blob: dd913bead1df9cb48cf29f4f49a86a1c8febb7dc [file] [log] [blame]
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +01001/*
2 * Elliptic curves over GF(p)
3 *
4 * Copyright (C) 2012, Brainspark B.V.
5 *
6 * This file is part of PolarSSL (http://www.polarssl.org)
7 * Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
8 *
9 * All rights reserved.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 */
25
26/*
27 * References:
28 *
Manuel Pégourié-Gonnard883f3132012-11-02 09:40:25 +010029 * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +010030 * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +010031 * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +010032 */
33
34#include "polarssl/config.h"
35
36#if defined(POLARSSL_ECP_C)
37
38#include "polarssl/ecp.h"
Manuel Pégourié-Gonnard84338242012-11-11 20:45:18 +010039#include <limits.h>
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +010040#include <stdlib.h>
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +010041
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +010042#if defined(POLARSSL_SELF_TEST)
43/*
44 * Counts of point addition and doubling operations.
45 * Used to test resistance of point multiplication to SPA/timing attacks.
46 */
47unsigned long add_count, dbl_count;
48#endif
49
Manuel Pégourié-Gonnard1e8c8ec2012-10-31 19:24:21 +010050/*
Manuel Pégourié-Gonnardb505c272012-11-05 17:27:54 +010051 * Initialize (the components of) a point
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +010052 */
53void ecp_point_init( ecp_point *pt )
54{
55 if( pt == NULL )
56 return;
57
Manuel Pégourié-Gonnardb505c272012-11-05 17:27:54 +010058 mpi_init( &pt->X );
59 mpi_init( &pt->Y );
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +010060 mpi_init( &pt->Z );
Manuel Pégourié-Gonnardb505c272012-11-05 17:27:54 +010061}
62
63/*
64 * Initialize (the components of) a group
65 */
66void ecp_group_init( ecp_group *grp )
67{
68 if( grp == NULL )
69 return;
70
71 mpi_init( &grp->P );
72 mpi_init( &grp->B );
73 ecp_point_init( &grp->G );
74 mpi_init( &grp->N );
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +010075
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +010076 grp->pbits = 0;
Manuel Pégourié-Gonnard773ed542012-11-18 13:19:07 +010077 grp->nbits = 0;
78
79 grp->modp = NULL;
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +010080}
81
82/*
Manuel Pégourié-Gonnard1e8c8ec2012-10-31 19:24:21 +010083 * Unallocate (the components of) a point
84 */
85void ecp_point_free( ecp_point *pt )
86{
87 if( pt == NULL )
88 return;
89
90 mpi_free( &( pt->X ) );
91 mpi_free( &( pt->Y ) );
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +010092 mpi_free( &( pt->Z ) );
Manuel Pégourié-Gonnard1e8c8ec2012-10-31 19:24:21 +010093}
94
95/*
96 * Unallocate (the components of) a group
97 */
98void ecp_group_free( ecp_group *grp )
99{
100 if( grp == NULL )
101 return;
102
Manuel Pégourié-Gonnard883f3132012-11-02 09:40:25 +0100103 mpi_free( &grp->P );
104 mpi_free( &grp->B );
105 ecp_point_free( &grp->G );
106 mpi_free( &grp->N );
Manuel Pégourié-Gonnard1e8c8ec2012-10-31 19:24:21 +0100107}
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +0100108
Manuel Pégourié-Gonnard883f3132012-11-02 09:40:25 +0100109/*
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100110 * Set point to zero
111 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100112int ecp_set_zero( ecp_point *pt )
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100113{
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100114 int ret;
115
116 MPI_CHK( mpi_lset( &pt->X , 1 ) );
117 MPI_CHK( mpi_lset( &pt->Y , 1 ) );
118 MPI_CHK( mpi_lset( &pt->Z , 0 ) );
119
120cleanup:
121 return( ret );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100122}
123
124/*
Manuel Pégourié-Gonnard883f3132012-11-02 09:40:25 +0100125 * Copy the contents of Q into P
126 */
127int ecp_copy( ecp_point *P, const ecp_point *Q )
128{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100129 int ret;
Manuel Pégourié-Gonnard883f3132012-11-02 09:40:25 +0100130
Manuel Pégourié-Gonnard883f3132012-11-02 09:40:25 +0100131 MPI_CHK( mpi_copy( &P->X, &Q->X ) );
132 MPI_CHK( mpi_copy( &P->Y, &Q->Y ) );
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100133 MPI_CHK( mpi_copy( &P->Z, &Q->Z ) );
Manuel Pégourié-Gonnard883f3132012-11-02 09:40:25 +0100134
135cleanup:
136 return( ret );
137}
Manuel Pégourié-Gonnard5179e462012-10-31 19:37:54 +0100138
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100139/*
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100140 * Import a non-zero point from ASCII strings
141 */
142int ecp_point_read_string( ecp_point *P, int radix,
143 const char *x, const char *y )
144{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100145 int ret;
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100146
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100147 MPI_CHK( mpi_read_string( &P->X, radix, x ) );
148 MPI_CHK( mpi_read_string( &P->Y, radix, y ) );
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100149 MPI_CHK( mpi_lset( &P->Z, 1 ) );
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100150
151cleanup:
152 return( ret );
153}
154
155/*
156 * Import an ECP group from ASCII strings
157 */
158int ecp_group_read_string( ecp_group *grp, int radix,
159 const char *p, const char *b,
160 const char *gx, const char *gy, const char *n)
161{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100162 int ret;
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100163
164 MPI_CHK( mpi_read_string( &grp->P, radix, p ) );
165 MPI_CHK( mpi_read_string( &grp->B, radix, b ) );
166 MPI_CHK( ecp_point_read_string( &grp->G, radix, gx, gy ) );
167 MPI_CHK( mpi_read_string( &grp->N, radix, n ) );
168
Manuel Pégourié-Gonnard773ed542012-11-18 13:19:07 +0100169 grp->pbits = mpi_msb( &grp->P );
170 grp->nbits = mpi_msb( &grp->N );
171
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100172cleanup:
173 return( ret );
174}
175
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100176/*
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100177 * Export a point into unsigned binary data (SEC1 2.3.3)
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100178 */
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100179int ecp_write_binary( const ecp_group *grp, const ecp_point *P, int format,
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100180 size_t *olen, unsigned char *buf, size_t buflen )
181{
182 int ret;
183 size_t plen;
184
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100185 if( format != POLARSSL_ECP_PF_UNCOMPRESSED &&
186 format != POLARSSL_ECP_PF_COMPRESSED )
187 return( POLARSSL_ERR_ECP_GENERIC );
188
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100189 /*
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100190 * Common case: P == 0
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100191 */
192 if( mpi_cmp_int( &P->Z, 0 ) == 0 )
193 {
194 if( buflen < 1 )
195 return( POLARSSL_ERR_ECP_GENERIC );
196
197 buf[0] = 0x00;
198 *olen = 1;
199
200 return( 0 );
201 }
202
203 plen = mpi_size( &grp->P );
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100204
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100205 if( format == POLARSSL_ECP_PF_UNCOMPRESSED )
206 {
207 *olen = 2 * plen + 1;
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100208
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100209 if( buflen < *olen )
210 return( POLARSSL_ERR_ECP_GENERIC );
211
212 buf[0] = 0x04;
213 MPI_CHK( mpi_write_binary( &P->X, buf + 1, plen ) );
214 MPI_CHK( mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );
215 }
216 else if( format == POLARSSL_ECP_PF_COMPRESSED )
217 {
218 *olen = plen + 1;
219
220 if( buflen < *olen )
221 return( POLARSSL_ERR_ECP_GENERIC );
222
223 buf[0] = 0x02 + mpi_get_bit( &P->Y, 0 );
224 MPI_CHK( mpi_write_binary( &P->X, buf + 1, plen ) );
225 }
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100226
227cleanup:
228 return( ret );
229}
230
231/*
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100232 * Import a point from unsigned binary data (SEC1 2.3.4)
233 */
234int ecp_read_binary( const ecp_group *grp, ecp_point *P, int format,
235 const unsigned char *buf, size_t ilen ) {
236 int ret;
237 size_t plen;
238
239 if( format != POLARSSL_ECP_PF_UNCOMPRESSED )
240 return( POLARSSL_ERR_ECP_GENERIC );
241
242 if( ilen == 1 && buf[0] == 0x00 )
243 return( ecp_set_zero( P ) );
244
245 plen = mpi_size( &grp-> P );
246
247 if( ilen != 2 * plen + 1 || buf[0] != 0x04 )
248 return( POLARSSL_ERR_ECP_GENERIC );
249
250 MPI_CHK( mpi_read_binary( &P->X, buf + 1, plen ) );
251 MPI_CHK( mpi_read_binary( &P->Y, buf + 1 + plen, plen ) );
252 MPI_CHK( mpi_lset( &P->Z, 1 ) );
253
254cleanup:
255 return( ret );
256}
257
258/*
Manuel Pégourié-Gonnard773ed542012-11-18 13:19:07 +0100259 * Wrapper around fast quasi-modp functions, with fall-back to mpi_mod_mpi.
260 * See the documentation of struct ecp_group.
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100261 */
262static int ecp_modp( mpi *N, const ecp_group *grp )
263{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100264 int ret;
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100265
266 if( grp->modp == NULL )
267 return( mpi_mod_mpi( N, N, &grp->P ) );
268
269 if( mpi_cmp_int( N, 0 ) < 0 || mpi_msb( N ) > 2 * grp->pbits )
270 return( POLARSSL_ERR_ECP_GENERIC );
271
272 MPI_CHK( grp->modp( N ) );
273
274 while( mpi_cmp_int( N, 0 ) < 0 )
275 MPI_CHK( mpi_add_mpi( N, N, &grp->P ) );
276
277 while( mpi_cmp_mpi( N, &grp->P ) >= 0 )
278 MPI_CHK( mpi_sub_mpi( N, N, &grp->P ) );
279
280cleanup:
281 return( ret );
282}
283
284/*
Manuel Pégourié-Gonnard84338242012-11-11 20:45:18 +0100285 * 192 bits in terms of t_uint
286 */
287#define P192_SIZE_INT ( 192 / CHAR_BIT / sizeof( t_uint ) )
288
289/*
290 * Table to get S1, S2, S3 of FIPS 186-3 D.2.1:
291 * -1 means let this chunk be 0
292 * a positive value i means A_i.
293 */
294#define P192_CHUNKS 3
295#define P192_CHUNK_CHAR ( 64 / CHAR_BIT )
296#define P192_CHUNK_INT ( P192_CHUNK_CHAR / sizeof( t_uint ) )
297
298const signed char p192_tbl[][P192_CHUNKS] = {
299 { -1, 3, 3 }, /* S1 */
300 { 4, 4, -1 }, /* S2 */
301 { 5, 5, 5 }, /* S3 */
302};
303
304/*
305 * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
306 */
307static int ecp_mod_p192( mpi *N )
308{
309 int ret;
310 unsigned char i, j, offset;
311 signed char chunk;
312 mpi tmp, acc;
313 t_uint tmp_p[P192_SIZE_INT], acc_p[P192_SIZE_INT + 1];
314
315 tmp.s = 1;
316 tmp.n = sizeof( tmp_p ) / sizeof( tmp_p[0] );
317 tmp.p = tmp_p;
318
319 acc.s = 1;
320 acc.n = sizeof( acc_p ) / sizeof( acc_p[0] );
321 acc.p = acc_p;
322
323 MPI_CHK( mpi_grow( N, P192_SIZE_INT * 2 ) );
324
325 /*
326 * acc = T
327 */
328 memset( acc_p, 0, sizeof( acc_p ) );
329 memcpy( acc_p, N->p, P192_CHUNK_CHAR * P192_CHUNKS );
330
331 for( i = 0; i < sizeof( p192_tbl ) / sizeof( p192_tbl[0] ); i++)
332 {
333 /*
334 * tmp = S_i
335 */
336 memset( tmp_p, 0, sizeof( tmp_p ) );
337 for( j = 0, offset = P192_CHUNKS - 1; j < P192_CHUNKS; j++, offset-- )
338 {
339 chunk = p192_tbl[i][j];
340 if( chunk >= 0 )
341 memcpy( tmp_p + offset * P192_CHUNK_INT,
342 N->p + chunk * P192_CHUNK_INT,
343 P192_CHUNK_CHAR );
344 }
345
346 /*
347 * acc += tmp
348 */
349 MPI_CHK( mpi_add_abs( &acc, &acc, &tmp ) );
350 }
351
352 MPI_CHK( mpi_copy( N, &acc ) );
353
354cleanup:
355 return( ret );
356}
357
358/*
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100359 * Size of p521 in terms of t_uint
360 */
Manuel Pégourié-Gonnard84338242012-11-11 20:45:18 +0100361#define P521_SIZE_INT ( 521 / CHAR_BIT / sizeof( t_uint ) + 1 )
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100362
363/*
364 * Bits to keep in the most significant t_uint
365 */
366#if defined(POLARSS_HAVE_INT8)
367#define P521_MASK 0x01
368#else
369#define P521_MASK 0x01FF
370#endif
371
372/*
373 * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100374 */
375static int ecp_mod_p521( mpi *N )
376{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100377 int ret;
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100378 t_uint Mp[P521_SIZE_INT];
379 mpi M;
380
381 if( N->n < P521_SIZE_INT )
382 return( 0 );
383
384 memset( Mp, 0, P521_SIZE_INT * sizeof( t_uint ) );
385 memcpy( Mp, N->p, P521_SIZE_INT * sizeof( t_uint ) );
386 Mp[P521_SIZE_INT - 1] &= P521_MASK;
387
388 M.s = 1;
389 M.n = P521_SIZE_INT;
390 M.p = Mp;
391
392 MPI_CHK( mpi_shift_r( N, 521 ) );
393
394 MPI_CHK( mpi_add_abs( N, N, &M ) );
395
396cleanup:
397 return( ret );
398}
399
400/*
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100401 * Domain parameters for secp192r1
402 */
403#define SECP192R1_P \
404 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF"
405#define SECP192R1_B \
406 "64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1"
407#define SECP192R1_GX \
408 "188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012"
409#define SECP192R1_GY \
410 "07192B95FFC8DA78631011ED6B24CDD573F977A11E794811"
411#define SECP192R1_N \
412 "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831"
413
414/*
415 * Domain parameters for secp224r1
416 */
417#define SECP224R1_P \
418 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001"
419#define SECP224R1_B \
420 "B4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4"
421#define SECP224R1_GX \
422 "B70E0CBD6BB4BF7F321390B94A03C1D356C21122343280D6115C1D21"
423#define SECP224R1_GY \
424 "BD376388B5F723FB4C22DFE6CD4375A05A07476444D5819985007E34"
425#define SECP224R1_N \
426 "FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D"
427
428/*
429 * Domain parameters for secp256r1
430 */
431#define SECP256R1_P \
432 "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF"
433#define SECP256R1_B \
434 "5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B"
435#define SECP256R1_GX \
436 "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296"
437#define SECP256R1_GY \
438 "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5"
439#define SECP256R1_N \
440 "FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551"
441
442/*
443 * Domain parameters for secp384r1
444 */
445#define SECP384R1_P \
446 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
447 "FFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF"
448#define SECP384R1_B \
449 "B3312FA7E23EE7E4988E056BE3F82D19181D9C6EFE814112" \
450 "0314088F5013875AC656398D8A2ED19D2A85C8EDD3EC2AEF"
451#define SECP384R1_GX \
452 "AA87CA22BE8B05378EB1C71EF320AD746E1D3B628BA79B98" \
453 "59F741E082542A385502F25DBF55296C3A545E3872760AB7"
454#define SECP384R1_GY \
455 "3617DE4A96262C6F5D9E98BF9292DC29F8F41DBD289A147C" \
456 "E9DA3113B5F0B8C00A60B1CE1D7E819D7A431D7C90EA0E5F"
457#define SECP384R1_N \
458 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
459 "C7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973"
460
461/*
462 * Domain parameters for secp521r1
463 */
464#define SECP521R1_P \
465 "000001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
466 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
467 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
468#define SECP521R1_B \
469 "00000051953EB9618E1C9A1F929A21A0B68540EEA2DA725B" \
470 "99B315F3B8B489918EF109E156193951EC7E937B1652C0BD" \
471 "3BB1BF073573DF883D2C34F1EF451FD46B503F00"
472#define SECP521R1_GX \
473 "000000C6858E06B70404E9CD9E3ECB662395B4429C648139" \
474 "053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127" \
475 "A2FFA8DE3348B3C1856A429BF97E7E31C2E5BD66"
476#define SECP521R1_GY \
477 "0000011839296A789A3BC0045C8A5FB42C7D1BD998F54449" \
478 "579B446817AFBD17273E662C97EE72995EF42640C550B901" \
479 "3FAD0761353C7086A272C24088BE94769FD16650"
480#define SECP521R1_N \
481 "000001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
482 "FFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148" \
483 "F709A5D03BB5C9B8899C47AEBB6FB71E91386409"
484
485/*
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100486 * Set a group using well-known domain parameters
487 */
488int ecp_use_known_dp( ecp_group *grp, size_t index )
489{
490 switch( index )
491 {
492 case POLARSSL_ECP_DP_SECP192R1:
Manuel Pégourié-Gonnard84338242012-11-11 20:45:18 +0100493 grp->modp = ecp_mod_p192;
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100494 return( ecp_group_read_string( grp, 16,
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100495 SECP192R1_P, SECP192R1_B,
496 SECP192R1_GX, SECP192R1_GY, SECP192R1_N ) );
497
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100498 case POLARSSL_ECP_DP_SECP224R1:
499 return( ecp_group_read_string( grp, 16,
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100500 SECP224R1_P, SECP224R1_B,
501 SECP224R1_GX, SECP224R1_GY, SECP224R1_N ) );
502
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100503 case POLARSSL_ECP_DP_SECP256R1:
504 return( ecp_group_read_string( grp, 16,
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100505 SECP256R1_P, SECP256R1_B,
506 SECP256R1_GX, SECP256R1_GY, SECP256R1_N ) );
507
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100508 case POLARSSL_ECP_DP_SECP384R1:
509 return( ecp_group_read_string( grp, 16,
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100510 SECP384R1_P, SECP384R1_B,
511 SECP384R1_GX, SECP384R1_GY, SECP384R1_N ) );
512
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100513 case POLARSSL_ECP_DP_SECP521R1:
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100514 grp->modp = ecp_mod_p521;
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100515 return( ecp_group_read_string( grp, 16,
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100516 SECP521R1_P, SECP521R1_B,
517 SECP521R1_GX, SECP521R1_GY, SECP521R1_N ) );
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100518 }
519
520 return( POLARSSL_ERR_ECP_GENERIC );
521}
Manuel Pégourié-Gonnardab38b702012-11-05 17:34:55 +0100522
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100523/*
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100524 * Fast mod-p functions expect their argument to be in the 0..p^2 range.
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100525 *
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100526 * In order to guarantee that, we need to ensure that operands of
527 * mpi_mul_mpi are in the 0..p range. So, after each operation we will
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100528 * bring the result back to this range.
529 *
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100530 * The following macros are shortcuts for doing that.
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100531 */
532
533/*
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100534 * Reduce a mpi mod p in-place, general case, to use after mpi_mul_mpi
535 */
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100536#define MOD_MUL( N ) MPI_CHK( ecp_modp( &N, grp ) )
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100537
538/*
539 * Reduce a mpi mod p in-place, to use after mpi_sub_mpi
540 */
541#define MOD_SUB( N ) \
542 while( mpi_cmp_int( &N, 0 ) < 0 ) \
543 MPI_CHK( mpi_add_mpi( &N, &N, &grp->P ) )
544
545/*
546 * Reduce a mpi mod p in-place, to use after mpi_add_mpi and mpi_mul_int
547 */
548#define MOD_ADD( N ) \
549 while( mpi_cmp_mpi( &N, &grp->P ) >= 0 ) \
550 MPI_CHK( mpi_sub_mpi( &N, &N, &grp->P ) )
551
552/*
Manuel Pégourié-Gonnard1c330572012-11-24 12:05:44 +0100553 * Check that a point is valid as a public key (SEC1 3.2.3.1)
554 */
555int ecp_check_pubkey( const ecp_group *grp, const ecp_point *pt )
556{
557 int ret;
558 mpi YY, RHS;
559
560 if( mpi_cmp_int( &pt->Z, 0 ) == 0 )
561 return( POLARSSL_ERR_ECP_GENERIC );
562
563 /*
564 * pt coordinates must be normalized for our checks
565 */
566 if( mpi_cmp_int( &pt->Z, 1 ) != 0 )
567 return( POLARSSL_ERR_ECP_GENERIC );
568
569 if( mpi_cmp_int( &pt->X, 0 ) < 0 ||
570 mpi_cmp_int( &pt->Y, 0 ) < 0 ||
571 mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||
572 mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )
573 return( POLARSSL_ERR_ECP_GENERIC );
574
575 mpi_init( &YY ); mpi_init( &RHS );
576
577 /*
578 * YY = Y^2
579 * RHS = X (X^2 - 3) + B = X^3 - 3X + B
580 */
581 MPI_CHK( mpi_mul_mpi( &YY, &pt->Y, &pt->Y ) ); MOD_MUL( YY );
582 MPI_CHK( mpi_mul_mpi( &RHS, &pt->X, &pt->X ) ); MOD_MUL( RHS );
583 MPI_CHK( mpi_sub_int( &RHS, &RHS, 3 ) ); MOD_SUB( RHS );
584 MPI_CHK( mpi_mul_mpi( &RHS, &RHS, &pt->X ) ); MOD_MUL( RHS );
585 MPI_CHK( mpi_add_mpi( &RHS, &RHS, &grp->B ) ); MOD_ADD( RHS );
586
587 if( mpi_cmp_mpi( &YY, &RHS ) != 0 )
588 ret = POLARSSL_ERR_ECP_GENERIC;
589
590cleanup:
591
592 mpi_free( &YY ); mpi_free( &RHS );
593
594 return( ret );
595}
596
597/*
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100598 * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100599 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100600static int ecp_normalize( const ecp_group *grp, ecp_point *pt )
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100601{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100602 int ret;
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100603 mpi Zi, ZZi;
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100604
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100605 if( mpi_cmp_int( &pt->Z, 0 ) == 0 )
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100606 return( 0 );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100607
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100608 mpi_init( &Zi ); mpi_init( &ZZi );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100609
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100610 /*
611 * X = X / Z^2 mod p
612 */
613 MPI_CHK( mpi_inv_mod( &Zi, &pt->Z, &grp->P ) );
614 MPI_CHK( mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
615 MPI_CHK( mpi_mul_mpi( &pt->X, &pt->X, &ZZi ) ); MOD_MUL( pt->X );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100616
617 /*
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100618 * Y = Y / Z^3 mod p
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100619 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100620 MPI_CHK( mpi_mul_mpi( &pt->Y, &pt->Y, &ZZi ) ); MOD_MUL( pt->Y );
621 MPI_CHK( mpi_mul_mpi( &pt->Y, &pt->Y, &Zi ) ); MOD_MUL( pt->Y );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100622
623 /*
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100624 * Z = 1
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100625 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100626 MPI_CHK( mpi_lset( &pt->Z, 1 ) );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100627
628cleanup:
629
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100630 mpi_free( &Zi ); mpi_free( &ZZi );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100631
632 return( ret );
633}
634
635/*
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100636 * Normalize jacobian coordinates of an array of points,
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +0100637 * using Montgomery's trick to perform only one inversion mod P.
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100638 * (See for example Cohen's "A Course in Computational Algebraic Number
639 * Theory", Algorithm 10.3.4.)
640 *
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +0100641 * Warning: fails if one of the points is zero!
642 * This should never happen, see choice of w in ecp_mul().
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100643 */
644static int ecp_normalize_many( const ecp_group *grp,
645 ecp_point T[], size_t t_len )
646{
647 int ret;
648 size_t i;
649 mpi *c, u, Zi, ZZi;
650
651 if( t_len < 2 )
652 return( ecp_normalize( grp, T ) );
653
654 if( ( c = (mpi *) malloc( t_len * sizeof( mpi ) ) ) == NULL )
655 return( POLARSSL_ERR_ECP_GENERIC );
656
657 mpi_init( &u ); mpi_init( &Zi ); mpi_init( &ZZi );
658 for( i = 0; i < t_len; i++ )
659 mpi_init( &c[i] );
660
661 /*
662 * c[i] = Z_0 * ... * Z_i
663 */
664 MPI_CHK( mpi_copy( &c[0], &T[0].Z ) );
665 for( i = 1; i < t_len; i++ )
666 {
667 MPI_CHK( mpi_mul_mpi( &c[i], &c[i-1], &T[i].Z ) );
668 MOD_MUL( c[i] );
669 }
670
671 /*
672 * u = 1 / (Z_0 * ... * Z_n) mod P
673 */
674 MPI_CHK( mpi_inv_mod( &u, &c[t_len-1], &grp->P ) );
675
676 for( i = t_len - 1; ; i-- )
677 {
678 /*
679 * Zi = 1 / Z_i mod p
680 * u = 1 / (Z_0 * ... * Z_i) mod P
681 */
682 if( i == 0 ) {
683 MPI_CHK( mpi_copy( &Zi, &u ) );
684 }
685 else
686 {
687 MPI_CHK( mpi_mul_mpi( &Zi, &u, &c[i-1] ) ); MOD_MUL( Zi );
688 MPI_CHK( mpi_mul_mpi( &u, &u, &T[i].Z ) ); MOD_MUL( u );
689 }
690
691 /*
692 * proceed as in normalize()
693 */
694 MPI_CHK( mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
695 MPI_CHK( mpi_mul_mpi( &T[i].X, &T[i].X, &ZZi ) ); MOD_MUL( T[i].X );
696 MPI_CHK( mpi_mul_mpi( &T[i].Y, &T[i].Y, &ZZi ) ); MOD_MUL( T[i].Y );
697 MPI_CHK( mpi_mul_mpi( &T[i].Y, &T[i].Y, &Zi ) ); MOD_MUL( T[i].Y );
698 MPI_CHK( mpi_lset( &T[i].Z, 1 ) );
699
700 if( i == 0 )
701 break;
702 }
703
704cleanup:
705
706 mpi_free( &u ); mpi_free( &Zi ); mpi_free( &ZZi );
707 for( i = 0; i < t_len; i++ )
708 mpi_free( &c[i] );
709 free( c );
710
711 return( ret );
712}
713
714
715/*
Manuel Pégourié-Gonnard989c32b2012-11-08 22:02:42 +0100716 * Point doubling R = 2 P, Jacobian coordinates (GECC 3.21)
717 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100718static int ecp_double_jac( const ecp_group *grp, ecp_point *R,
719 const ecp_point *P )
Manuel Pégourié-Gonnard989c32b2012-11-08 22:02:42 +0100720{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100721 int ret;
Manuel Pégourié-Gonnard989c32b2012-11-08 22:02:42 +0100722 mpi T1, T2, T3, X, Y, Z;
723
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +0100724#if defined(POLARSSL_SELF_TEST)
725 dbl_count++;
726#endif
727
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +0100728 if( mpi_cmp_int( &P->Z, 0 ) == 0 )
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100729 return( ecp_set_zero( R ) );
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +0100730
Manuel Pégourié-Gonnard989c32b2012-11-08 22:02:42 +0100731 mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 );
732 mpi_init( &X ); mpi_init( &Y ); mpi_init( &Z );
733
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100734 MPI_CHK( mpi_mul_mpi( &T1, &P->Z, &P->Z ) ); MOD_MUL( T1 );
735 MPI_CHK( mpi_sub_mpi( &T2, &P->X, &T1 ) ); MOD_SUB( T2 );
736 MPI_CHK( mpi_add_mpi( &T1, &P->X, &T1 ) ); MOD_ADD( T1 );
737 MPI_CHK( mpi_mul_mpi( &T2, &T2, &T1 ) ); MOD_MUL( T2 );
738 MPI_CHK( mpi_mul_int( &T2, &T2, 3 ) ); MOD_ADD( T2 );
739 MPI_CHK( mpi_mul_int( &Y, &P->Y, 2 ) ); MOD_ADD( Y );
740 MPI_CHK( mpi_mul_mpi( &Z, &Y, &P->Z ) ); MOD_MUL( Z );
741 MPI_CHK( mpi_mul_mpi( &Y, &Y, &Y ) ); MOD_MUL( Y );
742 MPI_CHK( mpi_mul_mpi( &T3, &Y, &P->X ) ); MOD_MUL( T3 );
743 MPI_CHK( mpi_mul_mpi( &Y, &Y, &Y ) ); MOD_MUL( Y );
Manuel Pégourié-Gonnard989c32b2012-11-08 22:02:42 +0100744
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100745 /*
746 * For Y = Y / 2 mod p, we must make sure that Y is even before
747 * using right-shift. No need to reduce mod p afterwards.
748 */
749 if( mpi_get_bit( &Y, 0 ) == 1 )
750 MPI_CHK( mpi_add_mpi( &Y, &Y, &grp->P ) );
751 MPI_CHK( mpi_shift_r( &Y, 1 ) );
752
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100753 MPI_CHK( mpi_mul_mpi( &X, &T2, &T2 ) ); MOD_MUL( X );
754 MPI_CHK( mpi_mul_int( &T1, &T3, 2 ) ); MOD_ADD( T1 );
755 MPI_CHK( mpi_sub_mpi( &X, &X, &T1 ) ); MOD_SUB( X );
756 MPI_CHK( mpi_sub_mpi( &T1, &T3, &X ) ); MOD_SUB( T1 );
757 MPI_CHK( mpi_mul_mpi( &T1, &T1, &T2 ) ); MOD_MUL( T1 );
758 MPI_CHK( mpi_sub_mpi( &Y, &T1, &Y ) ); MOD_SUB( Y );
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100759
760 MPI_CHK( mpi_copy( &R->X, &X ) );
761 MPI_CHK( mpi_copy( &R->Y, &Y ) );
762 MPI_CHK( mpi_copy( &R->Z, &Z ) );
Manuel Pégourié-Gonnard989c32b2012-11-08 22:02:42 +0100763
764cleanup:
765
766 mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 );
767 mpi_free( &X ); mpi_free( &Y ); mpi_free( &Z );
768
769 return( ret );
770}
771
772/*
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +0100773 * Addition or subtraction: R = P + Q or R = P + Q,
774 * mixed affine-Jacobian coordinates (GECC 3.22)
775 *
776 * The coordinates of Q must be normalized (= affine),
777 * but those of P don't need to. R is not normalized.
778 *
779 * If sign >= 0, perform addition, otherwise perform subtraction,
780 * taking advantage of the fact that, for Q != 0, we have
781 * -Q = (Q.X, -Q.Y, Q.Z)
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100782 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100783static int ecp_add_mixed( const ecp_group *grp, ecp_point *R,
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +0100784 const ecp_point *P, const ecp_point *Q,
785 signed char sign )
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100786{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100787 int ret;
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +0100788 mpi T1, T2, T3, T4, X, Y, Z;
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100789
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +0100790#if defined(POLARSSL_SELF_TEST)
791 add_count++;
792#endif
793
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100794 /*
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +0100795 * Trivial cases: P == 0 or Q == 0
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +0100796 * (Check Q first, so that we know Q != 0 when we compute -Q.)
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100797 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100798 if( mpi_cmp_int( &Q->Z, 0 ) == 0 )
799 return( ecp_copy( R, P ) );
800
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +0100801 if( mpi_cmp_int( &P->Z, 0 ) == 0 )
802 {
803 ret = ecp_copy( R, Q );
804
805 /*
806 * -R.Y mod P = P - R.Y unless R.Y == 0
807 */
808 if( ret == 0 && sign < 0)
809 if( mpi_cmp_int( &R->Y, 0 ) != 0 )
810 ret = mpi_sub_mpi( &R->Y, &grp->P, &R->Y );
811
812 return( ret );
813 }
814
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100815 /*
816 * Make sure Q coordinates are normalized
817 */
818 if( mpi_cmp_int( &Q->Z, 1 ) != 0 )
819 return( POLARSSL_ERR_ECP_GENERIC );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100820
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +0100821 mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 ); mpi_init( &T4 );
822 mpi_init( &X ); mpi_init( &Y ); mpi_init( &Z );
Manuel Pégourié-Gonnardab38b702012-11-05 17:34:55 +0100823
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100824 MPI_CHK( mpi_mul_mpi( &T1, &P->Z, &P->Z ) ); MOD_MUL( T1 );
825 MPI_CHK( mpi_mul_mpi( &T2, &T1, &P->Z ) ); MOD_MUL( T2 );
826 MPI_CHK( mpi_mul_mpi( &T1, &T1, &Q->X ) ); MOD_MUL( T1 );
827 MPI_CHK( mpi_mul_mpi( &T2, &T2, &Q->Y ) ); MOD_MUL( T2 );
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +0100828
829 /*
830 * For subtraction, -Q.Y should have been used instead of Q.Y,
831 * so we replace T2 by -T2, which is P - T2 mod P
832 */
833 if( sign < 0 )
834 {
835 MPI_CHK( mpi_sub_mpi( &T2, &grp->P, &T2 ) );
836 MOD_SUB( T2 );
837 }
838
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100839 MPI_CHK( mpi_sub_mpi( &T1, &T1, &P->X ) ); MOD_SUB( T1 );
840 MPI_CHK( mpi_sub_mpi( &T2, &T2, &P->Y ) ); MOD_SUB( T2 );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100841
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +0100842 if( mpi_cmp_int( &T1, 0 ) == 0 )
843 {
844 if( mpi_cmp_int( &T2, 0 ) == 0 )
845 {
846 ret = ecp_double_jac( grp, R, P );
847 goto cleanup;
848 }
849 else
850 {
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100851 ret = ecp_set_zero( R );
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +0100852 goto cleanup;
853 }
854 }
855
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100856 MPI_CHK( mpi_mul_mpi( &Z, &P->Z, &T1 ) ); MOD_MUL( Z );
857 MPI_CHK( mpi_mul_mpi( &T3, &T1, &T1 ) ); MOD_MUL( T3 );
858 MPI_CHK( mpi_mul_mpi( &T4, &T3, &T1 ) ); MOD_MUL( T4 );
859 MPI_CHK( mpi_mul_mpi( &T3, &T3, &P->X ) ); MOD_MUL( T3 );
860 MPI_CHK( mpi_mul_int( &T1, &T3, 2 ) ); MOD_ADD( T1 );
861 MPI_CHK( mpi_mul_mpi( &X, &T2, &T2 ) ); MOD_MUL( X );
862 MPI_CHK( mpi_sub_mpi( &X, &X, &T1 ) ); MOD_SUB( X );
863 MPI_CHK( mpi_sub_mpi( &X, &X, &T4 ) ); MOD_SUB( X );
864 MPI_CHK( mpi_sub_mpi( &T3, &T3, &X ) ); MOD_SUB( T3 );
865 MPI_CHK( mpi_mul_mpi( &T3, &T3, &T2 ) ); MOD_MUL( T3 );
866 MPI_CHK( mpi_mul_mpi( &T4, &T4, &P->Y ) ); MOD_MUL( T4 );
867 MPI_CHK( mpi_sub_mpi( &Y, &T3, &T4 ) ); MOD_SUB( Y );
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +0100868
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100869 MPI_CHK( mpi_copy( &R->X, &X ) );
870 MPI_CHK( mpi_copy( &R->Y, &Y ) );
871 MPI_CHK( mpi_copy( &R->Z, &Z ) );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100872
873cleanup:
874
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +0100875 mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 ); mpi_free( &T4 );
876 mpi_free( &X ); mpi_free( &Y ); mpi_free( &Z );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100877
878 return( ret );
879}
880
881/*
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100882 * Addition: R = P + Q, result's coordinates normalized
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100883 */
884int ecp_add( const ecp_group *grp, ecp_point *R,
885 const ecp_point *P, const ecp_point *Q )
886{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100887 int ret;
Manuel Pégourié-Gonnard989c32b2012-11-08 22:02:42 +0100888
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +0100889 MPI_CHK( ecp_add_mixed( grp, R, P, Q , 1 ) );
890 MPI_CHK( ecp_normalize( grp, R ) );
891
892cleanup:
893 return( ret );
894}
895
896/*
897 * Subtraction: R = P - Q, result's coordinates normalized
898 */
899int ecp_sub( const ecp_group *grp, ecp_point *R,
900 const ecp_point *P, const ecp_point *Q )
901{
902 int ret;
903
904 MPI_CHK( ecp_add_mixed( grp, R, P, Q, -1 ) );
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100905 MPI_CHK( ecp_normalize( grp, R ) );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100906
Manuel Pégourié-Gonnard989c32b2012-11-08 22:02:42 +0100907cleanup:
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +0100908 return( ret );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100909}
910
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +0100911/*
Manuel Pégourié-Gonnard85556072012-11-17 19:54:20 +0100912 * Compute a modified width-w non-adjacent form (NAF) of a number,
913 * with a fixed pattern for resistance to SPA/timing attacks,
914 * see <http://rd.springer.com/chapter/10.1007/3-540-36563-X_23>.
915 * (The resulting multiplication algorithm can also been seen as a
916 * modification of 2^w-ary multiplication, with signed coefficients,
917 * all of them odd.)
918 *
919 * Input:
920 * m must be an odd positive mpi less than w * k bits long
921 * x must be an array of k elements
922 * w must be less than a certain maximum (currently 8)
923 *
924 * The result is a sequence x[0], ..., x[k-1] with x[i] in the range
925 * - 2^(width - 1) .. 2^(width - 1) - 1 such that
926 * m = (2 * x[0] + 1) + 2^width * (2 * x[1] + 1) + ...
927 * + 2^((k-1) * width) * (2 * x[k-1] + 1)
928 *
929 * Compared to "Algorithm SPA-resistant Width-w NAF with Odd Scalar"
930 * p. 335 of the cited reference, here we return only u, not d_w since
931 * it is known that the other d_w[j] will be 0. Moreover, the returned
932 * string doesn't actually store u_i but x_i = u_i / 2 since it is known
933 * that u_i is odd. Also, since we always select a positive value for d
934 * mod 2^w, we don't need to check the sign of u[i-1] when the reference
935 * does. Finally, there is an off-by-one error in the reference: the
936 * last index should be k-1, not k.
937 */
Manuel Pégourié-Gonnard7652a592012-11-21 10:00:45 +0100938static int ecp_w_naf_fixed( signed char x[], size_t k,
939 unsigned char w, const mpi *m )
Manuel Pégourié-Gonnard85556072012-11-17 19:54:20 +0100940{
941 int ret;
942 unsigned int i, u, mask, carry;
943 mpi M;
944
945 mpi_init( &M );
946
947 MPI_CHK( mpi_copy( &M, m ) );
948 mask = ( 1 << w ) - 1;
949 carry = 1 << ( w - 1 );
950
951 for( i = 0; i < k; i++ )
952 {
953 u = M.p[0] & mask;
954
955 if( ( u & 1 ) == 0 && i > 0 )
956 x[i - 1] -= carry;
957
958 x[i] = u >> 1;
959 mpi_shift_r( &M, w );
960 }
961
962 /*
963 * We should have consumed all the bits now
964 */
965 if( mpi_cmp_int( &M, 0 ) != 0 )
966 ret = POLARSSL_ERR_ECP_GENERIC;
967
968cleanup:
969
970 mpi_free( &M );
971
972 return( ret );
973}
974
975/*
Manuel Pégourié-Gonnard7652a592012-11-21 10:00:45 +0100976 * Precompute odd multiples of P up to (2 * t_len - 1) P.
977 * The table is filled with T[i] = (2 * i + 1) P.
978 */
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +0100979static int ecp_precompute( const ecp_group *grp,
980 ecp_point T[], size_t t_len,
981 const ecp_point *P )
Manuel Pégourié-Gonnard7652a592012-11-21 10:00:45 +0100982{
983 int ret;
984 size_t i;
985 ecp_point PP;
986
987 ecp_point_init( &PP );
988
989 MPI_CHK( ecp_add( grp, &PP, P, P ) );
990
991 MPI_CHK( ecp_copy( &T[0], P ) );
992
Manuel Pégourié-Gonnard7652a592012-11-21 10:00:45 +0100993 for( i = 1; i < t_len; i++ )
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100994 MPI_CHK( ecp_add_mixed( grp, &T[i], &T[i-1], &PP, +1 ) );
995
996 /*
997 * T[0] = P already has normalized coordinates
998 */
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +0100999 MPI_CHK( ecp_normalize_many( grp, T + 1, t_len - 1 ) );
Manuel Pégourié-Gonnard7652a592012-11-21 10:00:45 +01001000
1001cleanup:
1002
1003 ecp_point_free( &PP );
1004
1005 return( ret );
1006}
1007
1008/*
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001009 * Maximum length of the precomputed table
1010 */
1011#define MAX_PRE_LEN ( 1 << (POLARSSL_ECP_WINDOW_SIZE - 1) )
1012
1013/*
1014 * Maximum length of the NAF: ceil( grp->nbits + 1 ) / w
1015 * (that is: grp->nbits / w + 1)
1016 * Allow p_bits + 1 bits in case M = grp->N + 1 is one bit longer than N.
1017 */
1018#define MAX_NAF_LEN ( POLARSSL_ECP_MAX_N_BITS / 2 + 1 )
1019
1020/*
1021 * Integer multiplication: R = m * P
1022 *
1023 * Based on fixed-pattern width-w NAF, see comments of ecp_w_naf_fixed()
1024 * and <http://rd.springer.com/chapter/10.1007/3-540-36563-X_23>.
1025 *
1026 * This function executes a fixed number of operations for
1027 * random m in the range 0 .. 2^nbits - 1.
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001028 */
1029int ecp_mul( const ecp_group *grp, ecp_point *R,
1030 const mpi *m, const ecp_point *P )
1031{
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001032 int ret;
1033 unsigned char w, m_is_odd;
1034 size_t pre_len, naf_len, i, j;
1035 signed char naf[ MAX_NAF_LEN ];
1036 ecp_point Q, T[ MAX_PRE_LEN ];
1037 mpi M;
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001038
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001039 if( mpi_cmp_int( m, 0 ) < 0 || mpi_msb( m ) > grp->nbits )
Manuel Pégourié-Gonnard4bdd47d2012-11-11 14:33:59 +01001040 return( POLARSSL_ERR_ECP_GENERIC );
1041
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +01001042 w = grp->nbits >= 521 ? 6 :
1043 grp->nbits >= 224 ? 5 :
1044 4;
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001045
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +01001046 /*
1047 * Make sure w is within the limits.
1048 * The last test ensures that none of the precomputed points is zero,
1049 * which wouldn't be handled correctly by ecp_normalize_many().
1050 * It is only useful for small curves, as used in the test suite.
1051 */
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001052 if( w > POLARSSL_ECP_WINDOW_SIZE )
1053 w = POLARSSL_ECP_WINDOW_SIZE;
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +01001054 if( w < 2 || w >= grp->nbits )
1055 w = 2;
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001056
1057 pre_len = 1 << ( w - 1 );
1058 naf_len = grp->nbits / w + 1;
1059
1060 mpi_init( &M );
1061 ecp_point_init( &Q );
1062 for( i = 0; i < pre_len; i++ )
1063 ecp_point_init( &T[i] );
1064
1065 m_is_odd = ( mpi_get_bit( m, 0 ) == 1 );
1066
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001067 /*
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001068 * Make sure M is odd:
1069 * later we'll get m * P by subtracting * P or 2 * P to M * P.
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001070 */
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001071 MPI_CHK( mpi_copy( &M, m ) );
1072 MPI_CHK( mpi_add_int( &M, &M, 1 + m_is_odd ) );
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001073
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001074 /*
1075 * Compute the fixed-pattern NAF and precompute odd multiples
1076 */
1077 MPI_CHK( ecp_w_naf_fixed( naf, naf_len, w, &M ) );
1078 MPI_CHK( ecp_precompute( grp, T, pre_len, P ) );
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +01001079
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001080 /*
1081 * Compute M * P, using a variant of left-to-right 2^w-ary multiplication:
1082 * at each step we add (2 * naf[i] + 1) P, then multiply by 2^w.
1083 *
1084 * If naf[i] >= 0, we have (2 * naf[i] + 1) P == T[ naf[i] ]
1085 * Otherwise, (2 * naf[i] + 1) P == - ( 2 * ( - naf[i] - 1 ) + 1) P
1086 * == T[ - naf[i] - 1 ]
1087 */
1088 MPI_CHK( ecp_set_zero( &Q ) );
1089 i = naf_len - 1;
1090 while( 1 )
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001091 {
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001092 if( naf[i] < 0 )
1093 {
1094 MPI_CHK( ecp_add_mixed( grp, &Q, &Q, &T[ - naf[i] - 1 ], -1 ) );
1095 }
1096 else
1097 {
1098 MPI_CHK( ecp_add_mixed( grp, &Q, &Q, &T[ naf[i] ], +1 ) );
1099 }
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001100
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001101 if( i == 0 )
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001102 break;
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001103 i--;
1104
1105 for( j = 0; j < w; j++ )
1106 {
1107 MPI_CHK( ecp_double_jac( grp, &Q, &Q ) );
1108 }
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001109 }
1110
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001111 /*
1112 * Now get m * P from M * P.
1113 * Since we don't need T[] any more, we can recycle it:
1114 * we already have T[0] = P, now set T[1] = 2 * P.
1115 */
1116 MPI_CHK( ecp_add( grp, &T[1], P, P ) );
1117 MPI_CHK( ecp_sub( grp, R, &Q, &T[m_is_odd] ) );
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001118
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +01001119
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001120cleanup:
1121
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001122 mpi_free( &M );
1123 ecp_point_free( &Q );
1124 for( i = 0; i < pre_len; i++ )
1125 ecp_point_free( &T[i] );
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001126
1127 return( ret );
1128}
1129
1130
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +01001131#if defined(POLARSSL_SELF_TEST)
1132
Manuel Pégourié-Gonnardb505c272012-11-05 17:27:54 +01001133/*
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +01001134 * Checkup routine
1135 */
1136int ecp_self_test( int verbose )
1137{
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01001138 int ret;
1139 size_t i;
1140 ecp_group grp;
1141 ecp_point R;
1142 mpi m;
1143 unsigned long add_c_prev, dbl_c_prev;
1144 char *exponents[] =
1145 {
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001146 "000000000000000000000000000000000000000000000000", /* zero */
1147 "000000000000000000000000000000000000000000000001", /* one */
1148 "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831", /* N */
1149 "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01001150 "400000000000000000000000000000000000000000000000",
1151 "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
1152 "555555555555555555555555555555555555555555555555",
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01001153 };
1154
1155 ecp_group_init( &grp );
1156 ecp_point_init( &R );
1157 mpi_init( &m );
1158
1159 MPI_CHK( ecp_use_known_dp( &grp, POLARSSL_ECP_DP_SECP192R1 ) );
1160
1161 if( verbose != 0 )
1162 printf( " ECP test #1 (SPA resistance): " );
1163
1164 add_count = 0;
1165 dbl_count = 0;
1166 MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) );
1167 MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G ) );
1168
1169 for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
1170 {
1171 add_c_prev = add_count;
1172 dbl_c_prev = dbl_count;
1173 add_count = 0;
1174 dbl_count = 0;
1175
1176 MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) );
1177 MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G ) );
1178
1179 if( add_count != add_c_prev || dbl_count != dbl_c_prev )
1180 {
1181 if( verbose != 0 )
1182 printf( "failed (%zu)\n", i );
1183
1184 ret = 1;
1185 goto cleanup;
1186 }
1187 }
1188
1189 if( verbose != 0 )
1190 printf( "passed\n" );
1191
1192cleanup:
1193
1194 if( ret < 0 && verbose != 0 )
1195 printf( "Unexpected error, return code = %08X\n", ret );
1196
1197 ecp_group_free( &grp );
1198 ecp_point_free( &R );
1199 mpi_free( &m );
1200
1201 if( verbose != 0 )
1202 printf( "\n" );
1203
1204 return( ret );
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +01001205}
1206
1207#endif
1208
1209#endif