blob: 0787272feebaacd68e3f4477047041319479c879 [file] [log] [blame]
Paul Bakker5121ce52009-01-03 21:22:43 +00001/*
2 * Multi-precision integer library
3 *
Bence Szépkúti1e148272020-08-07 13:07:28 +02004 * Copyright The Mbed TLS Contributors
Manuel Pégourié-Gonnard37ff1402015-09-04 14:21:07 +02005 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
Paul Bakker5121ce52009-01-03 21:22:43 +000018 */
Simon Butcher15b15d12015-11-26 19:35:03 +000019
Paul Bakker5121ce52009-01-03 21:22:43 +000020/*
Simon Butcher15b15d12015-11-26 19:35:03 +000021 * The following sources were referenced in the design of this Multi-precision
22 * Integer library:
Paul Bakker5121ce52009-01-03 21:22:43 +000023 *
Simon Butcher15b15d12015-11-26 19:35:03 +000024 * [1] Handbook of Applied Cryptography - 1997
25 * Menezes, van Oorschot and Vanstone
26 *
27 * [2] Multi-Precision Math
28 * Tom St Denis
29 * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
30 *
31 * [3] GNU Multi-Precision Arithmetic Library
32 * https://gmplib.org/manual/index.html
33 *
Simon Butcherf5ba0452015-12-27 23:01:55 +000034 */
Paul Bakker5121ce52009-01-03 21:22:43 +000035
Gilles Peskinedb09ef62020-06-03 01:43:33 +020036#include "common.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000037
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020038#if defined(MBEDTLS_BIGNUM_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000039
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000040#include "mbedtls/bignum.h"
Janos Follath4614b9a2022-07-21 15:34:47 +010041#include "bignum_core.h"
Chris Jones4c5819c2021-03-03 17:45:34 +000042#include "bn_mul.h"
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050043#include "mbedtls/platform_util.h"
Janos Follath24eed8d2019-11-22 13:21:35 +000044#include "mbedtls/error.h"
Gabor Mezei22c9a6f2021-10-20 12:09:35 +020045#include "constant_time_internal.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000046
Dave Rodgman351c71b2021-12-06 17:50:53 +000047#include <limits.h>
Rich Evans00ab4702015-02-06 13:43:58 +000048#include <string.h>
49
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000050#include "mbedtls/platform.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020051
Gabor Mezei66669142022-08-03 12:52:26 +020052#define MPI_VALIDATE_RET( cond ) \
53 MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
54#define MPI_VALIDATE( cond ) \
55 MBEDTLS_INTERNAL_VALIDATE( cond )
56
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +010057#define MPI_SIZE_T_MAX ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
58
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050059/* Implementation that should never be optimized out by the compiler */
Andres Amaya Garcia6698d2f2018-04-24 08:39:07 -050060static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n )
61{
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050062 mbedtls_platform_zeroize( v, ciL * n );
63}
64
Paul Bakker5121ce52009-01-03 21:22:43 +000065/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000066 * Initialize one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000067 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020068void mbedtls_mpi_init( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000069{
Hanno Becker73d7d792018-12-11 10:35:51 +000070 MPI_VALIDATE( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +000071
Paul Bakker6c591fa2011-05-05 11:49:20 +000072 X->s = 1;
73 X->n = 0;
74 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000075}
76
77/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000078 * Unallocate one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000079 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020080void mbedtls_mpi_free( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000081{
Paul Bakker6c591fa2011-05-05 11:49:20 +000082 if( X == NULL )
83 return;
Paul Bakker5121ce52009-01-03 21:22:43 +000084
Paul Bakker6c591fa2011-05-05 11:49:20 +000085 if( X->p != NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +000086 {
Alexey Skalozube17a8da2016-01-13 17:19:33 +020087 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020088 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +000089 }
90
Paul Bakker6c591fa2011-05-05 11:49:20 +000091 X->s = 1;
92 X->n = 0;
93 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000094}
95
96/*
97 * Enlarge to the specified number of limbs
98 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020099int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs )
Paul Bakker5121ce52009-01-03 21:22:43 +0000100{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200101 mbedtls_mpi_uint *p;
Hanno Becker73d7d792018-12-11 10:35:51 +0000102 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000103
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200104 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200105 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakkerf9688572011-05-05 10:00:45 +0000106
Paul Bakker5121ce52009-01-03 21:22:43 +0000107 if( X->n < nblimbs )
108 {
Simon Butcher29176892016-05-20 00:19:09 +0100109 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200110 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakker5121ce52009-01-03 21:22:43 +0000111
Paul Bakker5121ce52009-01-03 21:22:43 +0000112 if( X->p != NULL )
113 {
114 memcpy( p, X->p, X->n * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200115 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200116 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +0000117 }
118
119 X->n = nblimbs;
120 X->p = p;
121 }
122
123 return( 0 );
124}
125
126/*
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100127 * Resize down as much as possible,
128 * while keeping at least the specified number of limbs
129 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200130int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100131{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200132 mbedtls_mpi_uint *p;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100133 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000134 MPI_VALIDATE_RET( X != NULL );
135
136 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
137 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100138
Gilles Peskinee2f563e2020-01-20 21:17:43 +0100139 /* Actually resize up if there are currently fewer than nblimbs limbs. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100140 if( X->n <= nblimbs )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200141 return( mbedtls_mpi_grow( X, nblimbs ) );
Gilles Peskine322752b2020-01-21 13:59:51 +0100142 /* After this point, then X->n > nblimbs and in particular X->n > 0. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100143
144 for( i = X->n - 1; i > 0; i-- )
145 if( X->p[i] != 0 )
146 break;
147 i++;
148
149 if( i < nblimbs )
150 i = nblimbs;
151
Simon Butcher29176892016-05-20 00:19:09 +0100152 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200153 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100154
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100155 if( X->p != NULL )
156 {
157 memcpy( p, X->p, i * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200158 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200159 mbedtls_free( X->p );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100160 }
161
162 X->n = i;
163 X->p = p;
164
165 return( 0 );
166}
167
Gilles Peskineed32b572021-06-02 22:17:52 +0200168/* Resize X to have exactly n limbs and set it to 0. */
169static int mbedtls_mpi_resize_clear( mbedtls_mpi *X, size_t limbs )
170{
171 if( limbs == 0 )
172 {
173 mbedtls_mpi_free( X );
174 return( 0 );
175 }
176 else if( X->n == limbs )
177 {
178 memset( X->p, 0, limbs * ciL );
179 X->s = 1;
180 return( 0 );
181 }
182 else
183 {
184 mbedtls_mpi_free( X );
185 return( mbedtls_mpi_grow( X, limbs ) );
186 }
187}
188
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100189/*
Gilles Peskine3da1a8f2021-06-08 23:17:42 +0200190 * Copy the contents of Y into X.
191 *
192 * This function is not constant-time. Leading zeros in Y may be removed.
193 *
194 * Ensure that X does not shrink. This is not guaranteed by the public API,
195 * but some code in the bignum module relies on this property, for example
196 * in mbedtls_mpi_exp_mod().
Paul Bakker5121ce52009-01-03 21:22:43 +0000197 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200198int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000199{
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100200 int ret = 0;
Paul Bakker23986e52011-04-24 08:57:21 +0000201 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000202 MPI_VALIDATE_RET( X != NULL );
203 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000204
205 if( X == Y )
206 return( 0 );
207
Gilles Peskinedb420622020-01-20 21:12:50 +0100208 if( Y->n == 0 )
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200209 {
Gilles Peskine3da1a8f2021-06-08 23:17:42 +0200210 if( X->n != 0 )
211 {
212 X->s = 1;
213 memset( X->p, 0, X->n * ciL );
214 }
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200215 return( 0 );
216 }
217
Paul Bakker5121ce52009-01-03 21:22:43 +0000218 for( i = Y->n - 1; i > 0; i-- )
219 if( Y->p[i] != 0 )
220 break;
221 i++;
222
223 X->s = Y->s;
224
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100225 if( X->n < i )
226 {
227 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
228 }
229 else
230 {
231 memset( X->p + i, 0, ( X->n - i ) * ciL );
232 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000233
Paul Bakker5121ce52009-01-03 21:22:43 +0000234 memcpy( X->p, Y->p, i * ciL );
235
236cleanup:
237
238 return( ret );
239}
240
241/*
242 * Swap the contents of X and Y
243 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200244void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000245{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200246 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000247 MPI_VALIDATE( X != NULL );
248 MPI_VALIDATE( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000249
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200250 memcpy( &T, X, sizeof( mbedtls_mpi ) );
251 memcpy( X, Y, sizeof( mbedtls_mpi ) );
252 memcpy( Y, &T, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000253}
254
255/*
256 * Set value from integer
257 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200258int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +0000259{
Janos Follath24eed8d2019-11-22 13:21:35 +0000260 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +0000261 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000262
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200263 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000264 memset( X->p, 0, X->n * ciL );
265
266 X->p[0] = ( z < 0 ) ? -z : z;
267 X->s = ( z < 0 ) ? -1 : 1;
268
269cleanup:
270
271 return( ret );
272}
273
274/*
Paul Bakker2f5947e2011-05-18 15:47:11 +0000275 * Get a specific bit
276 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200277int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000278{
Hanno Becker73d7d792018-12-11 10:35:51 +0000279 MPI_VALIDATE_RET( X != NULL );
280
Paul Bakker2f5947e2011-05-18 15:47:11 +0000281 if( X->n * biL <= pos )
282 return( 0 );
283
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200284 return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000285}
286
287/*
288 * Set a bit to a specific value of 0 or 1
289 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200290int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000291{
292 int ret = 0;
293 size_t off = pos / biL;
294 size_t idx = pos % biL;
Hanno Becker73d7d792018-12-11 10:35:51 +0000295 MPI_VALIDATE_RET( X != NULL );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000296
297 if( val != 0 && val != 1 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200298 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker9af723c2014-05-01 13:03:14 +0200299
Paul Bakker2f5947e2011-05-18 15:47:11 +0000300 if( X->n * biL <= pos )
301 {
302 if( val == 0 )
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200303 return( 0 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000304
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200305 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000306 }
307
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200308 X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );
309 X->p[off] |= (mbedtls_mpi_uint) val << idx;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000310
311cleanup:
Paul Bakker9af723c2014-05-01 13:03:14 +0200312
Paul Bakker2f5947e2011-05-18 15:47:11 +0000313 return( ret );
314}
315
316/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200317 * Return the number of less significant zero-bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000318 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200319size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000320{
Paul Bakker23986e52011-04-24 08:57:21 +0000321 size_t i, j, count = 0;
Hanno Beckerf25ee7f2018-12-19 16:51:02 +0000322 MBEDTLS_INTERNAL_VALIDATE_RET( X != NULL, 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000323
324 for( i = 0; i < X->n; i++ )
Paul Bakkerf9688572011-05-05 10:00:45 +0000325 for( j = 0; j < biL; j++, count++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000326 if( ( ( X->p[i] >> j ) & 1 ) != 0 )
327 return( count );
328
329 return( 0 );
330}
331
332/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200333 * Return the number of bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000334 */
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200335size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000336{
Gabor Mezei89e31462022-08-12 15:36:56 +0200337 return( mbedtls_mpi_core_bitlen( X->p, X->n ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000338}
339
340/*
341 * Return the total size in bytes
342 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200343size_t mbedtls_mpi_size( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000344{
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200345 return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000346}
347
348/*
349 * Convert an ASCII character to digit value
350 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200351static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c )
Paul Bakker5121ce52009-01-03 21:22:43 +0000352{
353 *d = 255;
354
355 if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
356 if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
357 if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
358
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200359 if( *d >= (mbedtls_mpi_uint) radix )
360 return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );
Paul Bakker5121ce52009-01-03 21:22:43 +0000361
362 return( 0 );
363}
364
365/*
366 * Import from an ASCII string
367 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200368int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000369{
Janos Follath24eed8d2019-11-22 13:21:35 +0000370 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000371 size_t i, j, slen, n;
Gilles Peskine80f56732021-04-03 18:26:13 +0200372 int sign = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200373 mbedtls_mpi_uint d;
374 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000375 MPI_VALIDATE_RET( X != NULL );
376 MPI_VALIDATE_RET( s != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000377
378 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000379 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000380
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200381 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000382
Gilles Peskine7cba8592021-06-08 18:32:34 +0200383 if( s[0] == 0 )
384 {
385 mbedtls_mpi_free( X );
386 return( 0 );
387 }
388
Gilles Peskine80f56732021-04-03 18:26:13 +0200389 if( s[0] == '-' )
390 {
391 ++s;
392 sign = -1;
393 }
394
Paul Bakkerff60ee62010-03-16 21:09:09 +0000395 slen = strlen( s );
396
Paul Bakker5121ce52009-01-03 21:22:43 +0000397 if( radix == 16 )
398 {
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +0100399 if( slen > MPI_SIZE_T_MAX >> 2 )
Manuel Pégourié-Gonnard58fb4952015-09-28 13:48:04 +0200400 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
401
Paul Bakkerff60ee62010-03-16 21:09:09 +0000402 n = BITS_TO_LIMBS( slen << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000403
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200404 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );
405 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000406
Paul Bakker23986e52011-04-24 08:57:21 +0000407 for( i = slen, j = 0; i > 0; i--, j++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000408 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200409 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
Paul Bakker66d5d072014-06-17 16:39:18 +0200410 X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000411 }
412 }
413 else
414 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200415 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000416
Paul Bakkerff60ee62010-03-16 21:09:09 +0000417 for( i = 0; i < slen; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000418 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200419 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
420 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );
Gilles Peskine80f56732021-04-03 18:26:13 +0200421 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000422 }
423 }
424
Gilles Peskine80f56732021-04-03 18:26:13 +0200425 if( sign < 0 && mbedtls_mpi_bitlen( X ) != 0 )
426 X->s = -1;
427
Paul Bakker5121ce52009-01-03 21:22:43 +0000428cleanup:
429
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200430 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000431
432 return( ret );
433}
434
435/*
Ron Eldora16fa292018-11-20 14:07:01 +0200436 * Helper to write the digits high-order first.
Paul Bakker5121ce52009-01-03 21:22:43 +0000437 */
Ron Eldora16fa292018-11-20 14:07:01 +0200438static int mpi_write_hlp( mbedtls_mpi *X, int radix,
439 char **p, const size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000440{
Janos Follath24eed8d2019-11-22 13:21:35 +0000441 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200442 mbedtls_mpi_uint r;
Ron Eldora16fa292018-11-20 14:07:01 +0200443 size_t length = 0;
444 char *p_end = *p + buflen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000445
Ron Eldora16fa292018-11-20 14:07:01 +0200446 do
447 {
448 if( length >= buflen )
449 {
450 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
451 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000452
Ron Eldora16fa292018-11-20 14:07:01 +0200453 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );
454 MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );
455 /*
456 * Write the residue in the current position, as an ASCII character.
457 */
458 if( r < 0xA )
459 *(--p_end) = (char)( '0' + r );
460 else
461 *(--p_end) = (char)( 'A' + ( r - 0xA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000462
Ron Eldora16fa292018-11-20 14:07:01 +0200463 length++;
464 } while( mbedtls_mpi_cmp_int( X, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000465
Ron Eldora16fa292018-11-20 14:07:01 +0200466 memmove( *p, p_end, length );
467 *p += length;
Paul Bakker5121ce52009-01-03 21:22:43 +0000468
469cleanup:
470
471 return( ret );
472}
473
474/*
475 * Export into an ASCII string
476 */
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100477int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,
478 char *buf, size_t buflen, size_t *olen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000479{
Paul Bakker23986e52011-04-24 08:57:21 +0000480 int ret = 0;
481 size_t n;
Paul Bakker5121ce52009-01-03 21:22:43 +0000482 char *p;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200483 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000484 MPI_VALIDATE_RET( X != NULL );
485 MPI_VALIDATE_RET( olen != NULL );
486 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000487
488 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000489 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000490
Hanno Becker23cfea02019-02-04 09:45:07 +0000491 n = mbedtls_mpi_bitlen( X ); /* Number of bits necessary to present `n`. */
492 if( radix >= 4 ) n >>= 1; /* Number of 4-adic digits necessary to present
493 * `n`. If radix > 4, this might be a strict
494 * overapproximation of the number of
495 * radix-adic digits needed to present `n`. */
496 if( radix >= 16 ) n >>= 1; /* Number of hexadecimal digits necessary to
497 * present `n`. */
498
Janos Follath80470622019-03-06 13:43:02 +0000499 n += 1; /* Terminating null byte */
Hanno Becker23cfea02019-02-04 09:45:07 +0000500 n += 1; /* Compensate for the divisions above, which round down `n`
501 * in case it's not even. */
502 n += 1; /* Potential '-'-sign. */
503 n += ( n & 1 ); /* Make n even to have enough space for hexadecimal writing,
504 * which always uses an even number of hex-digits. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000505
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100506 if( buflen < n )
Paul Bakker5121ce52009-01-03 21:22:43 +0000507 {
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100508 *olen = n;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200509 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000510 }
511
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100512 p = buf;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200513 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000514
515 if( X->s == -1 )
Hanno Beckerc983c812019-02-01 16:41:30 +0000516 {
Paul Bakker5121ce52009-01-03 21:22:43 +0000517 *p++ = '-';
Hanno Beckerc983c812019-02-01 16:41:30 +0000518 buflen--;
519 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000520
521 if( radix == 16 )
522 {
Paul Bakker23986e52011-04-24 08:57:21 +0000523 int c;
524 size_t i, j, k;
Paul Bakker5121ce52009-01-03 21:22:43 +0000525
Paul Bakker23986e52011-04-24 08:57:21 +0000526 for( i = X->n, k = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000527 {
Paul Bakker23986e52011-04-24 08:57:21 +0000528 for( j = ciL; j > 0; j-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000529 {
Paul Bakker23986e52011-04-24 08:57:21 +0000530 c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
Paul Bakker5121ce52009-01-03 21:22:43 +0000531
Paul Bakker6c343d72014-07-10 14:36:19 +0200532 if( c == 0 && k == 0 && ( i + j ) != 2 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000533 continue;
534
Paul Bakker98fe5ea2012-10-24 11:17:48 +0000535 *(p++) = "0123456789ABCDEF" [c / 16];
Paul Bakkerd2c167e2012-10-30 07:49:19 +0000536 *(p++) = "0123456789ABCDEF" [c % 16];
Paul Bakker5121ce52009-01-03 21:22:43 +0000537 k = 1;
538 }
539 }
540 }
541 else
542 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200543 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000544
545 if( T.s == -1 )
546 T.s = 1;
547
Ron Eldora16fa292018-11-20 14:07:01 +0200548 MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000549 }
550
551 *p++ = '\0';
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100552 *olen = p - buf;
Paul Bakker5121ce52009-01-03 21:22:43 +0000553
554cleanup:
555
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200556 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000557
558 return( ret );
559}
560
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200561#if defined(MBEDTLS_FS_IO)
Paul Bakker5121ce52009-01-03 21:22:43 +0000562/*
563 * Read X from an opened file
564 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200565int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin )
Paul Bakker5121ce52009-01-03 21:22:43 +0000566{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200567 mbedtls_mpi_uint d;
Paul Bakker23986e52011-04-24 08:57:21 +0000568 size_t slen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000569 char *p;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000570 /*
Paul Bakkercb37aa52011-11-30 16:00:20 +0000571 * Buffer should have space for (short) label and decimal formatted MPI,
572 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000573 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200574 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Paul Bakker5121ce52009-01-03 21:22:43 +0000575
Hanno Becker73d7d792018-12-11 10:35:51 +0000576 MPI_VALIDATE_RET( X != NULL );
577 MPI_VALIDATE_RET( fin != NULL );
578
579 if( radix < 2 || radix > 16 )
580 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
581
Paul Bakker5121ce52009-01-03 21:22:43 +0000582 memset( s, 0, sizeof( s ) );
583 if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200584 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000585
586 slen = strlen( s );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000587 if( slen == sizeof( s ) - 2 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200588 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000589
Hanno Beckerb2034b72017-04-26 11:46:46 +0100590 if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
591 if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
Paul Bakker5121ce52009-01-03 21:22:43 +0000592
593 p = s + slen;
Hanno Beckerb2034b72017-04-26 11:46:46 +0100594 while( p-- > s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000595 if( mpi_get_digit( &d, radix, *p ) != 0 )
596 break;
597
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200598 return( mbedtls_mpi_read_string( X, radix, p + 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000599}
600
601/*
602 * Write X into an opened file (or stdout if fout == NULL)
603 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200604int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout )
Paul Bakker5121ce52009-01-03 21:22:43 +0000605{
Janos Follath24eed8d2019-11-22 13:21:35 +0000606 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000607 size_t n, slen, plen;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000608 /*
Paul Bakker5531c6d2012-09-26 19:20:46 +0000609 * Buffer should have space for (short) label and decimal formatted MPI,
610 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000611 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200612 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Hanno Becker73d7d792018-12-11 10:35:51 +0000613 MPI_VALIDATE_RET( X != NULL );
614
615 if( radix < 2 || radix > 16 )
616 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000617
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100618 memset( s, 0, sizeof( s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000619
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100620 MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000621
622 if( p == NULL ) p = "";
623
624 plen = strlen( p );
625 slen = strlen( s );
626 s[slen++] = '\r';
627 s[slen++] = '\n';
628
629 if( fout != NULL )
630 {
631 if( fwrite( p, 1, plen, fout ) != plen ||
632 fwrite( s, 1, slen, fout ) != slen )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200633 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000634 }
635 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200636 mbedtls_printf( "%s%s", p, s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000637
638cleanup:
639
640 return( ret );
641}
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200642#endif /* MBEDTLS_FS_IO */
Paul Bakker5121ce52009-01-03 21:22:43 +0000643
644/*
Janos Follatha778a942019-02-13 10:28:28 +0000645 * Import X from unsigned binary data, little endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100646 *
647 * This function is guaranteed to return an MPI with exactly the necessary
648 * number of limbs (in particular, it does not skip 0s in the input).
Janos Follatha778a942019-02-13 10:28:28 +0000649 */
650int mbedtls_mpi_read_binary_le( mbedtls_mpi *X,
651 const unsigned char *buf, size_t buflen )
652{
Janos Follath24eed8d2019-11-22 13:21:35 +0000653 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath620c58c2022-08-15 11:58:42 +0100654 const size_t limbs = CHARS_TO_LIMBS( buflen );
Janos Follatha778a942019-02-13 10:28:28 +0000655
656 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskineed32b572021-06-02 22:17:52 +0200657 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Janos Follatha778a942019-02-13 10:28:28 +0000658
Janos Follath5f016652022-07-22 16:18:41 +0100659 MBEDTLS_MPI_CHK( mbedtls_mpi_core_read_le( X->p, X->n, buf, buflen ) );
Janos Follatha778a942019-02-13 10:28:28 +0000660
661cleanup:
662
Janos Follath171a7ef2019-02-15 16:17:45 +0000663 /*
664 * This function is also used to import keys. However, wiping the buffers
665 * upon failure is not necessary because failure only can happen before any
666 * input is copied.
667 */
Janos Follatha778a942019-02-13 10:28:28 +0000668 return( ret );
669}
670
671/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000672 * Import X from unsigned binary data, big endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100673 *
674 * This function is guaranteed to return an MPI with exactly the necessary
675 * number of limbs (in particular, it does not skip 0s in the input).
Paul Bakker5121ce52009-01-03 21:22:43 +0000676 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200677int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000678{
Janos Follath24eed8d2019-11-22 13:21:35 +0000679 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath620c58c2022-08-15 11:58:42 +0100680 const size_t limbs = CHARS_TO_LIMBS( buflen );
Paul Bakker5121ce52009-01-03 21:22:43 +0000681
Hanno Becker8ce11a32018-12-19 16:18:52 +0000682 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +0000683 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
684
Hanno Becker073c1992017-10-17 15:17:27 +0100685 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskineed32b572021-06-02 22:17:52 +0200686 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000687
Janos Follath5f016652022-07-22 16:18:41 +0100688 MBEDTLS_MPI_CHK( mbedtls_mpi_core_read_be( X->p, X->n, buf, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000689
690cleanup:
691
Janos Follath171a7ef2019-02-15 16:17:45 +0000692 /*
693 * This function is also used to import keys. However, wiping the buffers
694 * upon failure is not necessary because failure only can happen before any
695 * input is copied.
696 */
Paul Bakker5121ce52009-01-03 21:22:43 +0000697 return( ret );
698}
699
700/*
Janos Follathe344d0f2019-02-19 16:17:40 +0000701 * Export X into unsigned binary data, little endian
702 */
703int mbedtls_mpi_write_binary_le( const mbedtls_mpi *X,
704 unsigned char *buf, size_t buflen )
705{
Janos Follathca5688e2022-08-19 12:05:28 +0100706 return( mbedtls_mpi_core_write_le( X->p, X->n, buf, buflen ) );
Janos Follathe344d0f2019-02-19 16:17:40 +0000707}
708
709/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000710 * Export X into unsigned binary data, big endian
711 */
Gilles Peskine11cdb052018-11-20 16:47:47 +0100712int mbedtls_mpi_write_binary( const mbedtls_mpi *X,
713 unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000714{
Janos Follath5f016652022-07-22 16:18:41 +0100715 return( mbedtls_mpi_core_write_be( X->p, X->n, buf, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000716}
717
718/*
719 * Left-shift: X <<= count
720 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200721int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000722{
Janos Follath24eed8d2019-11-22 13:21:35 +0000723 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000724 size_t i, v0, t1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200725 mbedtls_mpi_uint r0 = 0, r1;
Hanno Becker73d7d792018-12-11 10:35:51 +0000726 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000727
728 v0 = count / (biL );
729 t1 = count & (biL - 1);
730
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200731 i = mbedtls_mpi_bitlen( X ) + count;
Paul Bakker5121ce52009-01-03 21:22:43 +0000732
Paul Bakkerf9688572011-05-05 10:00:45 +0000733 if( X->n * biL < i )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200734 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000735
736 ret = 0;
737
738 /*
739 * shift by count / limb_size
740 */
741 if( v0 > 0 )
742 {
Paul Bakker23986e52011-04-24 08:57:21 +0000743 for( i = X->n; i > v0; i-- )
744 X->p[i - 1] = X->p[i - v0 - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +0000745
Paul Bakker23986e52011-04-24 08:57:21 +0000746 for( ; i > 0; i-- )
747 X->p[i - 1] = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000748 }
749
750 /*
751 * shift by count % limb_size
752 */
753 if( t1 > 0 )
754 {
755 for( i = v0; i < X->n; i++ )
756 {
757 r1 = X->p[i] >> (biL - t1);
758 X->p[i] <<= t1;
759 X->p[i] |= r0;
760 r0 = r1;
761 }
762 }
763
764cleanup:
765
766 return( ret );
767}
768
769/*
770 * Right-shift: X >>= count
771 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200772int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000773{
Gilles Peskine66414202022-09-21 15:36:16 +0200774 MPI_VALIDATE_RET( X != NULL );
775 if( X->n != 0 )
776 mbedtls_mpi_core_shift_r( X->p, X->n, count );
777 return( 0 );
778}
779
780void mbedtls_mpi_core_shift_r( mbedtls_mpi_uint *X, size_t limbs,
781 size_t count )
782{
Paul Bakker23986e52011-04-24 08:57:21 +0000783 size_t i, v0, v1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200784 mbedtls_mpi_uint r0 = 0, r1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000785
786 v0 = count / biL;
787 v1 = count & (biL - 1);
788
Gilles Peskine66414202022-09-21 15:36:16 +0200789 if( v0 > limbs || ( v0 == limbs && v1 > 0 ) )
790 {
791 memset( X, 0, limbs * ciL );
792 return;
793 }
Manuel Pégourié-Gonnarde44ec102012-11-17 12:42:51 +0100794
Paul Bakker5121ce52009-01-03 21:22:43 +0000795 /*
796 * shift by count / limb_size
797 */
798 if( v0 > 0 )
799 {
Gilles Peskine66414202022-09-21 15:36:16 +0200800 for( i = 0; i < limbs - v0; i++ )
801 X[i] = X[i + v0];
Paul Bakker5121ce52009-01-03 21:22:43 +0000802
Gilles Peskine66414202022-09-21 15:36:16 +0200803 for( ; i < limbs; i++ )
804 X[i] = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000805 }
806
807 /*
808 * shift by count % limb_size
809 */
810 if( v1 > 0 )
811 {
Gilles Peskine66414202022-09-21 15:36:16 +0200812 for( i = limbs; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000813 {
Gilles Peskine66414202022-09-21 15:36:16 +0200814 r1 = X[i - 1] << (biL - v1);
815 X[i - 1] >>= v1;
816 X[i - 1] |= r0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000817 r0 = r1;
818 }
819 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000820}
821
822/*
823 * Compare unsigned values
824 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200825int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000826{
Paul Bakker23986e52011-04-24 08:57:21 +0000827 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +0000828 MPI_VALIDATE_RET( X != NULL );
829 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000830
Paul Bakker23986e52011-04-24 08:57:21 +0000831 for( i = X->n; i > 0; i-- )
832 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000833 break;
834
Paul Bakker23986e52011-04-24 08:57:21 +0000835 for( j = Y->n; j > 0; j-- )
836 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000837 break;
838
Paul Bakker23986e52011-04-24 08:57:21 +0000839 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000840 return( 0 );
841
842 if( i > j ) return( 1 );
843 if( j > i ) return( -1 );
844
Paul Bakker23986e52011-04-24 08:57:21 +0000845 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000846 {
Paul Bakker23986e52011-04-24 08:57:21 +0000847 if( X->p[i - 1] > Y->p[i - 1] ) return( 1 );
848 if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000849 }
850
851 return( 0 );
852}
853
854/*
855 * Compare signed values
856 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200857int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000858{
Paul Bakker23986e52011-04-24 08:57:21 +0000859 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +0000860 MPI_VALIDATE_RET( X != NULL );
861 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000862
Paul Bakker23986e52011-04-24 08:57:21 +0000863 for( i = X->n; i > 0; i-- )
864 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000865 break;
866
Paul Bakker23986e52011-04-24 08:57:21 +0000867 for( j = Y->n; j > 0; j-- )
868 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000869 break;
870
Paul Bakker23986e52011-04-24 08:57:21 +0000871 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000872 return( 0 );
873
874 if( i > j ) return( X->s );
Paul Bakker0c8f73b2012-03-22 14:08:57 +0000875 if( j > i ) return( -Y->s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000876
877 if( X->s > 0 && Y->s < 0 ) return( 1 );
878 if( Y->s > 0 && X->s < 0 ) return( -1 );
879
Paul Bakker23986e52011-04-24 08:57:21 +0000880 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000881 {
Paul Bakker23986e52011-04-24 08:57:21 +0000882 if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );
883 if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000884 }
885
886 return( 0 );
887}
888
Janos Follathee6abce2019-09-05 14:47:19 +0100889/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000890 * Compare signed values
891 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200892int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +0000893{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200894 mbedtls_mpi Y;
895 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +0000896 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000897
898 *p = ( z < 0 ) ? -z : z;
899 Y.s = ( z < 0 ) ? -1 : 1;
900 Y.n = 1;
901 Y.p = p;
902
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200903 return( mbedtls_mpi_cmp_mpi( X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000904}
905
906/*
907 * Unsigned addition: X = |A| + |B| (HAC 14.7)
908 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200909int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +0000910{
Janos Follath24eed8d2019-11-22 13:21:35 +0000911 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000912 size_t i, j;
Janos Follath6c922682015-10-30 17:43:11 +0100913 mbedtls_mpi_uint *o, *p, c, tmp;
Hanno Becker73d7d792018-12-11 10:35:51 +0000914 MPI_VALIDATE_RET( X != NULL );
915 MPI_VALIDATE_RET( A != NULL );
916 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000917
918 if( X == B )
919 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200920 const mbedtls_mpi *T = A; A = X; B = T;
Paul Bakker5121ce52009-01-03 21:22:43 +0000921 }
922
923 if( X != A )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200924 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
Paul Bakker9af723c2014-05-01 13:03:14 +0200925
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000926 /*
927 * X should always be positive as a result of unsigned additions.
928 */
929 X->s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000930
Paul Bakker23986e52011-04-24 08:57:21 +0000931 for( j = B->n; j > 0; j-- )
932 if( B->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000933 break;
934
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200935 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000936
937 o = B->p; p = X->p; c = 0;
938
Janos Follath6c922682015-10-30 17:43:11 +0100939 /*
940 * tmp is used because it might happen that p == o
941 */
Paul Bakker23986e52011-04-24 08:57:21 +0000942 for( i = 0; i < j; i++, o++, p++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000943 {
Janos Follath6c922682015-10-30 17:43:11 +0100944 tmp= *o;
Paul Bakker5121ce52009-01-03 21:22:43 +0000945 *p += c; c = ( *p < c );
Janos Follath6c922682015-10-30 17:43:11 +0100946 *p += tmp; c += ( *p < tmp );
Paul Bakker5121ce52009-01-03 21:22:43 +0000947 }
948
949 while( c != 0 )
950 {
951 if( i >= X->n )
952 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200953 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000954 p = X->p + i;
955 }
956
Paul Bakker2d319fd2012-09-16 21:34:26 +0000957 *p += c; c = ( *p < c ); i++; p++;
Paul Bakker5121ce52009-01-03 21:22:43 +0000958 }
959
960cleanup:
961
962 return( ret );
963}
964
Paul Bakker5121ce52009-01-03 21:22:43 +0000965/*
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200966 * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
Paul Bakker5121ce52009-01-03 21:22:43 +0000967 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200968int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +0000969{
Janos Follath24eed8d2019-11-22 13:21:35 +0000970 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000971 size_t n;
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200972 mbedtls_mpi_uint carry;
Hanno Becker73d7d792018-12-11 10:35:51 +0000973 MPI_VALIDATE_RET( X != NULL );
974 MPI_VALIDATE_RET( A != NULL );
975 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000976
Paul Bakker23986e52011-04-24 08:57:21 +0000977 for( n = B->n; n > 0; n-- )
978 if( B->p[n - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000979 break;
Gilles Peskinec8a91772021-01-27 22:30:43 +0100980 if( n > A->n )
981 {
982 /* B >= (2^ciL)^n > A */
983 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
984 goto cleanup;
985 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000986
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200987 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, A->n ) );
988
989 /* Set the high limbs of X to match A. Don't touch the lower limbs
990 * because X might be aliased to B, and we must not overwrite the
991 * significant digits of B. */
992 if( A->n > n )
993 memcpy( X->p + n, A->p + n, ( A->n - n ) * ciL );
994 if( X->n > A->n )
995 memset( X->p + A->n, 0, ( X->n - A->n ) * ciL );
996
Tom Cosgrove7e655f72022-07-20 14:02:11 +0100997 carry = mbedtls_mpi_core_sub( X->p, A->p, B->p, n );
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200998 if( carry != 0 )
Gilles Peskinec097e9e2020-06-08 21:58:22 +0200999 {
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001000 /* Propagate the carry to the first nonzero limb of X. */
1001 for( ; n < X->n && X->p[n] == 0; n++ )
1002 --X->p[n];
1003 /* If we ran out of space for the carry, it means that the result
1004 * is negative. */
1005 if( n == X->n )
Gilles Peskine89b41302020-07-23 01:16:46 +02001006 {
1007 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1008 goto cleanup;
1009 }
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001010 --X->p[n];
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001011 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001012
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001013 /* X should always be positive as a result of unsigned subtractions. */
1014 X->s = 1;
1015
Paul Bakker5121ce52009-01-03 21:22:43 +00001016cleanup:
Paul Bakker5121ce52009-01-03 21:22:43 +00001017 return( ret );
1018}
1019
1020/*
1021 * Signed addition: X = A + B
1022 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001023int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001024{
Hanno Becker73d7d792018-12-11 10:35:51 +00001025 int ret, s;
1026 MPI_VALIDATE_RET( X != NULL );
1027 MPI_VALIDATE_RET( A != NULL );
1028 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001029
Hanno Becker73d7d792018-12-11 10:35:51 +00001030 s = A->s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001031 if( A->s * B->s < 0 )
1032 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001033 if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001034 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001035 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001036 X->s = s;
1037 }
1038 else
1039 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001040 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001041 X->s = -s;
1042 }
1043 }
1044 else
1045 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001046 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001047 X->s = s;
1048 }
1049
1050cleanup:
1051
1052 return( ret );
1053}
1054
1055/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001056 * Signed subtraction: X = A - B
Paul Bakker5121ce52009-01-03 21:22:43 +00001057 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001058int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001059{
Hanno Becker73d7d792018-12-11 10:35:51 +00001060 int ret, s;
1061 MPI_VALIDATE_RET( X != NULL );
1062 MPI_VALIDATE_RET( A != NULL );
1063 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001064
Hanno Becker73d7d792018-12-11 10:35:51 +00001065 s = A->s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001066 if( A->s * B->s > 0 )
1067 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001068 if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001069 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001070 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001071 X->s = s;
1072 }
1073 else
1074 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001075 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001076 X->s = -s;
1077 }
1078 }
1079 else
1080 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001081 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001082 X->s = s;
1083 }
1084
1085cleanup:
1086
1087 return( ret );
1088}
1089
1090/*
1091 * Signed addition: X = A + b
1092 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001093int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001094{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001095 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001096 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001097 MPI_VALIDATE_RET( X != NULL );
1098 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001099
1100 p[0] = ( b < 0 ) ? -b : b;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001101 B.s = ( b < 0 ) ? -1 : 1;
1102 B.n = 1;
1103 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001104
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001105 return( mbedtls_mpi_add_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001106}
1107
1108/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001109 * Signed subtraction: X = A - b
Paul Bakker5121ce52009-01-03 21:22:43 +00001110 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001111int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001112{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001113 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001114 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001115 MPI_VALIDATE_RET( X != NULL );
1116 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001117
1118 p[0] = ( b < 0 ) ? -b : b;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001119 B.s = ( b < 0 ) ? -1 : 1;
1120 B.n = 1;
1121 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001122
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001123 return( mbedtls_mpi_sub_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001124}
1125
Paul Bakker5121ce52009-01-03 21:22:43 +00001126/*
1127 * Baseline multiplication: X = A * B (HAC 14.12)
1128 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001129int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001130{
Janos Follath24eed8d2019-11-22 13:21:35 +00001131 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker1772e052022-04-13 06:51:40 +01001132 size_t i, j;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001133 mbedtls_mpi TA, TB;
Hanno Beckerda763de2022-04-13 06:50:02 +01001134 int result_is_zero = 0;
Hanno Becker73d7d792018-12-11 10:35:51 +00001135 MPI_VALIDATE_RET( X != NULL );
1136 MPI_VALIDATE_RET( A != NULL );
1137 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001138
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001139 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001140
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001141 if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
1142 if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
Paul Bakker5121ce52009-01-03 21:22:43 +00001143
Hanno Beckerda763de2022-04-13 06:50:02 +01001144 for( i = A->n; i > 0; i-- )
1145 if( A->p[i - 1] != 0 )
1146 break;
1147 if( i == 0 )
1148 result_is_zero = 1;
1149
1150 for( j = B->n; j > 0; j-- )
1151 if( B->p[j - 1] != 0 )
1152 break;
1153 if( j == 0 )
1154 result_is_zero = 1;
1155
1156 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001157 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001158
Hanno Becker1772e052022-04-13 06:51:40 +01001159 for( size_t k = 0; k < j; k++ )
Hanno Beckerfee261a2022-04-06 06:20:22 +01001160 {
1161 /* We know that there cannot be any carry-out since we're
1162 * iterating from bottom to top. */
Hanno Beckerda763de2022-04-13 06:50:02 +01001163 (void) mbedtls_mpi_core_mla( X->p + k, i + 1,
1164 A->p, i,
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001165 B->p[k] );
Hanno Beckerfee261a2022-04-06 06:20:22 +01001166 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001167
Hanno Beckerda763de2022-04-13 06:50:02 +01001168 /* If the result is 0, we don't shortcut the operation, which reduces
1169 * but does not eliminate side channels leaking the zero-ness. We do
1170 * need to take care to set the sign bit properly since the library does
1171 * not fully support an MPI object with a value of 0 and s == -1. */
1172 if( result_is_zero )
1173 X->s = 1;
1174 else
1175 X->s = A->s * B->s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001176
1177cleanup:
1178
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001179 mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
Paul Bakker5121ce52009-01-03 21:22:43 +00001180
1181 return( ret );
1182}
1183
1184/*
1185 * Baseline multiplication: X = A * b
1186 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001187int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001188{
Hanno Becker73d7d792018-12-11 10:35:51 +00001189 MPI_VALIDATE_RET( X != NULL );
1190 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001191
Hanno Becker35771312022-04-14 11:52:11 +01001192 size_t n = A->n;
1193 while( n > 0 && A->p[n - 1] == 0 )
1194 --n;
1195
Hanno Becker74a11a32022-04-06 06:27:00 +01001196 /* The general method below doesn't work if b==0. */
Hanno Becker35771312022-04-14 11:52:11 +01001197 if( b == 0 || n == 0 )
Paul Elliott986b55a2021-04-20 21:46:29 +01001198 return( mbedtls_mpi_lset( X, 0 ) );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001199
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001200 /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001201 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001202 /* In general, A * b requires 1 limb more than b. If
1203 * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1204 * number of limbs as A and the call to grow() is not required since
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001205 * copy() will take care of the growth if needed. However, experimentally,
1206 * making the call to grow() unconditional causes slightly fewer
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001207 * calls to calloc() in ECP code, presumably because it reuses the
1208 * same mpi for a while and this way the mpi is more likely to directly
Hanno Becker9137b9c2022-04-12 10:51:54 +01001209 * grow to its final size.
1210 *
1211 * Note that calculating A*b as 0 + A*b doesn't work as-is because
1212 * A,X can be the same. */
Hanno Becker35771312022-04-14 11:52:11 +01001213 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n + 1 ) );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001214 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
Hanno Becker35771312022-04-14 11:52:11 +01001215 mbedtls_mpi_core_mla( X->p, X->n, A->p, n, b - 1 );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001216
1217cleanup:
1218 return( ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00001219}
1220
1221/*
Simon Butcherf5ba0452015-12-27 23:01:55 +00001222 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1223 * mbedtls_mpi_uint divisor, d
Simon Butcher15b15d12015-11-26 19:35:03 +00001224 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001225static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,
1226 mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r )
Simon Butcher15b15d12015-11-26 19:35:03 +00001227{
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001228#if defined(MBEDTLS_HAVE_UDBL)
1229 mbedtls_t_udbl dividend, quotient;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001230#else
Simon Butcher9803d072016-01-03 00:24:34 +00001231 const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
1232 const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001233 mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1234 mbedtls_mpi_uint u0_msw, u0_lsw;
Simon Butcher9803d072016-01-03 00:24:34 +00001235 size_t s;
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001236#endif
1237
Simon Butcher15b15d12015-11-26 19:35:03 +00001238 /*
1239 * Check for overflow
1240 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001241 if( 0 == d || u1 >= d )
Simon Butcher15b15d12015-11-26 19:35:03 +00001242 {
Simon Butcherf5ba0452015-12-27 23:01:55 +00001243 if (r != NULL) *r = ~0;
Simon Butcher15b15d12015-11-26 19:35:03 +00001244
Simon Butcherf5ba0452015-12-27 23:01:55 +00001245 return ( ~0 );
Simon Butcher15b15d12015-11-26 19:35:03 +00001246 }
1247
1248#if defined(MBEDTLS_HAVE_UDBL)
Simon Butcher15b15d12015-11-26 19:35:03 +00001249 dividend = (mbedtls_t_udbl) u1 << biL;
1250 dividend |= (mbedtls_t_udbl) u0;
1251 quotient = dividend / d;
1252 if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
1253 quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
1254
1255 if( r != NULL )
Simon Butcher9803d072016-01-03 00:24:34 +00001256 *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001257
1258 return (mbedtls_mpi_uint) quotient;
1259#else
Simon Butcher15b15d12015-11-26 19:35:03 +00001260
1261 /*
1262 * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1263 * Vol. 2 - Seminumerical Algorithms, Knuth
1264 */
1265
1266 /*
1267 * Normalize the divisor, d, and dividend, u0, u1
1268 */
Janos Follath4670f882022-07-21 18:25:42 +01001269 s = mbedtls_mpi_core_clz( d );
Simon Butcher15b15d12015-11-26 19:35:03 +00001270 d = d << s;
1271
1272 u1 = u1 << s;
Simon Butcher9803d072016-01-03 00:24:34 +00001273 u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001274 u0 = u0 << s;
1275
1276 d1 = d >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001277 d0 = d & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001278
1279 u0_msw = u0 >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001280 u0_lsw = u0 & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001281
1282 /*
1283 * Find the first quotient and remainder
1284 */
1285 q1 = u1 / d1;
1286 r0 = u1 - d1 * q1;
1287
1288 while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
1289 {
1290 q1 -= 1;
1291 r0 += d1;
1292
1293 if ( r0 >= radix ) break;
1294 }
1295
Simon Butcherf5ba0452015-12-27 23:01:55 +00001296 rAX = ( u1 * radix ) + ( u0_msw - q1 * d );
Simon Butcher15b15d12015-11-26 19:35:03 +00001297 q0 = rAX / d1;
1298 r0 = rAX - q0 * d1;
1299
1300 while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
1301 {
1302 q0 -= 1;
1303 r0 += d1;
1304
1305 if ( r0 >= radix ) break;
1306 }
1307
1308 if (r != NULL)
Simon Butcherf5ba0452015-12-27 23:01:55 +00001309 *r = ( rAX * radix + u0_lsw - q0 * d ) >> s;
Simon Butcher15b15d12015-11-26 19:35:03 +00001310
1311 quotient = q1 * radix + q0;
1312
1313 return quotient;
1314#endif
1315}
1316
1317/*
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001318 * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
Paul Bakker5121ce52009-01-03 21:22:43 +00001319 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001320int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1321 const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001322{
Janos Follath24eed8d2019-11-22 13:21:35 +00001323 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001324 size_t i, n, t, k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001325 mbedtls_mpi X, Y, Z, T1, T2;
Alexander Kd19a1932019-11-01 18:20:42 +03001326 mbedtls_mpi_uint TP2[3];
Hanno Becker73d7d792018-12-11 10:35:51 +00001327 MPI_VALIDATE_RET( A != NULL );
1328 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001329
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001330 if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )
1331 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001332
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001333 mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001334 mbedtls_mpi_init( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001335 /*
1336 * Avoid dynamic memory allocations for constant-size T2.
1337 *
1338 * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1339 * so nobody increase the size of the MPI and we're safe to use an on-stack
1340 * buffer.
1341 */
Alexander K35d6d462019-10-31 14:46:45 +03001342 T2.s = 1;
Alexander Kd19a1932019-11-01 18:20:42 +03001343 T2.n = sizeof( TP2 ) / sizeof( *TP2 );
1344 T2.p = TP2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001345
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001346 if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001347 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001348 if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );
1349 if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001350 return( 0 );
1351 }
1352
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001353 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );
1354 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001355 X.s = Y.s = 1;
1356
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001357 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
1358 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z, 0 ) );
Gilles Peskine2536aa72020-07-24 00:12:59 +02001359 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, A->n + 2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001360
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02001361 k = mbedtls_mpi_bitlen( &Y ) % biL;
Paul Bakkerf9688572011-05-05 10:00:45 +00001362 if( k < biL - 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001363 {
1364 k = biL - 1 - k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001365 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );
1366 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001367 }
1368 else k = 0;
1369
1370 n = X.n - 1;
1371 t = Y.n - 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001372 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001373
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001374 while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001375 {
1376 Z.p[n - t]++;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001377 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001378 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001379 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001380
1381 for( i = n; i > t ; i-- )
1382 {
1383 if( X.p[i] >= Y.p[t] )
1384 Z.p[i - t - 1] = ~0;
1385 else
1386 {
Simon Butcher15b15d12015-11-26 19:35:03 +00001387 Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
1388 Y.p[t], NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001389 }
1390
Alexander K35d6d462019-10-31 14:46:45 +03001391 T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
1392 T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
1393 T2.p[2] = X.p[i];
1394
Paul Bakker5121ce52009-01-03 21:22:43 +00001395 Z.p[i - t - 1]++;
1396 do
1397 {
1398 Z.p[i - t - 1]--;
1399
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001400 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );
Paul Bakker66d5d072014-06-17 16:39:18 +02001401 T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001402 T1.p[1] = Y.p[t];
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001403 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001404 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001405 while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001406
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001407 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
1408 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1409 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001410
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001411 if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001412 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001413 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );
1414 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1415 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001416 Z.p[i - t - 1]--;
1417 }
1418 }
1419
1420 if( Q != NULL )
1421 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001422 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001423 Q->s = A->s * B->s;
1424 }
1425
1426 if( R != NULL )
1427 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001428 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );
Paul Bakkerf02c5642012-11-13 10:25:21 +00001429 X.s = A->s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001430 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001431
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001432 if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001433 R->s = 1;
1434 }
1435
1436cleanup:
1437
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001438 mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001439 mbedtls_mpi_free( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001440 mbedtls_platform_zeroize( TP2, sizeof( TP2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001441
1442 return( ret );
1443}
1444
1445/*
1446 * Division by int: A = Q * b + R
Paul Bakker5121ce52009-01-03 21:22:43 +00001447 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001448int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R,
1449 const mbedtls_mpi *A,
1450 mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001451{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001452 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001453 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001454 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001455
1456 p[0] = ( b < 0 ) ? -b : b;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001457 B.s = ( b < 0 ) ? -1 : 1;
1458 B.n = 1;
1459 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001460
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001461 return( mbedtls_mpi_div_mpi( Q, R, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001462}
1463
1464/*
1465 * Modulo: R = A mod B
1466 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001467int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001468{
Janos Follath24eed8d2019-11-22 13:21:35 +00001469 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +00001470 MPI_VALIDATE_RET( R != NULL );
1471 MPI_VALIDATE_RET( A != NULL );
1472 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001473
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001474 if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )
1475 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001476
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001477 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001478
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001479 while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )
1480 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001481
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001482 while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )
1483 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001484
1485cleanup:
1486
1487 return( ret );
1488}
1489
1490/*
1491 * Modulo: r = A mod b
1492 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001493int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001494{
Paul Bakker23986e52011-04-24 08:57:21 +00001495 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001496 mbedtls_mpi_uint x, y, z;
Hanno Becker73d7d792018-12-11 10:35:51 +00001497 MPI_VALIDATE_RET( r != NULL );
1498 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001499
1500 if( b == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001501 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001502
1503 if( b < 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001504 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakker5121ce52009-01-03 21:22:43 +00001505
1506 /*
1507 * handle trivial cases
1508 */
Gilles Peskineae25bb02022-06-09 19:32:46 +02001509 if( b == 1 || A->n == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001510 {
1511 *r = 0;
1512 return( 0 );
1513 }
1514
1515 if( b == 2 )
1516 {
1517 *r = A->p[0] & 1;
1518 return( 0 );
1519 }
1520
1521 /*
1522 * general case
1523 */
Paul Bakker23986e52011-04-24 08:57:21 +00001524 for( i = A->n, y = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001525 {
Paul Bakker23986e52011-04-24 08:57:21 +00001526 x = A->p[i - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001527 y = ( y << biH ) | ( x >> biH );
1528 z = y / b;
1529 y -= z * b;
1530
1531 x <<= biH;
1532 y = ( y << biH ) | ( x >> biH );
1533 z = y / b;
1534 y -= z * b;
1535 }
1536
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001537 /*
1538 * If A is negative, then the current y represents a negative value.
1539 * Flipping it to the positive side.
1540 */
1541 if( A->s < 0 && y != 0 )
1542 y = b - y;
1543
Paul Bakker5121ce52009-01-03 21:22:43 +00001544 *r = y;
1545
1546 return( 0 );
1547}
1548
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001549static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00001550{
Tom Cosgroveb7438d12022-09-15 15:05:59 +01001551 *mm = mbedtls_mpi_core_montmul_init( N->p );
Paul Bakker5121ce52009-01-03 21:22:43 +00001552}
1553
Tom Cosgrove93842842022-08-05 16:59:43 +01001554/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
1555 *
1556 * \param[in,out] A One of the numbers to multiply.
1557 * It must have at least as many limbs as N
1558 * (A->n >= N->n), and any limbs beyond n are ignored.
1559 * On successful completion, A contains the result of
1560 * the multiplication A * B * R^-1 mod N where
1561 * R = (2^ciL)^n.
1562 * \param[in] B One of the numbers to multiply.
1563 * It must be nonzero and must not have more limbs than N
1564 * (B->n <= N->n).
Tom Cosgrove40d22942022-08-17 06:42:44 +01001565 * \param[in] N The modulus. \p N must be odd.
Tom Cosgrove93842842022-08-05 16:59:43 +01001566 * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
1567 * This is -N^-1 mod 2^ciL.
1568 * \param[in,out] T A bignum for temporary storage.
1569 * It must be at least twice the limb size of N plus 1
1570 * (T->n >= 2 * N->n + 1).
1571 * Its initial content is unused and
1572 * its final content is indeterminate.
Tom Cosgrove5dd97e62022-08-30 14:31:49 +01001573 * It does not get reallocated.
Tom Cosgrove93842842022-08-05 16:59:43 +01001574 */
1575static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B,
1576 const mbedtls_mpi *N, mbedtls_mpi_uint mm,
Tom Cosgrovef88b47e2022-08-17 08:42:58 +01001577 mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001578{
Tom Cosgrove93842842022-08-05 16:59:43 +01001579 mbedtls_mpi_core_montmul( A->p, A->p, B->p, B->n, N->p, N->n, mm, T->p );
Paul Bakker5121ce52009-01-03 21:22:43 +00001580}
1581
1582/*
1583 * Montgomery reduction: A = A * R^-1 mod N
Gilles Peskine2a82f722020-06-04 15:00:49 +02001584 *
Tom Cosgrove93842842022-08-05 16:59:43 +01001585 * See mpi_montmul() regarding constraints and guarantees on the parameters.
Paul Bakker5121ce52009-01-03 21:22:43 +00001586 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001587static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N,
Tom Cosgrovef88b47e2022-08-17 08:42:58 +01001588 mbedtls_mpi_uint mm, mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001589{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001590 mbedtls_mpi_uint z = 1;
1591 mbedtls_mpi U;
Paul Bakker5121ce52009-01-03 21:22:43 +00001592
Paul Bakker8ddb6452013-02-27 14:56:33 +01001593 U.n = U.s = (int) z;
Paul Bakker5121ce52009-01-03 21:22:43 +00001594 U.p = &z;
1595
Tom Cosgrove93842842022-08-05 16:59:43 +01001596 mpi_montmul( A, &U, N, mm, T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001597}
1598
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001599/**
1600 * Select an MPI from a table without leaking the index.
1601 *
1602 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
1603 * reads the entire table in order to avoid leaking the value of idx to an
1604 * attacker able to observe memory access patterns.
1605 *
1606 * \param[out] R Where to write the selected MPI.
1607 * \param[in] T The table to read from.
1608 * \param[in] T_size The number of elements in the table.
1609 * \param[in] idx The index of the element to select;
1610 * this must satisfy 0 <= idx < T_size.
1611 *
1612 * \return \c 0 on success, or a negative error code.
1613 */
1614static int mpi_select( mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx )
1615{
1616 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1617
1618 for( size_t i = 0; i < T_size; i++ )
Manuel Pégourié-Gonnard92413ef2021-06-03 10:42:46 +02001619 {
1620 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( R, &T[i],
Gabor Mezei90437e32021-10-20 11:59:27 +02001621 (unsigned char) mbedtls_ct_size_bool_eq( i, idx ) ) );
Manuel Pégourié-Gonnard92413ef2021-06-03 10:42:46 +02001622 }
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001623
1624cleanup:
1625 return( ret );
1626}
1627
Paul Bakker5121ce52009-01-03 21:22:43 +00001628/*
1629 * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
1630 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001631int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
1632 const mbedtls_mpi *E, const mbedtls_mpi *N,
Yuto Takano538a0cb2021-07-14 10:20:09 +01001633 mbedtls_mpi *prec_RR )
Paul Bakker5121ce52009-01-03 21:22:43 +00001634{
Janos Follath24eed8d2019-11-22 13:21:35 +00001635 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001636 size_t wbits, wsize, one = 1;
1637 size_t i, j, nblimbs;
1638 size_t bufsize, nbits;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001639 mbedtls_mpi_uint ei, mm, state;
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001640 mbedtls_mpi RR, T, W[ 1 << MBEDTLS_MPI_WINDOW_SIZE ], WW, Apos;
Paul Bakkerf6198c12012-05-16 08:02:29 +00001641 int neg;
Paul Bakker5121ce52009-01-03 21:22:43 +00001642
Hanno Becker73d7d792018-12-11 10:35:51 +00001643 MPI_VALIDATE_RET( X != NULL );
1644 MPI_VALIDATE_RET( A != NULL );
1645 MPI_VALIDATE_RET( E != NULL );
1646 MPI_VALIDATE_RET( N != NULL );
1647
Hanno Becker8d1dd1b2017-09-28 11:02:24 +01001648 if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || ( N->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001649 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00001650
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001651 if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
1652 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakkerf6198c12012-05-16 08:02:29 +00001653
Chris Jones9246d042020-11-25 15:12:39 +00001654 if( mbedtls_mpi_bitlen( E ) > MBEDTLS_MPI_MAX_BITS ||
1655 mbedtls_mpi_bitlen( N ) > MBEDTLS_MPI_MAX_BITS )
1656 return ( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
1657
Paul Bakkerf6198c12012-05-16 08:02:29 +00001658 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001659 * Init temps and window size
1660 */
1661 mpi_montg_init( &mm, N );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001662 mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
1663 mbedtls_mpi_init( &Apos );
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001664 mbedtls_mpi_init( &WW );
Paul Bakker5121ce52009-01-03 21:22:43 +00001665 memset( W, 0, sizeof( W ) );
1666
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02001667 i = mbedtls_mpi_bitlen( E );
Paul Bakker5121ce52009-01-03 21:22:43 +00001668
1669 wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
1670 ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
1671
Peter Kolbuse6bcad32018-12-11 14:01:44 -06001672#if( MBEDTLS_MPI_WINDOW_SIZE < 6 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001673 if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
1674 wsize = MBEDTLS_MPI_WINDOW_SIZE;
Peter Kolbuse6bcad32018-12-11 14:01:44 -06001675#endif
Paul Bakkerb6d5f082011-11-25 11:52:11 +00001676
Paul Bakker5121ce52009-01-03 21:22:43 +00001677 j = N->n + 1;
Tom Cosgrove93842842022-08-05 16:59:43 +01001678 /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001679 * and mpi_montred() calls later. Here we ensure that W[1] and X are
1680 * large enough, and later we'll grow other W[i] to the same length.
1681 * They must not be shrunk midway through this function!
1682 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001683 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
1684 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) );
1685 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001686
1687 /*
Paul Bakker50546922012-05-19 08:40:49 +00001688 * Compensate for negative A (and correct at the end)
1689 */
1690 neg = ( A->s == -1 );
Paul Bakker50546922012-05-19 08:40:49 +00001691 if( neg )
1692 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001693 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
Paul Bakker50546922012-05-19 08:40:49 +00001694 Apos.s = 1;
1695 A = &Apos;
1696 }
1697
1698 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001699 * If 1st call, pre-compute R^2 mod N
1700 */
Yuto Takano538a0cb2021-07-14 10:20:09 +01001701 if( prec_RR == NULL || prec_RR->p == NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +00001702 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001703 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
1704 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
1705 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001706
Yuto Takano538a0cb2021-07-14 10:20:09 +01001707 if( prec_RR != NULL )
1708 memcpy( prec_RR, &RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001709 }
1710 else
Yuto Takano538a0cb2021-07-14 10:20:09 +01001711 memcpy( &RR, prec_RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001712
1713 /*
1714 * W[1] = A * R^2 * R^-1 mod N = A * R mod N
1715 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001716 if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001717 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001718 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001719 /* This should be a no-op because W[1] is already that large before
1720 * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
Tom Cosgrove93842842022-08-05 16:59:43 +01001721 * in mpi_montmul() below, so let's make sure. */
Gilles Peskine2aa3f162021-06-15 21:22:48 +02001722 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], N->n + 1 ) );
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001723 }
Paul Bakkerc2024f42014-01-23 20:38:35 +01001724 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001725 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001726
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001727 /* Note that this is safe because W[1] always has at least N->n limbs
1728 * (it grew above and was preserved by mbedtls_mpi_copy()). */
Tom Cosgrove93842842022-08-05 16:59:43 +01001729 mpi_montmul( &W[1], &RR, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001730
1731 /*
1732 * X = R^2 * R^-1 mod N = R mod N
1733 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001734 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );
Gilles Peskine4e91d472020-06-04 20:55:15 +02001735 mpi_montred( X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001736
1737 if( wsize > 1 )
1738 {
1739 /*
1740 * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
1741 */
Paul Bakker66d5d072014-06-17 16:39:18 +02001742 j = one << ( wsize - 1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001743
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001744 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
1745 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001746
1747 for( i = 0; i < wsize - 1; i++ )
Tom Cosgrove93842842022-08-05 16:59:43 +01001748 mpi_montmul( &W[j], &W[j], N, mm, &T );
Paul Bakker0d7702c2013-10-29 16:18:35 +01001749
Paul Bakker5121ce52009-01-03 21:22:43 +00001750 /*
1751 * W[i] = W[i - 1] * W[1]
1752 */
Paul Bakker66d5d072014-06-17 16:39:18 +02001753 for( i = j + 1; i < ( one << wsize ); i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00001754 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001755 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
1756 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001757
Tom Cosgrove93842842022-08-05 16:59:43 +01001758 mpi_montmul( &W[i], &W[1], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001759 }
1760 }
1761
1762 nblimbs = E->n;
1763 bufsize = 0;
1764 nbits = 0;
1765 wbits = 0;
1766 state = 0;
1767
1768 while( 1 )
1769 {
1770 if( bufsize == 0 )
1771 {
Paul Bakker0d7702c2013-10-29 16:18:35 +01001772 if( nblimbs == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001773 break;
1774
Paul Bakker0d7702c2013-10-29 16:18:35 +01001775 nblimbs--;
1776
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001777 bufsize = sizeof( mbedtls_mpi_uint ) << 3;
Paul Bakker5121ce52009-01-03 21:22:43 +00001778 }
1779
1780 bufsize--;
1781
1782 ei = (E->p[nblimbs] >> bufsize) & 1;
1783
1784 /*
1785 * skip leading 0s
1786 */
1787 if( ei == 0 && state == 0 )
1788 continue;
1789
1790 if( ei == 0 && state == 1 )
1791 {
1792 /*
1793 * out of window, square X
1794 */
Tom Cosgrove93842842022-08-05 16:59:43 +01001795 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001796 continue;
1797 }
1798
1799 /*
1800 * add ei to current window
1801 */
1802 state = 2;
1803
1804 nbits++;
Paul Bakker66d5d072014-06-17 16:39:18 +02001805 wbits |= ( ei << ( wsize - nbits ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001806
1807 if( nbits == wsize )
1808 {
1809 /*
1810 * X = X^wsize R^-1 mod N
1811 */
1812 for( i = 0; i < wsize; i++ )
Tom Cosgrove93842842022-08-05 16:59:43 +01001813 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001814
1815 /*
1816 * X = X * W[wbits] R^-1 mod N
1817 */
Manuel Pégourié-Gonnarde22176e2021-06-10 09:34:00 +02001818 MBEDTLS_MPI_CHK( mpi_select( &WW, W, (size_t) 1 << wsize, wbits ) );
Tom Cosgrove93842842022-08-05 16:59:43 +01001819 mpi_montmul( X, &WW, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001820
1821 state--;
1822 nbits = 0;
1823 wbits = 0;
1824 }
1825 }
1826
1827 /*
1828 * process the remaining bits
1829 */
1830 for( i = 0; i < nbits; i++ )
1831 {
Tom Cosgrove93842842022-08-05 16:59:43 +01001832 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001833
1834 wbits <<= 1;
1835
Paul Bakker66d5d072014-06-17 16:39:18 +02001836 if( ( wbits & ( one << wsize ) ) != 0 )
Tom Cosgrove93842842022-08-05 16:59:43 +01001837 mpi_montmul( X, &W[1], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001838 }
1839
1840 /*
1841 * X = A^E * R * R^-1 mod N = A^E mod N
1842 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001843 mpi_montred( X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001844
Hanno Beckera4af1c42017-04-18 09:07:45 +01001845 if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 )
Paul Bakkerf6198c12012-05-16 08:02:29 +00001846 {
1847 X->s = -1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001848 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );
Paul Bakkerf6198c12012-05-16 08:02:29 +00001849 }
1850
Paul Bakker5121ce52009-01-03 21:22:43 +00001851cleanup:
1852
Paul Bakker66d5d072014-06-17 16:39:18 +02001853 for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001854 mbedtls_mpi_free( &W[i] );
Paul Bakker5121ce52009-01-03 21:22:43 +00001855
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001856 mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001857 mbedtls_mpi_free( &WW );
Paul Bakker6c591fa2011-05-05 11:49:20 +00001858
Yuto Takano538a0cb2021-07-14 10:20:09 +01001859 if( prec_RR == NULL || prec_RR->p == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001860 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00001861
1862 return( ret );
1863}
1864
Paul Bakker5121ce52009-01-03 21:22:43 +00001865/*
1866 * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
1867 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001868int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001869{
Janos Follath24eed8d2019-11-22 13:21:35 +00001870 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001871 size_t lz, lzt;
Alexander Ke8ad49f2019-08-16 16:16:07 +03001872 mbedtls_mpi TA, TB;
Paul Bakker5121ce52009-01-03 21:22:43 +00001873
Hanno Becker73d7d792018-12-11 10:35:51 +00001874 MPI_VALIDATE_RET( G != NULL );
1875 MPI_VALIDATE_RET( A != NULL );
1876 MPI_VALIDATE_RET( B != NULL );
1877
Alexander Ke8ad49f2019-08-16 16:16:07 +03001878 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001879
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001880 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
1881 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001882
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001883 lz = mbedtls_mpi_lsb( &TA );
1884 lzt = mbedtls_mpi_lsb( &TB );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001885
Gilles Peskine27253bc2021-06-09 13:26:43 +02001886 /* The loop below gives the correct result when A==0 but not when B==0.
1887 * So have a special case for B==0. Leverage the fact that we just
1888 * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
1889 * slightly more efficient than cmp_int(). */
1890 if( lzt == 0 && mbedtls_mpi_get_bit( &TB, 0 ) == 0 )
1891 {
1892 ret = mbedtls_mpi_copy( G, A );
1893 goto cleanup;
1894 }
1895
Paul Bakker66d5d072014-06-17 16:39:18 +02001896 if( lzt < lz )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001897 lz = lzt;
1898
Paul Bakker5121ce52009-01-03 21:22:43 +00001899 TA.s = TB.s = 1;
1900
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001901 /* We mostly follow the procedure described in HAC 14.54, but with some
1902 * minor differences:
1903 * - Sequences of multiplications or divisions by 2 are grouped into a
1904 * single shift operation.
Gilles Peskineb09c7ee2021-06-21 18:58:39 +02001905 * - The procedure in HAC assumes that 0 < TB <= TA.
1906 * - The condition TB <= TA is not actually necessary for correctness.
1907 * TA and TB have symmetric roles except for the loop termination
1908 * condition, and the shifts at the beginning of the loop body
1909 * remove any significance from the ordering of TA vs TB before
1910 * the shifts.
1911 * - If TA = 0, the loop goes through 0 iterations and the result is
1912 * correctly TB.
1913 * - The case TB = 0 was short-circuited above.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001914 *
1915 * For the correctness proof below, decompose the original values of
1916 * A and B as
1917 * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
1918 * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
1919 * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
1920 * and gcd(A',B') is odd or 0.
1921 *
1922 * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
1923 * The code maintains the following invariant:
1924 * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
Gilles Peskine4df3f1f2021-06-15 22:09:39 +02001925 */
1926
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001927 /* Proof that the loop terminates:
1928 * At each iteration, either the right-shift by 1 is made on a nonzero
1929 * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
1930 * by at least 1, or the right-shift by 1 is made on zero and then
1931 * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
1932 * since in that case TB is calculated from TB-TA with the condition TB>TA).
1933 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001934 while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001935 {
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001936 /* Divisions by 2 preserve the invariant (I). */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001937 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );
1938 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001939
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001940 /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
1941 * TA-TB is even so the division by 2 has an integer result.
1942 * Invariant (I) is preserved since any odd divisor of both TA and TB
1943 * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
Shaun Case8b0ecbc2021-12-20 21:14:10 -08001944 * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001945 * divides TA.
1946 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001947 if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001948 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001949 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );
1950 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001951 }
1952 else
1953 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001954 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );
1955 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001956 }
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001957 /* Note that one of TA or TB is still odd. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001958 }
1959
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001960 /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
1961 * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
1962 * - If there was at least one loop iteration, then one of TA or TB is odd,
1963 * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
1964 * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
1965 * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
Gilles Peskine4d3fd362021-06-21 11:40:38 +02001966 * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001967 */
1968
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001969 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );
1970 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001971
1972cleanup:
1973
Alexander Ke8ad49f2019-08-16 16:16:07 +03001974 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001975
1976 return( ret );
1977}
1978
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02001979/* Fill X with n_bytes random bytes.
1980 * X must already have room for those bytes.
Gilles Peskineafb2bd22021-06-03 11:51:09 +02001981 * The ordering of the bytes returned from the RNG is suitable for
1982 * deterministic ECDSA (see RFC 6979 §3.3 and mbedtls_mpi_random()).
Gilles Peskineebe9b6a2021-04-13 21:55:35 +02001983 * The size and sign of X are unchanged.
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02001984 * n_bytes must not be 0.
1985 */
1986static int mpi_fill_random_internal(
1987 mbedtls_mpi *X, size_t n_bytes,
1988 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1989{
1990 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1991 const size_t limbs = CHARS_TO_LIMBS( n_bytes );
1992 const size_t overhead = ( limbs * ciL ) - n_bytes;
1993
1994 if( X->n < limbs )
1995 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02001996
Gilles Peskineebe9b6a2021-04-13 21:55:35 +02001997 memset( X->p, 0, overhead );
1998 memset( (unsigned char *) X->p + limbs * ciL, 0, ( X->n - limbs ) * ciL );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02001999 MBEDTLS_MPI_CHK( f_rng( p_rng, (unsigned char *) X->p + overhead, n_bytes ) );
Janos Follath4670f882022-07-21 18:25:42 +01002000 mbedtls_mpi_core_bigendian_to_host( X->p, limbs );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002001
2002cleanup:
2003 return( ret );
2004}
2005
Paul Bakker33dc46b2014-04-30 16:11:39 +02002006/*
2007 * Fill X with size bytes of random.
2008 *
2009 * Use a temporary bytes representation to make sure the result is the same
Paul Bakkerc37b0ac2014-05-01 14:19:23 +02002010 * regardless of the platform endianness (useful when f_rng is actually
Paul Bakker33dc46b2014-04-30 16:11:39 +02002011 * deterministic, eg for tests).
2012 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002013int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,
Paul Bakkera3d195c2011-11-27 21:07:34 +00002014 int (*f_rng)(void *, unsigned char *, size_t),
2015 void *p_rng )
Paul Bakker287781a2011-03-26 13:18:49 +00002016{
Janos Follath24eed8d2019-11-22 13:21:35 +00002017 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath620c58c2022-08-15 11:58:42 +01002018 const size_t limbs = CHARS_TO_LIMBS( size );
Hanno Beckerda1655a2017-10-18 14:21:44 +01002019
Hanno Becker8ce11a32018-12-19 16:18:52 +00002020 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002021 MPI_VALIDATE_RET( f_rng != NULL );
Paul Bakker33dc46b2014-04-30 16:11:39 +02002022
Hanno Beckerda1655a2017-10-18 14:21:44 +01002023 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskineed32b572021-06-02 22:17:52 +02002024 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002025 if( size == 0 )
2026 return( 0 );
Paul Bakker287781a2011-03-26 13:18:49 +00002027
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002028 ret = mpi_fill_random_internal( X, size, f_rng, p_rng );
Paul Bakker287781a2011-03-26 13:18:49 +00002029
2030cleanup:
2031 return( ret );
2032}
2033
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002034int mbedtls_mpi_random( mbedtls_mpi *X,
2035 mbedtls_mpi_sint min,
2036 const mbedtls_mpi *N,
2037 int (*f_rng)(void *, unsigned char *, size_t),
2038 void *p_rng )
2039{
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002040 int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskinee5381682021-04-13 21:23:25 +02002041 int count;
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002042 unsigned lt_lower = 1, lt_upper = 0;
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002043 size_t n_bits = mbedtls_mpi_bitlen( N );
2044 size_t n_bytes = ( n_bits + 7 ) / 8;
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002045 mbedtls_mpi lower_bound;
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002046
Gilles Peskine1e918f42021-03-29 22:14:51 +02002047 if( min < 0 )
2048 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2049 if( mbedtls_mpi_cmp_int( N, min ) <= 0 )
2050 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
2051
Gilles Peskinee5381682021-04-13 21:23:25 +02002052 /*
2053 * When min == 0, each try has at worst a probability 1/2 of failing
2054 * (the msb has a probability 1/2 of being 0, and then the result will
2055 * be < N), so after 30 tries failure probability is a most 2**(-30).
2056 *
2057 * When N is just below a power of 2, as is the case when generating
Gilles Peskinee842e582021-04-15 11:45:19 +02002058 * a random scalar on most elliptic curves, 1 try is enough with
Gilles Peskinee5381682021-04-13 21:23:25 +02002059 * overwhelming probability. When N is just above a power of 2,
Gilles Peskinee842e582021-04-15 11:45:19 +02002060 * as when generating a random scalar on secp224k1, each try has
Gilles Peskinee5381682021-04-13 21:23:25 +02002061 * a probability of failing that is almost 1/2.
2062 *
2063 * The probabilities are almost the same if min is nonzero but negligible
2064 * compared to N. This is always the case when N is crypto-sized, but
2065 * it's convenient to support small N for testing purposes. When N
2066 * is small, use a higher repeat count, otherwise the probability of
2067 * failure is macroscopic.
2068 */
Gilles Peskine87823d72021-06-02 21:18:59 +02002069 count = ( n_bytes > 4 ? 30 : 250 );
Gilles Peskinee5381682021-04-13 21:23:25 +02002070
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002071 mbedtls_mpi_init( &lower_bound );
2072
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002073 /* Ensure that target MPI has exactly the same number of limbs
2074 * as the upper bound, even if the upper bound has leading zeros.
2075 * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */
Gilles Peskineed32b572021-06-02 22:17:52 +02002076 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, N->n ) );
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002077 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &lower_bound, N->n ) );
2078 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &lower_bound, min ) );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002079
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002080 /*
2081 * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
2082 * when f_rng is a suitably parametrized instance of HMAC_DRBG:
2083 * - use the same byte ordering;
2084 * - keep the leftmost n_bits bits of the generated octet string;
2085 * - try until result is in the desired range.
2086 * This also avoids any bias, which is especially important for ECDSA.
2087 */
2088 do
2089 {
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002090 MBEDTLS_MPI_CHK( mpi_fill_random_internal( X, n_bytes, f_rng, p_rng ) );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002091 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, 8 * n_bytes - n_bits ) );
2092
Gilles Peskinee5381682021-04-13 21:23:25 +02002093 if( --count == 0 )
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002094 {
2095 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2096 goto cleanup;
2097 }
2098
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002099 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, &lower_bound, &lt_lower ) );
2100 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, N, &lt_upper ) );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002101 }
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002102 while( lt_lower != 0 || lt_upper == 0 );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002103
2104cleanup:
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002105 mbedtls_mpi_free( &lower_bound );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002106 return( ret );
2107}
2108
Paul Bakker5121ce52009-01-03 21:22:43 +00002109/*
2110 * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
2111 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002112int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00002113{
Janos Follath24eed8d2019-11-22 13:21:35 +00002114 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002115 mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
Hanno Becker73d7d792018-12-11 10:35:51 +00002116 MPI_VALIDATE_RET( X != NULL );
2117 MPI_VALIDATE_RET( A != NULL );
2118 MPI_VALIDATE_RET( N != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00002119
Hanno Becker4bcb4912017-04-18 15:49:39 +01002120 if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002121 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002122
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002123 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );
2124 mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );
2125 mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002126
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002127 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002128
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002129 if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002130 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002131 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002132 goto cleanup;
2133 }
2134
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002135 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );
2136 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );
2137 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );
2138 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002139
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002140 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );
2141 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );
2142 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );
2143 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002144
2145 do
2146 {
2147 while( ( TU.p[0] & 1 ) == 0 )
2148 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002149 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002150
2151 if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
2152 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002153 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );
2154 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002155 }
2156
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002157 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );
2158 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002159 }
2160
2161 while( ( TV.p[0] & 1 ) == 0 )
2162 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002163 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002164
2165 if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
2166 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002167 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );
2168 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002169 }
2170
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002171 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );
2172 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002173 }
2174
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002175 if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002176 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002177 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );
2178 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );
2179 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002180 }
2181 else
2182 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002183 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );
2184 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );
2185 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002186 }
2187 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002188 while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002189
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002190 while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )
2191 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002192
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002193 while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )
2194 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002195
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002196 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002197
2198cleanup:
2199
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002200 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );
2201 mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );
2202 mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002203
2204 return( ret );
2205}
2206
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002207#if defined(MBEDTLS_GENPRIME)
Paul Bakkerd9374b02012-11-02 11:02:58 +00002208
Paul Bakker5121ce52009-01-03 21:22:43 +00002209static const int small_prime[] =
2210{
2211 3, 5, 7, 11, 13, 17, 19, 23,
2212 29, 31, 37, 41, 43, 47, 53, 59,
2213 61, 67, 71, 73, 79, 83, 89, 97,
2214 101, 103, 107, 109, 113, 127, 131, 137,
2215 139, 149, 151, 157, 163, 167, 173, 179,
2216 181, 191, 193, 197, 199, 211, 223, 227,
2217 229, 233, 239, 241, 251, 257, 263, 269,
2218 271, 277, 281, 283, 293, 307, 311, 313,
2219 317, 331, 337, 347, 349, 353, 359, 367,
2220 373, 379, 383, 389, 397, 401, 409, 419,
2221 421, 431, 433, 439, 443, 449, 457, 461,
2222 463, 467, 479, 487, 491, 499, 503, 509,
2223 521, 523, 541, 547, 557, 563, 569, 571,
2224 577, 587, 593, 599, 601, 607, 613, 617,
2225 619, 631, 641, 643, 647, 653, 659, 661,
2226 673, 677, 683, 691, 701, 709, 719, 727,
2227 733, 739, 743, 751, 757, 761, 769, 773,
2228 787, 797, 809, 811, 821, 823, 827, 829,
2229 839, 853, 857, 859, 863, 877, 881, 883,
2230 887, 907, 911, 919, 929, 937, 941, 947,
2231 953, 967, 971, 977, 983, 991, 997, -103
2232};
2233
2234/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002235 * Small divisors test (X must be positive)
2236 *
2237 * Return values:
2238 * 0: no small factor (possible prime, more tests needed)
2239 * 1: certain prime
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002240 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002241 * other negative: error
Paul Bakker5121ce52009-01-03 21:22:43 +00002242 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002243static int mpi_check_small_factors( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +00002244{
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002245 int ret = 0;
2246 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002247 mbedtls_mpi_uint r;
Paul Bakker5121ce52009-01-03 21:22:43 +00002248
Paul Bakker5121ce52009-01-03 21:22:43 +00002249 if( ( X->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002250 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002251
2252 for( i = 0; small_prime[i] > 0; i++ )
2253 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002254 if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002255 return( 1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002256
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002257 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002258
2259 if( r == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002260 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002261 }
2262
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002263cleanup:
2264 return( ret );
2265}
2266
2267/*
2268 * Miller-Rabin pseudo-primality test (HAC 4.24)
2269 */
Janos Follathda31fa12018-09-03 14:45:23 +01002270static int mpi_miller_rabin( const mbedtls_mpi *X, size_t rounds,
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002271 int (*f_rng)(void *, unsigned char *, size_t),
2272 void *p_rng )
2273{
Pascal Junodb99183d2015-03-11 16:49:45 +01002274 int ret, count;
Janos Follathda31fa12018-09-03 14:45:23 +01002275 size_t i, j, k, s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002276 mbedtls_mpi W, R, T, A, RR;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002277
Hanno Becker8ce11a32018-12-19 16:18:52 +00002278 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002279 MPI_VALIDATE_RET( f_rng != NULL );
2280
2281 mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R );
2282 mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002283 mbedtls_mpi_init( &RR );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002284
Paul Bakker5121ce52009-01-03 21:22:43 +00002285 /*
2286 * W = |X| - 1
2287 * R = W >> lsb( W )
2288 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002289 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );
2290 s = mbedtls_mpi_lsb( &W );
2291 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );
2292 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002293
Janos Follathda31fa12018-09-03 14:45:23 +01002294 for( i = 0; i < rounds; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00002295 {
2296 /*
2297 * pick a random A, 1 < A < |X| - 1
2298 */
Pascal Junodb99183d2015-03-11 16:49:45 +01002299 count = 0;
2300 do {
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002301 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
Pascal Junodb99183d2015-03-11 16:49:45 +01002302
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02002303 j = mbedtls_mpi_bitlen( &A );
2304 k = mbedtls_mpi_bitlen( &W );
Pascal Junodb99183d2015-03-11 16:49:45 +01002305 if (j > k) {
Darryl Greene3f95ed2018-10-02 13:21:35 +01002306 A.p[A.n - 1] &= ( (mbedtls_mpi_uint) 1 << ( k - ( A.n - 1 ) * biL - 1 ) ) - 1;
Pascal Junodb99183d2015-03-11 16:49:45 +01002307 }
2308
2309 if (count++ > 30) {
Jens Wiklanderf08aa3e2019-01-17 13:30:57 +01002310 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2311 goto cleanup;
Pascal Junodb99183d2015-03-11 16:49:45 +01002312 }
2313
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002314 } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||
2315 mbedtls_mpi_cmp_int( &A, 1 ) <= 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002316
2317 /*
2318 * A = A^R mod |X|
2319 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002320 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002321
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002322 if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||
2323 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002324 continue;
2325
2326 j = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002327 while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002328 {
2329 /*
2330 * A = A * A mod |X|
2331 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002332 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );
2333 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002334
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002335 if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002336 break;
2337
2338 j++;
2339 }
2340
2341 /*
2342 * not prime if A != |X| - 1 or A == 1
2343 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002344 if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||
2345 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002346 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002347 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002348 break;
2349 }
2350 }
2351
2352cleanup:
Hanno Becker73d7d792018-12-11 10:35:51 +00002353 mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R );
2354 mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002355 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00002356
2357 return( ret );
2358}
2359
2360/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002361 * Pseudo-primality test: small factors, then Miller-Rabin
2362 */
Janos Follatha0b67c22018-09-18 14:48:23 +01002363int mbedtls_mpi_is_prime_ext( const mbedtls_mpi *X, int rounds,
2364 int (*f_rng)(void *, unsigned char *, size_t),
2365 void *p_rng )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002366{
Janos Follath24eed8d2019-11-22 13:21:35 +00002367 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002368 mbedtls_mpi XX;
Hanno Becker8ce11a32018-12-19 16:18:52 +00002369 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002370 MPI_VALIDATE_RET( f_rng != NULL );
Manuel Pégourié-Gonnard7f4ed672014-10-14 20:56:02 +02002371
2372 XX.s = 1;
2373 XX.n = X->n;
2374 XX.p = X->p;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002375
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002376 if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||
2377 mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )
2378 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002379
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002380 if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002381 return( 0 );
2382
2383 if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
2384 {
2385 if( ret == 1 )
2386 return( 0 );
2387
2388 return( ret );
2389 }
2390
Janos Follathda31fa12018-09-03 14:45:23 +01002391 return( mpi_miller_rabin( &XX, rounds, f_rng, p_rng ) );
Janos Follathf301d232018-08-14 13:34:01 +01002392}
2393
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002394/*
Paul Bakker5121ce52009-01-03 21:22:43 +00002395 * Prime number generation
Jethro Beekman66689272018-02-14 19:24:10 -08002396 *
Janos Follathf301d232018-08-14 13:34:01 +01002397 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2398 * be either 1024 bits or 1536 bits long, and flags must contain
2399 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
Paul Bakker5121ce52009-01-03 21:22:43 +00002400 */
Janos Follath7c025a92018-08-14 11:08:41 +01002401int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
Paul Bakkera3d195c2011-11-27 21:07:34 +00002402 int (*f_rng)(void *, unsigned char *, size_t),
2403 void *p_rng )
Paul Bakker5121ce52009-01-03 21:22:43 +00002404{
Jethro Beekman66689272018-02-14 19:24:10 -08002405#ifdef MBEDTLS_HAVE_INT64
2406// ceil(2^63.5)
2407#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2408#else
2409// ceil(2^31.5)
2410#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2411#endif
2412 int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker23986e52011-04-24 08:57:21 +00002413 size_t k, n;
Janos Follathda31fa12018-09-03 14:45:23 +01002414 int rounds;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002415 mbedtls_mpi_uint r;
2416 mbedtls_mpi Y;
Paul Bakker5121ce52009-01-03 21:22:43 +00002417
Hanno Becker8ce11a32018-12-19 16:18:52 +00002418 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002419 MPI_VALIDATE_RET( f_rng != NULL );
2420
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002421 if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )
2422 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002423
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002424 mbedtls_mpi_init( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002425
2426 n = BITS_TO_LIMBS( nbits );
2427
Janos Follathda31fa12018-09-03 14:45:23 +01002428 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR ) == 0 )
2429 {
2430 /*
2431 * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2432 */
2433 rounds = ( ( nbits >= 1300 ) ? 2 : ( nbits >= 850 ) ? 3 :
2434 ( nbits >= 650 ) ? 4 : ( nbits >= 350 ) ? 8 :
2435 ( nbits >= 250 ) ? 12 : ( nbits >= 150 ) ? 18 : 27 );
2436 }
2437 else
2438 {
2439 /*
2440 * 2^-100 error probability, number of rounds computed based on HAC,
2441 * fact 4.48
2442 */
2443 rounds = ( ( nbits >= 1450 ) ? 4 : ( nbits >= 1150 ) ? 5 :
2444 ( nbits >= 1000 ) ? 6 : ( nbits >= 850 ) ? 7 :
2445 ( nbits >= 750 ) ? 8 : ( nbits >= 500 ) ? 13 :
2446 ( nbits >= 250 ) ? 28 : ( nbits >= 150 ) ? 40 : 51 );
2447 }
2448
Jethro Beekman66689272018-02-14 19:24:10 -08002449 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002450 {
Jethro Beekman66689272018-02-14 19:24:10 -08002451 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
2452 /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
2453 if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue;
2454
2455 k = n * biL;
2456 if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) );
2457 X->p[0] |= 1;
2458
Janos Follath7c025a92018-08-14 11:08:41 +01002459 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002460 {
Janos Follatha0b67c22018-09-18 14:48:23 +01002461 ret = mbedtls_mpi_is_prime_ext( X, rounds, f_rng, p_rng );
Jethro Beekman66689272018-02-14 19:24:10 -08002462
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002463 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
Paul Bakker5121ce52009-01-03 21:22:43 +00002464 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002465 }
Jethro Beekman66689272018-02-14 19:24:10 -08002466 else
Paul Bakker5121ce52009-01-03 21:22:43 +00002467 {
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002468 /*
Tom Cosgrovece7f18c2022-07-28 05:50:56 +01002469 * A necessary condition for Y and X = 2Y + 1 to be prime
Jethro Beekman66689272018-02-14 19:24:10 -08002470 * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2471 * Make sure it is satisfied, while keeping X = 3 mod 4
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002472 */
Jethro Beekman66689272018-02-14 19:24:10 -08002473
2474 X->p[0] |= 2;
2475
2476 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
2477 if( r == 0 )
2478 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
2479 else if( r == 1 )
2480 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
2481
2482 /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
2483 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
2484 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
2485
2486 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002487 {
Jethro Beekman66689272018-02-14 19:24:10 -08002488 /*
2489 * First, check small factors for X and Y
2490 * before doing Miller-Rabin on any of them
2491 */
2492 if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
2493 ( ret = mpi_check_small_factors( &Y ) ) == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002494 ( ret = mpi_miller_rabin( X, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002495 == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002496 ( ret = mpi_miller_rabin( &Y, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002497 == 0 )
Jethro Beekman66689272018-02-14 19:24:10 -08002498 goto cleanup;
2499
2500 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
2501 goto cleanup;
2502
2503 /*
2504 * Next candidates. We want to preserve Y = (X-1) / 2 and
2505 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2506 * so up Y by 6 and X by 12.
2507 */
2508 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
2509 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002510 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002511 }
2512 }
2513
2514cleanup:
2515
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002516 mbedtls_mpi_free( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002517
2518 return( ret );
2519}
2520
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002521#endif /* MBEDTLS_GENPRIME */
Paul Bakker5121ce52009-01-03 21:22:43 +00002522
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002523#if defined(MBEDTLS_SELF_TEST)
Paul Bakker5121ce52009-01-03 21:22:43 +00002524
Paul Bakker23986e52011-04-24 08:57:21 +00002525#define GCD_PAIR_COUNT 3
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002526
2527static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2528{
2529 { 693, 609, 21 },
2530 { 1764, 868, 28 },
2531 { 768454923, 542167814, 1 }
2532};
2533
Paul Bakker5121ce52009-01-03 21:22:43 +00002534/*
2535 * Checkup routine
2536 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002537int mbedtls_mpi_self_test( int verbose )
Paul Bakker5121ce52009-01-03 21:22:43 +00002538{
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002539 int ret, i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002540 mbedtls_mpi A, E, N, X, Y, U, V;
Paul Bakker5121ce52009-01-03 21:22:43 +00002541
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002542 mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );
2543 mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00002544
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002545 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002546 "EFE021C2645FD1DC586E69184AF4A31E" \
2547 "D5F53E93B5F123FA41680867BA110131" \
2548 "944FE7952E2517337780CB0DB80E61AA" \
2549 "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
2550
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002551 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002552 "B2E7EFD37075B9F03FF989C7C5051C20" \
2553 "34D2A323810251127E7BF8625A4F49A5" \
2554 "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
2555 "5B5C25763222FEFCCFC38B832366C29E" ) );
2556
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002557 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002558 "0066A198186C18C10B2F5ED9B522752A" \
2559 "9830B69916E535C8F047518A889A43A5" \
2560 "94B6BED27A168D31D4A52F88925AA8F5" ) );
2561
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002562 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002563
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002564 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002565 "602AB7ECA597A3D6B56FF9829A5E8B85" \
2566 "9E857EA95A03512E2BAE7391688D264A" \
2567 "A5663B0341DB9CCFD2C4C5F421FEC814" \
2568 "8001B72E848A38CAE1C65F78E56ABDEF" \
2569 "E12D3C039B8A02D6BE593F0BBBDA56F1" \
2570 "ECF677152EF804370C1A305CAF3B5BF1" \
2571 "30879B56C61DE584A0F53A2447A51E" ) );
2572
2573 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002574 mbedtls_printf( " MPI test #1 (mul_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002575
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002576 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002577 {
2578 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002579 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002580
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002581 ret = 1;
2582 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002583 }
2584
2585 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002586 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002587
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002588 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002589
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002590 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002591 "256567336059E52CAE22925474705F39A94" ) );
2592
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002593 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002594 "6613F26162223DF488E9CD48CC132C7A" \
2595 "0AC93C701B001B092E4E5B9F73BCD27B" \
2596 "9EE50D0657C77F374E903CDFA4C642" ) );
2597
2598 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002599 mbedtls_printf( " MPI test #2 (div_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002600
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002601 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||
2602 mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002603 {
2604 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002605 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002606
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002607 ret = 1;
2608 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002609 }
2610
2611 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002612 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002613
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002614 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002615
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002616 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002617 "36E139AEA55215609D2816998ED020BB" \
2618 "BD96C37890F65171D948E9BC7CBAA4D9" \
2619 "325D24D6A3C12710F10A09FA08AB87" ) );
2620
2621 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002622 mbedtls_printf( " MPI test #3 (exp_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002623
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002624 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002625 {
2626 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002627 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002628
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002629 ret = 1;
2630 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002631 }
2632
2633 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002634 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002635
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002636 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002637
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002638 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002639 "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
2640 "C3DBA76456363A10869622EAC2DD84EC" \
2641 "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
2642
2643 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002644 mbedtls_printf( " MPI test #4 (inv_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002645
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002646 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002647 {
2648 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002649 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002650
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002651 ret = 1;
2652 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002653 }
2654
2655 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002656 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002657
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002658 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002659 mbedtls_printf( " MPI test #5 (simple gcd): " );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002660
Paul Bakker66d5d072014-06-17 16:39:18 +02002661 for( i = 0; i < GCD_PAIR_COUNT; i++ )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002662 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002663 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );
2664 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002665
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002666 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002667
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002668 if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002669 {
2670 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002671 mbedtls_printf( "failed at %d\n", i );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002672
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002673 ret = 1;
2674 goto cleanup;
2675 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002676 }
2677
2678 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002679 mbedtls_printf( "passed\n" );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002680
Paul Bakker5121ce52009-01-03 21:22:43 +00002681cleanup:
2682
2683 if( ret != 0 && verbose != 0 )
Kenneth Soerensen518d4352020-04-01 17:22:45 +02002684 mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00002685
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002686 mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );
2687 mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00002688
2689 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002690 mbedtls_printf( "\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002691
2692 return( ret );
2693}
2694
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002695#endif /* MBEDTLS_SELF_TEST */
Paul Bakker5121ce52009-01-03 21:22:43 +00002696
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002697#endif /* MBEDTLS_BIGNUM_C */