121ce52009-01-03 21:22:43 +00001984/*
1985 * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
1986 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001987int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
1988 const mbedtls_mpi *E, const mbedtls_mpi *N,
Yuto Takano284857e2021-07-14 10:20:09 +01001989 mbedtls_mpi *prec_RR )
Paul Bakker5121ce52009-01-03 21:22:43 +00001990{
Janos Follath24eed8d2019-11-22 13:21:35 +00001991 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001992 size_t wbits, wsize, one = 1;
1993 size_t i, j, nblimbs;
1994 size_t bufsize, nbits;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001995 mbedtls_mpi_uint ei, mm, state;
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01001996 mbedtls_mpi RR, T, W[ 1 << MBEDTLS_MPI_WINDOW_SIZE ], WW, Apos;
Paul Bakkerf6198c12012-05-16 08:02:29 +00001997 int neg;
Paul Bakker5121ce52009-01-03 21:22:43 +00001998
Hanno Becker73d7d792018-12-11 10:35:51 +00001999 MPI_VALIDATE_RET( X != NULL );
2000 MPI_VALIDATE_RET( A != NULL );
2001 MPI_VALIDATE_RET( E != NULL );
2002 MPI_VALIDATE_RET( N != NULL );
2003
Hanno Becker8d1dd1b2017-09-28 11:02:24 +01002004 if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || ( N->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002005 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002006
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002007 if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
2008 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakkerf6198c12012-05-16 08:02:29 +00002009
Chris Jones9246d042020-11-25 15:12:39 +00002010 if( mbedtls_mpi_bitlen( E ) > MBEDTLS_MPI_MAX_BITS ||
2011 mbedtls_mpi_bitlen( N ) > MBEDTLS_MPI_MAX_BITS )
2012 return ( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2013
Paul Bakkerf6198c12012-05-16 08:02:29 +00002014 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00002015 * Init temps and window size
2016 */
2017 mpi_montg_init( &mm, N );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002018 mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
2019 mbedtls_mpi_init( &Apos );
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01002020 mbedtls_mpi_init( &WW );
Paul Bakker5121ce52009-01-03 21:22:43 +00002021 memset( W, 0, sizeof( W ) );
2022
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02002023 i = mbedtls_mpi_bitlen( E );
Paul Bakker5121ce52009-01-03 21:22:43 +00002024
2025 wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
2026 ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
2027
Peter Kolbuse6bcad32018-12-11 14:01:44 -06002028#if( MBEDTLS_MPI_WINDOW_SIZE < 6 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002029 if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
2030 wsize = MBEDTLS_MPI_WINDOW_SIZE;
Peter Kolbuse6bcad32018-12-11 14:01:44 -06002031#endif
Paul Bakkerb6d5f082011-11-25 11:52:11 +00002032
Paul Bakker5121ce52009-01-03 21:22:43 +00002033 j = N->n + 1;
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002034 /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
2035 * and mpi_montred() calls later. Here we ensure that W[1] and X are
2036 * large enough, and later we'll grow other W[i] to the same length.
2037 * They must not be shrunk midway through this function!
2038 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002039 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
2040 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) );
2041 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002042
2043 /*
Paul Bakker50546922012-05-19 08:40:49 +00002044 * Compensate for negative A (and correct at the end)
2045 */
2046 neg = ( A->s == -1 );
Paul Bakker50546922012-05-19 08:40:49 +00002047 if( neg )
2048 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002049 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
Paul Bakker50546922012-05-19 08:40:49 +00002050 Apos.s = 1;
2051 A = &Apos;
2052 }
2053
2054 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00002055 * If 1st call, pre-compute R^2 mod N
2056 */
Yuto Takano284857e2021-07-14 10:20:09 +01002057 if( prec_RR == NULL || prec_RR->p == NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +00002058 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002059 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
2060 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
2061 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002062
Yuto Takano284857e2021-07-14 10:20:09 +01002063 if( prec_RR != NULL )
2064 memcpy( prec_RR, &RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002065 }
2066 else
Yuto Takano284857e2021-07-14 10:20:09 +01002067 memcpy( &RR, prec_RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002068
2069 /*
2070 * W[1] = A * R^2 * R^-1 mod N = A * R mod N
2071 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002072 if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002073 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002074 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002075 /* This should be a no-op because W[1] is already that large before
2076 * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
2077 * in mpi_montmul() below, so let's make sure. */
Gilles Peskine0759cad2021-06-15 21:22:48 +02002078 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], N->n + 1 ) );
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002079 }
Paul Bakkerc2024f42014-01-23 20:38:35 +01002080 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002081 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002082
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002083 /* Note that this is safe because W[1] always has at least N->n limbs
2084 * (it grew above and was preserved by mbedtls_mpi_copy()). */
Gilles Peskine4e91d472020-06-04 20:55:15 +02002085 mpi_montmul( &W[1], &RR, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002086
2087 /*
2088 * X = R^2 * R^-1 mod N = R mod N
2089 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002090 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );
Gilles Peskine4e91d472020-06-04 20:55:15 +02002091 mpi_montred( X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002092
2093 if( wsize > 1 )
2094 {
2095 /*
2096 * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
2097 */
Paul Bakker66d5d072014-06-17 16:39:18 +02002098 j = one << ( wsize - 1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002099
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002100 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
2101 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002102
2103 for( i = 0; i < wsize - 1; i++ )
Gilles Peskine4e91d472020-06-04 20:55:15 +02002104 mpi_montmul( &W[j], &W[j], N, mm, &T );
Paul Bakker0d7702c2013-10-29 16:18:35 +01002105
Paul Bakker5121ce52009-01-03 21:22:43 +00002106 /*
2107 * W[i] = W[i - 1] * W[1]
2108 */
Paul Bakker66d5d072014-06-17 16:39:18 +02002109 for( i = j + 1; i < ( one << wsize ); i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00002110 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002111 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
2112 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002113
Gilles Peskine4e91d472020-06-04 20:55:15 +02002114 mpi_montmul( &W[i], &W[1], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002115 }
2116 }
2117
2118 nblimbs = E->n;
2119 bufsize = 0;
2120 nbits = 0;
2121 wbits = 0;
2122 state = 0;
2123
2124 while( 1 )
2125 {
2126 if( bufsize == 0 )
2127 {
Paul Bakker0d7702c2013-10-29 16:18:35 +01002128 if( nblimbs == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002129 break;
2130
Paul Bakker0d7702c2013-10-29 16:18:35 +01002131 nblimbs--;
2132
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002133 bufsize = sizeof( mbedtls_mpi_uint ) << 3;
Paul Bakker5121ce52009-01-03 21:22:43 +00002134 }
2135
2136 bufsize--;
2137
2138 ei = (E->p[nblimbs] >> bufsize) & 1;
2139
2140 /*
2141 * skip leading 0s
2142 */
2143 if( ei == 0 && state == 0 )
2144 continue;
2145
2146 if( ei == 0 && state == 1 )
2147 {
2148 /*
2149 * out of window, square X
2150 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02002151 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002152 continue;
2153 }
2154
2155 /*
2156 * add ei to current window
2157 */
2158 state = 2;
2159
2160 nbits++;
Paul Bakker66d5d072014-06-17 16:39:18 +02002161 wbits |= ( ei << ( wsize - nbits ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002162
2163 if( nbits == wsize )
2164 {
2165 /*
2166 * X = X^wsize R^-1 mod N
2167 */
2168 for( i = 0; i < wsize; i++ )
Gilles Peskine4e91d472020-06-04 20:55:15 +02002169 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002170
2171 /*
2172 * X = X * W[wbits] R^-1 mod N
2173 */
Manuel Pégourié-Gonnard0b3bde52021-06-10 09:34:00 +02002174 MBEDTLS_MPI_CHK( mpi_select( &WW, W, (size_t) 1 << wsize, wbits ) );
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01002175 mpi_montmul( X, &WW, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002176
2177 state--;
2178 nbits = 0;
2179 wbits = 0;
2180 }
2181 }
2182
2183 /*
2184 * process the remaining bits
2185 */
2186 for( i = 0; i < nbits; i++ )
2187 {
Gilles Peskine4e91d472020-06-04 20:55:15 +02002188 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002189
2190 wbits <<= 1;
2191
Paul Bakker66d5d072014-06-17 16:39:18 +02002192 if( ( wbits & ( one << wsize ) ) != 0 )
Gilles Peskine4e91d472020-06-04 20:55:15 +02002193 mpi_montmul( X, &W[1], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002194 }
2195
2196 /*
2197 * X = A^E * R * R^-1 mod N = A^E mod N
2198 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02002199 mpi_montred( X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00002200
Hanno Beckera4af1c42017-04-18 09:07:45 +01002201 if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 )
Paul Bakkerf6198c12012-05-16 08:02:29 +00002202 {
2203 X->s = -1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002204 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );
Paul Bakkerf6198c12012-05-16 08:02:29 +00002205 }
2206
Paul Bakker5121ce52009-01-03 21:22:43 +00002207cleanup:
2208
Paul Bakker66d5d072014-06-17 16:39:18 +02002209 for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002210 mbedtls_mpi_free( &W[i] );
Paul Bakker5121ce52009-01-03 21:22:43 +00002211
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002212 mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01002213 mbedtls_mpi_free( &WW );
Paul Bakker6c591fa2011-05-05 11:49:20 +00002214
Yuto Takano284857e2021-07-14 10:20:09 +01002215 if( prec_RR == NULL || prec_RR->p == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002216 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00002217
2218 return( ret );
2219}
2220
Paul Bakker5121ce52009-01-03 21:22:43 +00002221/*
2222 * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
2223 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002224int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00002225{
Janos Follath24eed8d2019-11-22 13:21:35 +00002226 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00002227 size_t lz, lzt;
Alexander Ke8ad49f2019-08-16 16:16:07 +03002228 mbedtls_mpi TA, TB;
Paul Bakker5121ce52009-01-03 21:22:43 +00002229
Hanno Becker73d7d792018-12-11 10:35:51 +00002230 MPI_VALIDATE_RET( G != NULL );
2231 MPI_VALIDATE_RET( A != NULL );
2232 MPI_VALIDATE_RET( B != NULL );
2233
Alexander Ke8ad49f2019-08-16 16:16:07 +03002234 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00002235
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002236 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
2237 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002238
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002239 lz = mbedtls_mpi_lsb( &TA );
2240 lzt = mbedtls_mpi_lsb( &TB );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002241
Gilles Peskineb5e56ec2021-06-09 13:26:43 +02002242 /* The loop below gives the correct result when A==0 but not when B==0.
2243 * So have a special case for B==0. Leverage the fact that we just
2244 * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
2245 * slightly more efficient than cmp_int(). */
2246 if( lzt == 0 && mbedtls_mpi_get_bit( &TB, 0 ) == 0 )
2247 {
2248 ret = mbedtls_mpi_copy( G, A );
2249 goto cleanup;
2250 }
2251
Paul Bakker66d5d072014-06-17 16:39:18 +02002252 if( lzt < lz )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002253 lz = lzt;
2254
Paul Bakker5121ce52009-01-03 21:22:43 +00002255 TA.s = TB.s = 1;
2256
Gilles Peskineea9aa142021-06-16 13:42:04 +02002257 /* We mostly follow the procedure described in HAC 14.54, but with some
2258 * minor differences:
2259 * - Sequences of multiplications or divisions by 2 are grouped into a
2260 * single shift operation.
Gilles Peskine37d690c2021-06-21 18:58:39 +02002261 * - The procedure in HAC assumes that 0 < TB <= TA.
2262 * - The condition TB <= TA is not actually necessary for correctness.
2263 * TA and TB have symmetric roles except for the loop termination
2264 * condition, and the shifts at the beginning of the loop body
2265 * remove any significance from the ordering of TA vs TB before
2266 * the shifts.
2267 * - If TA = 0, the loop goes through 0 iterations and the result is
2268 * correctly TB.
2269 * - The case TB = 0 was short-circuited above.
Gilles Peskineea9aa142021-06-16 13:42:04 +02002270 *
2271 * For the correctness proof below, decompose the original values of
2272 * A and B as
2273 * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
2274 * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
2275 * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
2276 * and gcd(A',B') is odd or 0.
2277 *
2278 * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
2279 * The code maintains the following invariant:
2280 * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
Gilles Peskine6537bdb2021-06-15 22:09:39 +02002281 */
2282
Gilles Peskineea9aa142021-06-16 13:42:04 +02002283 /* Proof that the loop terminates:
2284 * At each iteration, either the right-shift by 1 is made on a nonzero
2285 * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
2286 * by at least 1, or the right-shift by 1 is made on zero and then
2287 * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
2288 * since in that case TB is calculated from TB-TA with the condition TB>TA).
2289 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002290 while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002291 {
Gilles Peskineea9aa142021-06-16 13:42:04 +02002292 /* Divisions by 2 preserve the invariant (I). */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002293 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );
2294 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002295
Gilles Peskineea9aa142021-06-16 13:42:04 +02002296 /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
2297 * TA-TB is even so the division by 2 has an integer result.
2298 * Invariant (I) is preserved since any odd divisor of both TA and TB
2299 * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
Shaun Case0e7791f2021-12-20 21:14:10 -08002300 * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
Gilles Peskineea9aa142021-06-16 13:42:04 +02002301 * divides TA.
2302 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002303 if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002304 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002305 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );
2306 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002307 }
2308 else
2309 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002310 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );
2311 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002312 }
Gilles Peskineea9aa142021-06-16 13:42:04 +02002313 /* Note that one of TA or TB is still odd. */
Paul Bakker5121ce52009-01-03 21:22:43 +00002314 }
2315
Gilles Peskineea9aa142021-06-16 13:42:04 +02002316 /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
2317 * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
2318 * - If there was at least one loop iteration, then one of TA or TB is odd,
2319 * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
2320 * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
2321 * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
Gilles Peskineb798b352021-06-21 11:40:38 +02002322 * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
Gilles Peskineea9aa142021-06-16 13:42:04 +02002323 */
2324
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002325 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );
2326 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002327
2328cleanup:
2329
Alexander Ke8ad49f2019-08-16 16:16:07 +03002330 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00002331
2332 return( ret );
2333}
2334
Gilles Peskine8f454702021-04-01 15:57:18 +02002335/* Fill X with n_bytes random bytes.
2336 * X must already have room for those bytes.
Gilles Peskine23422e42021-06-03 11:51:09 +02002337 * The ordering of the bytes returned from the RNG is suitable for
2338 * deterministic ECDSA (see RFC 6979 §3.3 and mbedtls_mpi_random()).
Gilles Peskinea16001e2021-04-13 21:55:35 +02002339 * The size and sign of X are unchanged.
Gilles Peskine8f454702021-04-01 15:57:18 +02002340 * n_bytes must not be 0.
2341 */
2342static int mpi_fill_random_internal(
2343 mbedtls_mpi *X, size_t n_bytes,
2344 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2345{
2346 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2347 const size_t limbs = CHARS_TO_LIMBS( n_bytes );
2348 const size_t overhead = ( limbs * ciL ) - n_bytes;
2349
2350 if( X->n < limbs )
2351 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Gilles Peskine8f454702021-04-01 15:57:18 +02002352
Gilles Peskinea16001e2021-04-13 21:55:35 +02002353 memset( X->p, 0, overhead );
2354 memset( (unsigned char *) X->p + limbs * ciL, 0, ( X->n - limbs ) * ciL );
Gilles Peskine8f454702021-04-01 15:57:18 +02002355 MBEDTLS_MPI_CHK( f_rng( p_rng, (unsigned char *) X->p + overhead, n_bytes ) );
2356 mpi_bigendian_to_host( X->p, limbs );
2357
2358cleanup:
2359 return( ret );
2360}
2361
Paul Bakker33dc46b2014-04-30 16:11:39 +02002362/*
2363 * Fill X with size bytes of random.
2364 *
2365 * Use a temporary bytes representation to make sure the result is the same
Paul Bakkerc37b0ac2014-05-01 14:19:23 +02002366 * regardless of the platform endianness (useful when f_rng is actually
Paul Bakker33dc46b2014-04-30 16:11:39 +02002367 * deterministic, eg for tests).
2368 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002369int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,
Paul Bakkera3d195c2011-11-27 21:07:34 +00002370 int (*f_rng)(void *, unsigned char *, size_t),
2371 void *p_rng )
Paul Bakker287781a2011-03-26 13:18:49 +00002372{
Janos Follath24eed8d2019-11-22 13:21:35 +00002373 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker6dab6202019-01-02 16:42:29 +00002374 size_t const limbs = CHARS_TO_LIMBS( size );
Hanno Beckerda1655a2017-10-18 14:21:44 +01002375
Hanno Becker8ce11a32018-12-19 16:18:52 +00002376 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002377 MPI_VALIDATE_RET( f_rng != NULL );
Paul Bakker33dc46b2014-04-30 16:11:39 +02002378
Hanno Beckerda1655a2017-10-18 14:21:44 +01002379 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine3130ce22021-06-02 22:17:52 +02002380 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Gilles Peskine8f454702021-04-01 15:57:18 +02002381 if( size == 0 )
2382 return( 0 );
Paul Bakker287781a2011-03-26 13:18:49 +00002383
Gilles Peskine8f454702021-04-01 15:57:18 +02002384 ret = mpi_fill_random_internal( X, size, f_rng, p_rng );
Paul Bakker287781a2011-03-26 13:18:49 +00002385
2386cleanup:
2387 return( ret );
2388}
2389
Gilles Peskine4699fa42021-03-29 22:02:55 +02002390int mbedtls_mpi_random( mbedtls_mpi *X,
2391 mbedtls_mpi_sint min,
2392 const mbedtls_mpi *N,
2393 int (*f_rng)(void *, unsigned char *, size_t),
2394 void *p_rng )
2395{
Gilles Peskine4699fa42021-03-29 22:02:55 +02002396 int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002397 int count;
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002398 unsigned lt_lower = 1, lt_upper = 0;
Gilles Peskine4699fa42021-03-29 22:02:55 +02002399 size_t n_bits = mbedtls_mpi_bitlen( N );
2400 size_t n_bytes = ( n_bits + 7 ) / 8;
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002401 mbedtls_mpi lower_bound;
Gilles Peskine4699fa42021-03-29 22:02:55 +02002402
Gilles Peskine9312ba52021-03-29 22:14:51 +02002403 if( min < 0 )
2404 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2405 if( mbedtls_mpi_cmp_int( N, min ) <= 0 )
2406 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2407
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002408 /*
2409 * When min == 0, each try has at worst a probability 1/2 of failing
2410 * (the msb has a probability 1/2 of being 0, and then the result will
2411 * be < N), so after 30 tries failure probability is a most 2**(-30).
2412 *
2413 * When N is just below a power of 2, as is the case when generating
Gilles Peskine3f613632021-04-15 11:45:19 +02002414 * a random scalar on most elliptic curves, 1 try is enough with
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002415 * overwhelming probability. When N is just above a power of 2,
Gilles Peskine3f613632021-04-15 11:45:19 +02002416 * as when generating a random scalar on secp224k1, each try has
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002417 * a probability of failing that is almost 1/2.
2418 *
2419 * The probabilities are almost the same if min is nonzero but negligible
2420 * compared to N. This is always the case when N is crypto-sized, but
2421 * it's convenient to support small N for testing purposes. When N
2422 * is small, use a higher repeat count, otherwise the probability of
2423 * failure is macroscopic.
2424 */
Gilles Peskine11779072021-06-02 21:18:59 +02002425 count = ( n_bytes > 4 ? 30 : 250 );
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002426
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002427 mbedtls_mpi_init( &lower_bound );
2428
Gilles Peskine8f454702021-04-01 15:57:18 +02002429 /* Ensure that target MPI has exactly the same number of limbs
2430 * as the upper bound, even if the upper bound has leading zeros.
2431 * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */
Gilles Peskine3130ce22021-06-02 22:17:52 +02002432 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, N->n ) );
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002433 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &lower_bound, N->n ) );
2434 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &lower_bound, min ) );
Gilles Peskine8f454702021-04-01 15:57:18 +02002435
Gilles Peskine4699fa42021-03-29 22:02:55 +02002436 /*
2437 * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
2438 * when f_rng is a suitably parametrized instance of HMAC_DRBG:
2439 * - use the same byte ordering;
2440 * - keep the leftmost n_bits bits of the generated octet string;
2441 * - try until result is in the desired range.
2442 * This also avoids any bias, which is especially important for ECDSA.
2443 */
2444 do
2445 {
Gilles Peskine8f454702021-04-01 15:57:18 +02002446 MBEDTLS_MPI_CHK( mpi_fill_random_internal( X, n_bytes, f_rng, p_rng ) );
Gilles Peskine4699fa42021-03-29 22:02:55 +02002447 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, 8 * n_bytes - n_bits ) );
2448
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002449 if( --count == 0 )
Gilles Peskine4699fa42021-03-29 22:02:55 +02002450 {
2451 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2452 goto cleanup;
2453 }
2454
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002455 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, &lower_bound, &lt_lower ) );
2456 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, N, &lt_upper ) );
Gilles Peskine4699fa42021-03-29 22:02:55 +02002457 }
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002458 while( lt_lower != 0 || lt_upper == 0 );
Gilles Peskine4699fa42021-03-29 22:02:55 +02002459
2460cleanup:
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002461 mbedtls_mpi_free( &lower_bound );
Gilles Peskine4699fa42021-03-29 22:02:55 +02002462 return( ret );
2463}
2464
Paul Bakker5121ce52009-01-03 21:22:43 +00002465/*
2466 * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
2467 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002468int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00002469{
Janos Follath24eed8d2019-11-22 13:21:35 +00002470 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002471 mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
Hanno Becker73d7d792018-12-11 10:35:51 +00002472 MPI_VALIDATE_RET( X != NULL );
2473 MPI_VALIDATE_RET( A != NULL );
2474 MPI_VALIDATE_RET( N != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00002475
Hanno Becker4bcb4912017-04-18 15:49:39 +01002476 if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002477 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002478
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002479 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );
2480 mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );
2481 mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002482
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002483 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002484
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002485 if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002486 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002487 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002488 goto cleanup;
2489 }
2490
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002491 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );
2492 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );
2493 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );
2494 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002495
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002496 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );
2497 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );
2498 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );
2499 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002500
2501 do
2502 {
2503 while( ( TU.p[0] & 1 ) == 0 )
2504 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002505 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002506
2507 if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
2508 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002509 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );
2510 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002511 }
2512
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002513 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );
2514 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002515 }
2516
2517 while( ( TV.p[0] & 1 ) == 0 )
2518 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002519 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002520
2521 if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
2522 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002523 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );
2524 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002525 }
2526
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002527 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );
2528 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002529 }
2530
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002531 if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002532 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002533 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );
2534 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );
2535 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002536 }
2537 else
2538 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002539 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );
2540 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );
2541 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002542 }
2543 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002544 while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002545
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002546 while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )
2547 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002548
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002549 while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )
2550 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002551
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002552 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002553
2554cleanup:
2555
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002556 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );
2557 mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );
2558 mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002559
2560 return( ret );
2561}
2562
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002563#if defined(MBEDTLS_GENPRIME)
Paul Bakkerd9374b02012-11-02 11:02:58 +00002564
Paul Bakker5121ce52009-01-03 21:22:43 +00002565static const int small_prime[] =
2566{
2567 3, 5, 7, 11, 13, 17, 19, 23,
2568 29, 31, 37, 41, 43, 47, 53, 59,
2569 61, 67, 71, 73, 79, 83, 89, 97,
2570 101, 103, 107, 109, 113, 127, 131, 137,
2571 139, 149, 151, 157, 163, 167, 173, 179,
2572 181, 191, 193, 197, 199, 211, 223, 227,
2573 229, 233, 239, 241, 251, 257, 263, 269,
2574 271, 277, 281, 283, 293, 307, 311, 313,
2575 317, 331, 337, 347, 349, 353, 359, 367,
2576 373, 379, 383, 389, 397, 401, 409, 419,
2577 421, 431, 433, 439, 443, 449, 457, 461,
2578 463, 467, 479, 487, 491, 499, 503, 509,
2579 521, 523, 541, 547, 557, 563, 569, 571,
2580 577, 587, 593, 599, 601, 607, 613, 617,
2581 619, 631, 641, 643, 647, 653, 659, 661,
2582 673, 677, 683, 691, 701, 709, 719, 727,
2583 733, 739, 743, 751, 757, 761, 769, 773,
2584 787, 797, 809, 811, 821, 823, 827, 829,
2585 839, 853, 857, 859, 863, 877, 881, 883,
2586 887, 907, 911, 919, 929, 937, 941, 947,
2587 953, 967, 971, 977, 983, 991, 997, -103
2588};
2589
2590/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002591 * Small divisors test (X must be positive)
2592 *
2593 * Return values:
2594 * 0: no small factor (possible prime, more tests needed)
2595 * 1: certain prime
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002596 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002597 * other negative: error
Paul Bakker5121ce52009-01-03 21:22:43 +00002598 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002599static int mpi_check_small_factors( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +00002600{
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002601 int ret = 0;
2602 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002603 mbedtls_mpi_uint r;
Paul Bakker5121ce52009-01-03 21:22:43 +00002604
Paul Bakker5121ce52009-01-03 21:22:43 +00002605 if( ( X->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002606 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002607
2608 for( i = 0; small_prime[i] > 0; i++ )
2609 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002610 if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002611 return( 1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002612
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002613 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002614
2615 if( r == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002616 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002617 }
2618
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002619cleanup:
2620 return( ret );
2621}
2622
2623/*
2624 * Miller-Rabin pseudo-primality test (HAC 4.24)
2625 */
Janos Follathda31fa12018-09-03 14:45:23 +01002626static int mpi_miller_rabin( const mbedtls_mpi *X, size_t rounds,
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002627 int (*f_rng)(void *, unsigned char *, size_t),
2628 void *p_rng )
2629{
Pascal Junodb99183d2015-03-11 16:49:45 +01002630 int ret, count;
Janos Follathda31fa12018-09-03 14:45:23 +01002631 size_t i, j, k, s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002632 mbedtls_mpi W, R, T, A, RR;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002633
Hanno Becker8ce11a32018-12-19 16:18:52 +00002634 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002635 MPI_VALIDATE_RET( f_rng != NULL );
2636
2637 mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R );
2638 mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002639 mbedtls_mpi_init( &RR );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002640
Paul Bakker5121ce52009-01-03 21:22:43 +00002641 /*
2642 * W = |X| - 1
2643 * R = W >> lsb( W )
2644 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002645 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );
2646 s = mbedtls_mpi_lsb( &W );
2647 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );
2648 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002649
Janos Follathda31fa12018-09-03 14:45:23 +01002650 for( i = 0; i < rounds; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00002651 {
2652 /*
2653 * pick a random A, 1 < A < |X| - 1
2654 */
Pascal Junodb99183d2015-03-11 16:49:45 +01002655 count = 0;
2656 do {
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002657 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
Pascal Junodb99183d2015-03-11 16:49:45 +01002658
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02002659 j = mbedtls_mpi_bitlen( &A );
2660 k = mbedtls_mpi_bitlen( &W );
Pascal Junodb99183d2015-03-11 16:49:45 +01002661 if (j > k) {
Darryl Greene3f95ed2018-10-02 13:21:35 +01002662 A.p[A.n - 1] &= ( (mbedtls_mpi_uint) 1 << ( k - ( A.n - 1 ) * biL - 1 ) ) - 1;
Pascal Junodb99183d2015-03-11 16:49:45 +01002663 }
2664
2665 if (count++ > 30) {
Jens Wiklanderf08aa3e2019-01-17 13:30:57 +01002666 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2667 goto cleanup;
Pascal Junodb99183d2015-03-11 16:49:45 +01002668 }
2669
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002670 } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||
2671 mbedtls_mpi_cmp_int( &A, 1 ) <= 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002672
2673 /*
2674 * A = A^R mod |X|
2675 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002676 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002677
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002678 if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||
2679 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002680 continue;
2681
2682 j = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002683 while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002684 {
2685 /*
2686 * A = A * A mod |X|
2687 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002688 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );
2689 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002690
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002691 if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002692 break;
2693
2694 j++;
2695 }
2696
2697 /*
2698 * not prime if A != |X| - 1 or A == 1
2699 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002700 if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||
2701 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002702 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002703 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002704 break;
2705 }
2706 }
2707
2708cleanup:
Hanno Becker73d7d792018-12-11 10:35:51 +00002709 mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R );
2710 mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002711 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00002712
2713 return( ret );
2714}
2715
2716/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002717 * Pseudo-primality test: small factors, then Miller-Rabin
2718 */
Janos Follatha0b67c22018-09-18 14:48:23 +01002719int mbedtls_mpi_is_prime_ext( const mbedtls_mpi *X, int rounds,
2720 int (*f_rng)(void *, unsigned char *, size_t),
2721 void *p_rng )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002722{
Janos Follath24eed8d2019-11-22 13:21:35 +00002723 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002724 mbedtls_mpi XX;
Hanno Becker8ce11a32018-12-19 16:18:52 +00002725 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002726 MPI_VALIDATE_RET( f_rng != NULL );
Manuel Pégourié-Gonnard7f4ed672014-10-14 20:56:02 +02002727
2728 XX.s = 1;
2729 XX.n = X->n;
2730 XX.p = X->p;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002731
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002732 if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||
2733 mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )
2734 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002735
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002736 if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002737 return( 0 );
2738
2739 if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
2740 {
2741 if( ret == 1 )
2742 return( 0 );
2743
2744 return( ret );
2745 }
2746
Janos Follathda31fa12018-09-03 14:45:23 +01002747 return( mpi_miller_rabin( &XX, rounds, f_rng, p_rng ) );
Janos Follathf301d232018-08-14 13:34:01 +01002748}
2749
Janos Follatha0b67c22018-09-18 14:48:23 +01002750#if !defined(MBEDTLS_DEPRECATED_REMOVED)
Janos Follathf301d232018-08-14 13:34:01 +01002751/*
2752 * Pseudo-primality test, error probability 2^-80
2753 */
2754int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
2755 int (*f_rng)(void *, unsigned char *, size_t),
2756 void *p_rng )
2757{
Hanno Becker8ce11a32018-12-19 16:18:52 +00002758 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002759 MPI_VALIDATE_RET( f_rng != NULL );
2760
Janos Follatha0b67c22018-09-18 14:48:23 +01002761 /*
2762 * In the past our key generation aimed for an error rate of at most
2763 * 2^-80. Since this function is deprecated, aim for the same certainty
2764 * here as well.
2765 */
Hanno Becker73d7d792018-12-11 10:35:51 +00002766 return( mbedtls_mpi_is_prime_ext( X, 40, f_rng, p_rng ) );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002767}
Janos Follatha0b67c22018-09-18 14:48:23 +01002768#endif
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002769
2770/*
Paul Bakker5121ce52009-01-03 21:22:43 +00002771 * Prime number generation
Jethro Beekman66689272018-02-14 19:24:10 -08002772 *
Janos Follathf301d232018-08-14 13:34:01 +01002773 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2774 * be either 1024 bits or 1536 bits long, and flags must contain
2775 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
Paul Bakker5121ce52009-01-03 21:22:43 +00002776 */
Janos Follath7c025a92018-08-14 11:08:41 +01002777int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
Paul Bakkera3d195c2011-11-27 21:07:34 +00002778 int (*f_rng)(void *, unsigned char *, size_t),
2779 void *p_rng )
Paul Bakker5121ce52009-01-03 21:22:43 +00002780{
Jethro Beekman66689272018-02-14 19:24:10 -08002781#ifdef MBEDTLS_HAVE_INT64
2782// ceil(2^63.5)
2783#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2784#else
2785// ceil(2^31.5)
2786#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2787#endif
2788 int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker23986e52011-04-24 08:57:21 +00002789 size_t k, n;
Janos Follathda31fa12018-09-03 14:45:23 +01002790 int rounds;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002791 mbedtls_mpi_uint r;
2792 mbedtls_mpi Y;
Paul Bakker5121ce52009-01-03 21:22:43 +00002793
Hanno Becker8ce11a32018-12-19 16:18:52 +00002794 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002795 MPI_VALIDATE_RET( f_rng != NULL );
2796
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002797 if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )
2798 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002799
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002800 mbedtls_mpi_init( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002801
2802 n = BITS_TO_LIMBS( nbits );
2803
Janos Follathda31fa12018-09-03 14:45:23 +01002804 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR ) == 0 )
2805 {
2806 /*
2807 * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2808 */
2809 rounds = ( ( nbits >= 1300 ) ? 2 : ( nbits >= 850 ) ? 3 :
2810 ( nbits >= 650 ) ? 4 : ( nbits >= 350 ) ? 8 :
2811 ( nbits >= 250 ) ? 12 : ( nbits >= 150 ) ? 18 : 27 );
2812 }
2813 else
2814 {
2815 /*
2816 * 2^-100 error probability, number of rounds computed based on HAC,
2817 * fact 4.48
2818 */
2819 rounds = ( ( nbits >= 1450 ) ? 4 : ( nbits >= 1150 ) ? 5 :
2820 ( nbits >= 1000 ) ? 6 : ( nbits >= 850 ) ? 7 :
2821 ( nbits >= 750 ) ? 8 : ( nbits >= 500 ) ? 13 :
2822 ( nbits >= 250 ) ? 28 : ( nbits >= 150 ) ? 40 : 51 );
2823 }
2824
Jethro Beekman66689272018-02-14 19:24:10 -08002825 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002826 {
Jethro Beekman66689272018-02-14 19:24:10 -08002827 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
2828 /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
2829 if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue;
2830
2831 k = n * biL;
2832 if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) );
2833 X->p[0] |= 1;
2834
Janos Follath7c025a92018-08-14 11:08:41 +01002835 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002836 {
Janos Follatha0b67c22018-09-18 14:48:23 +01002837 ret = mbedtls_mpi_is_prime_ext( X, rounds, f_rng, p_rng );
Jethro Beekman66689272018-02-14 19:24:10 -08002838
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002839 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
Paul Bakker5121ce52009-01-03 21:22:43 +00002840 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002841 }
Jethro Beekman66689272018-02-14 19:24:10 -08002842 else
Paul Bakker5121ce52009-01-03 21:22:43 +00002843 {
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002844 /*
Tom Cosgrove5205c972022-07-28 06:12:08 +01002845 * A necessary condition for Y and X = 2Y + 1 to be prime
Jethro Beekman66689272018-02-14 19:24:10 -08002846 * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2847 * Make sure it is satisfied, while keeping X = 3 mod 4
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002848 */
Jethro Beekman66689272018-02-14 19:24:10 -08002849
2850 X->p[0] |= 2;
2851
2852 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
2853 if( r == 0 )
2854 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
2855 else if( r == 1 )
2856 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
2857
2858 /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
2859 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
2860 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
2861
2862 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002863 {
Jethro Beekman66689272018-02-14 19:24:10 -08002864 /*
2865 * First, check small factors for X and Y
2866 * before doing Miller-Rabin on any of them
2867 */
2868 if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
2869 ( ret = mpi_check_small_factors( &Y ) ) == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002870 ( ret = mpi_miller_rabin( X, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002871 == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002872 ( ret = mpi_miller_rabin( &Y, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002873 == 0 )
Jethro Beekman66689272018-02-14 19:24:10 -08002874 goto cleanup;
2875
2876 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
2877 goto cleanup;
2878
2879 /*
2880 * Next candidates. We want to preserve Y = (X-1) / 2 and
2881 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2882 * so up Y by 6 and X by 12.
2883 */
2884 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
2885 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002886 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002887 }
2888 }
2889
2890cleanup:
2891
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002892 mbedtls_mpi_free( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002893
2894 return( ret );
2895}
2896
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002897#endif /* MBEDTLS_GENPRIME */
Paul Bakker5121ce52009-01-03 21:22:43 +00002898
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002899#if defined(MBEDTLS_SELF_TEST)
Paul Bakker5121ce52009-01-03 21:22:43 +00002900
Paul Bakker23986e52011-04-24 08:57:21 +00002901#define GCD_PAIR_COUNT 3
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002902
2903static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2904{
2905 { 693, 609, 21 },
2906 { 1764, 868, 28 },
2907 { 768454923, 542167814, 1 }
2908};
2909
Paul Bakker5121ce52009-01-03 21:22:43 +00002910/*
2911 * Checkup routine
2912 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002913int mbedtls_mpi_self_test( int verbose )
Paul Bakker5121ce52009-01-03 21:22:43 +00002914{
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002915 int ret, i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002916 mbedtls_mpi A, E, N, X, Y, U, V;
Paul Bakker5121ce52009-01-03 21:22:43 +00002917
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002918 mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );
2919 mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00002920
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002921 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002922 "EFE021C2645FD1DC586E69184AF4A31E" \
2923 "D5F53E93B5F123FA41680867BA110131" \
2924 "944FE7952E2517337780CB0DB80E61AA" \
2925 "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
2926
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002927 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002928 "B2E7EFD37075B9F03FF989C7C5051C20" \
2929 "34D2A323810251127E7BF8625A4F49A5" \
2930 "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
2931 "5B5C25763222FEFCCFC38B832366C29E" ) );
2932
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002933 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002934 "0066A198186C18C10B2F5ED9B522752A" \
2935 "9830B69916E535C8F047518A889A43A5" \
2936 "94B6BED27A168D31D4A52F88925AA8F5" ) );
2937
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002938 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002939
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002940 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002941 "602AB7ECA597A3D6B56FF9829A5E8B85" \
2942 "9E857EA95A03512E2BAE7391688D264A" \
2943 "A5663B0341DB9CCFD2C4C5F421FEC814" \
2944 "8001B72E848A38CAE1C65F78E56ABDEF" \
2945 "E12D3C039B8A02D6BE593F0BBBDA56F1" \
2946 "ECF677152EF804370C1A305CAF3B5BF1" \
2947 "30879B56C61DE584A0F53A2447A51E" ) );
2948
2949 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002950 mbedtls_printf( " MPI test #1 (mul_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002951
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002952 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002953 {
2954 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002955 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002956
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002957 ret = 1;
2958 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002959 }
2960
2961 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002962 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002963
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002964 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002965
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002966 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002967 "256567336059E52CAE22925474705F39A94" ) );
2968
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002969 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002970 "6613F26162223DF488E9CD48CC132C7A" \
2971 "0AC93C701B001B092E4E5B9F73BCD27B" \
2972 "9EE50D0657C77F374E903CDFA4C642" ) );
2973
2974 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002975 mbedtls_printf( " MPI test #2 (div_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002976
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002977 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||
2978 mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002979 {
2980 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002981 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002982
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002983 ret = 1;
2984 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002985 }
2986
2987 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002988 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002989
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002990 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002991
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002992 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002993 "36E139AEA55215609D2816998ED020BB" \
2994 "BD96C37890F65171D948E9BC7CBAA4D9" \
2995 "325D24D6A3C12710F10A09FA08AB87" ) );
2996
2997 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002998 mbedtls_printf( " MPI test #3 (exp_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002999
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003000 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00003001 {
3002 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003003 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003004
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003005 ret = 1;
3006 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00003007 }
3008
3009 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003010 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003011
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003012 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00003013
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003014 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00003015 "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
3016 "C3DBA76456363A10869622EAC2DD84EC" \
3017 "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
3018
3019 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003020 mbedtls_printf( " MPI test #4 (inv_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00003021
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003022 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00003023 {
3024 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003025 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003026
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003027 ret = 1;
3028 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00003029 }
3030
3031 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003032 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003033
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003034 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003035 mbedtls_printf( " MPI test #5 (simple gcd): " );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003036
Paul Bakker66d5d072014-06-17 16:39:18 +02003037 for( i = 0; i < GCD_PAIR_COUNT; i++ )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003038 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003039 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );
3040 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003041
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003042 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003043
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003044 if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003045 {
3046 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003047 mbedtls_printf( "failed at %d\n", i );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003048
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003049 ret = 1;
3050 goto cleanup;
3051 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003052 }
3053
3054 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003055 mbedtls_printf( "passed\n" );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003056
Paul Bakker5121ce52009-01-03 21:22:43 +00003057cleanup:
3058
3059 if( ret != 0 && verbose != 0 )
Kenneth Soerensen518d4352020-04-01 17:22:45 +02003060 mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00003061
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003062 mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );
3063 mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00003064
3065 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003066 mbedtls_printf( "\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00003067
3068 return( ret );
3069}
3070
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003071#endif /* MBEDTLS_SELF_TEST */
Paul Bakker5121ce52009-01-03 21:22:43 +00003072
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003073#endif /* MBEDTLS_BIGNUM_C */