Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1 | /** |
| 2 | * \file psa/crypto_values.h |
| 3 | * |
| 4 | * \brief PSA cryptography module: macros to build and analyze integer values. |
| 5 | * |
| 6 | * \note This file may not be included directly. Applications must |
| 7 | * include psa/crypto.h. Drivers must include the appropriate driver |
| 8 | * header file. |
| 9 | * |
| 10 | * This file contains portable definitions of macros to build and analyze |
| 11 | * values of integral types that encode properties of cryptographic keys, |
| 12 | * designations of cryptographic algorithms, and error codes returned by |
| 13 | * the library. |
| 14 | * |
| 15 | * This header file only defines preprocessor macros. |
| 16 | */ |
| 17 | /* |
| 18 | * Copyright (C) 2018, ARM Limited, All Rights Reserved |
| 19 | * SPDX-License-Identifier: Apache-2.0 |
| 20 | * |
| 21 | * Licensed under the Apache License, Version 2.0 (the "License"); you may |
| 22 | * not use this file except in compliance with the License. |
| 23 | * You may obtain a copy of the License at |
| 24 | * |
| 25 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 26 | * |
| 27 | * Unless required by applicable law or agreed to in writing, software |
| 28 | * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| 29 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 30 | * See the License for the specific language governing permissions and |
| 31 | * limitations under the License. |
| 32 | * |
| 33 | * This file is part of mbed TLS (https://tls.mbed.org) |
| 34 | */ |
| 35 | |
| 36 | #ifndef PSA_CRYPTO_VALUES_H |
| 37 | #define PSA_CRYPTO_VALUES_H |
| 38 | |
| 39 | /** \defgroup error Error codes |
| 40 | * @{ |
| 41 | */ |
| 42 | |
| 43 | #if !defined(PSA_SUCCESS) |
| 44 | /* If PSA_SUCCESS is defined, assume that PSA crypto is being used |
| 45 | * together with PSA IPC, which also defines the identifier |
| 46 | * PSA_SUCCESS. We must not define PSA_SUCCESS ourselves in that case; |
| 47 | * the other error code names don't clash. This is a temporary hack |
| 48 | * until we unify error reporting in PSA IPC and PSA crypto. |
| 49 | * |
| 50 | * Note that psa_defs.h must be included before this header! |
| 51 | */ |
| 52 | /** The action was completed successfully. */ |
| 53 | #define PSA_SUCCESS ((psa_status_t)0) |
| 54 | #endif /* !defined(PSA_SUCCESS) */ |
| 55 | |
| 56 | /** An error occurred that does not correspond to any defined |
| 57 | * failure cause. |
| 58 | * |
| 59 | * Implementations may use this error code if none of the other standard |
| 60 | * error codes are applicable. */ |
| 61 | #define PSA_ERROR_UNKNOWN_ERROR ((psa_status_t)1) |
| 62 | |
| 63 | /** The requested operation or a parameter is not supported |
| 64 | * by this implementation. |
| 65 | * |
| 66 | * Implementations should return this error code when an enumeration |
| 67 | * parameter such as a key type, algorithm, etc. is not recognized. |
| 68 | * If a combination of parameters is recognized and identified as |
| 69 | * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */ |
| 70 | #define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)2) |
| 71 | |
| 72 | /** The requested action is denied by a policy. |
| 73 | * |
| 74 | * Implementations should return this error code when the parameters |
| 75 | * are recognized as valid and supported, and a policy explicitly |
| 76 | * denies the requested operation. |
| 77 | * |
| 78 | * If a subset of the parameters of a function call identify a |
| 79 | * forbidden operation, and another subset of the parameters are |
| 80 | * not valid or not supported, it is unspecified whether the function |
| 81 | * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or |
| 82 | * #PSA_ERROR_INVALID_ARGUMENT. */ |
| 83 | #define PSA_ERROR_NOT_PERMITTED ((psa_status_t)3) |
| 84 | |
| 85 | /** An output buffer is too small. |
| 86 | * |
| 87 | * Applications can call the \c PSA_xxx_SIZE macro listed in the function |
| 88 | * description to determine a sufficient buffer size. |
| 89 | * |
| 90 | * Implementations should preferably return this error code only |
| 91 | * in cases when performing the operation with a larger output |
| 92 | * buffer would succeed. However implementations may return this |
| 93 | * error if a function has invalid or unsupported parameters in addition |
| 94 | * to the parameters that determine the necessary output buffer size. */ |
| 95 | #define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)4) |
| 96 | |
| 97 | /** A slot is occupied, but must be empty to carry out the |
| 98 | * requested action. |
| 99 | * |
| 100 | * If a handle is invalid, it does not designate an occupied slot. |
| 101 | * The error for an invalid handle is #PSA_ERROR_INVALID_HANDLE. |
| 102 | */ |
| 103 | #define PSA_ERROR_OCCUPIED_SLOT ((psa_status_t)5) |
| 104 | |
| 105 | /** A slot is empty, but must be occupied to carry out the |
| 106 | * requested action. |
| 107 | * |
| 108 | * If a handle is invalid, it does not designate an empty slot. |
| 109 | * The error for an invalid handle is #PSA_ERROR_INVALID_HANDLE. |
| 110 | */ |
| 111 | #define PSA_ERROR_EMPTY_SLOT ((psa_status_t)6) |
| 112 | |
| 113 | /** The requested action cannot be performed in the current state. |
| 114 | * |
| 115 | * Multipart operations return this error when one of the |
| 116 | * functions is called out of sequence. Refer to the function |
| 117 | * descriptions for permitted sequencing of functions. |
| 118 | * |
| 119 | * Implementations shall not return this error code to indicate |
| 120 | * that a key slot is occupied when it needs to be free or vice versa, |
| 121 | * but shall return #PSA_ERROR_OCCUPIED_SLOT or #PSA_ERROR_EMPTY_SLOT |
| 122 | * as applicable. */ |
| 123 | #define PSA_ERROR_BAD_STATE ((psa_status_t)7) |
| 124 | |
| 125 | /** The parameters passed to the function are invalid. |
| 126 | * |
| 127 | * Implementations may return this error any time a parameter or |
| 128 | * combination of parameters are recognized as invalid. |
| 129 | * |
| 130 | * Implementations shall not return this error code to indicate |
| 131 | * that a key slot is occupied when it needs to be free or vice versa, |
| 132 | * but shall return #PSA_ERROR_OCCUPIED_SLOT or #PSA_ERROR_EMPTY_SLOT |
| 133 | * as applicable. |
| 134 | * |
| 135 | * Implementation shall not return this error code to indicate that a |
| 136 | * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE |
| 137 | * instead. |
| 138 | */ |
| 139 | #define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)8) |
| 140 | |
| 141 | /** There is not enough runtime memory. |
| 142 | * |
| 143 | * If the action is carried out across multiple security realms, this |
| 144 | * error can refer to available memory in any of the security realms. */ |
| 145 | #define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)9) |
| 146 | |
| 147 | /** There is not enough persistent storage. |
| 148 | * |
| 149 | * Functions that modify the key storage return this error code if |
| 150 | * there is insufficient storage space on the host media. In addition, |
| 151 | * many functions that do not otherwise access storage may return this |
| 152 | * error code if the implementation requires a mandatory log entry for |
| 153 | * the requested action and the log storage space is full. */ |
| 154 | #define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)10) |
| 155 | |
| 156 | /** There was a communication failure inside the implementation. |
| 157 | * |
| 158 | * This can indicate a communication failure between the application |
| 159 | * and an external cryptoprocessor or between the cryptoprocessor and |
| 160 | * an external volatile or persistent memory. A communication failure |
| 161 | * may be transient or permanent depending on the cause. |
| 162 | * |
| 163 | * \warning If a function returns this error, it is undetermined |
| 164 | * whether the requested action has completed or not. Implementations |
| 165 | * should return #PSA_SUCCESS on successful completion whenver |
| 166 | * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE |
| 167 | * if the requested action was completed successfully in an external |
| 168 | * cryptoprocessor but there was a breakdown of communication before |
| 169 | * the cryptoprocessor could report the status to the application. |
| 170 | */ |
| 171 | #define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)11) |
| 172 | |
| 173 | /** There was a storage failure that may have led to data loss. |
| 174 | * |
| 175 | * This error indicates that some persistent storage is corrupted. |
| 176 | * It should not be used for a corruption of volatile memory |
| 177 | * (use #PSA_ERROR_TAMPERING_DETECTED), for a communication error |
| 178 | * between the cryptoprocessor and its external storage (use |
| 179 | * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is |
| 180 | * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE). |
| 181 | * |
| 182 | * Note that a storage failure does not indicate that any data that was |
| 183 | * previously read is invalid. However this previously read data may no |
| 184 | * longer be readable from storage. |
| 185 | * |
| 186 | * When a storage failure occurs, it is no longer possible to ensure |
| 187 | * the global integrity of the keystore. Depending on the global |
| 188 | * integrity guarantees offered by the implementation, access to other |
| 189 | * data may or may not fail even if the data is still readable but |
| 190 | * its integrity canont be guaranteed. |
| 191 | * |
| 192 | * Implementations should only use this error code to report a |
| 193 | * permanent storage corruption. However application writers should |
| 194 | * keep in mind that transient errors while reading the storage may be |
| 195 | * reported using this error code. */ |
| 196 | #define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)12) |
| 197 | |
| 198 | /** A hardware failure was detected. |
| 199 | * |
| 200 | * A hardware failure may be transient or permanent depending on the |
| 201 | * cause. */ |
| 202 | #define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)13) |
| 203 | |
| 204 | /** A tampering attempt was detected. |
| 205 | * |
| 206 | * If an application receives this error code, there is no guarantee |
| 207 | * that previously accessed or computed data was correct and remains |
| 208 | * confidential. Applications should not perform any security function |
| 209 | * and should enter a safe failure state. |
| 210 | * |
| 211 | * Implementations may return this error code if they detect an invalid |
| 212 | * state that cannot happen during normal operation and that indicates |
| 213 | * that the implementation's security guarantees no longer hold. Depending |
| 214 | * on the implementation architecture and on its security and safety goals, |
| 215 | * the implementation may forcibly terminate the application. |
| 216 | * |
| 217 | * This error code is intended as a last resort when a security breach |
| 218 | * is detected and it is unsure whether the keystore data is still |
| 219 | * protected. Implementations shall only return this error code |
| 220 | * to report an alarm from a tampering detector, to indicate that |
| 221 | * the confidentiality of stored data can no longer be guaranteed, |
| 222 | * or to indicate that the integrity of previously returned data is now |
| 223 | * considered compromised. Implementations shall not use this error code |
| 224 | * to indicate a hardware failure that merely makes it impossible to |
| 225 | * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE, |
| 226 | * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE, |
| 227 | * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code |
| 228 | * instead). |
| 229 | * |
| 230 | * This error indicates an attack against the application. Implementations |
| 231 | * shall not return this error code as a consequence of the behavior of |
| 232 | * the application itself. */ |
| 233 | #define PSA_ERROR_TAMPERING_DETECTED ((psa_status_t)14) |
| 234 | |
| 235 | /** There is not enough entropy to generate random data needed |
| 236 | * for the requested action. |
| 237 | * |
| 238 | * This error indicates a failure of a hardware random generator. |
| 239 | * Application writers should note that this error can be returned not |
| 240 | * only by functions whose purpose is to generate random data, such |
| 241 | * as key, IV or nonce generation, but also by functions that execute |
| 242 | * an algorithm with a randomized result, as well as functions that |
| 243 | * use randomization of intermediate computations as a countermeasure |
| 244 | * to certain attacks. |
| 245 | * |
| 246 | * Implementations should avoid returning this error after psa_crypto_init() |
| 247 | * has succeeded. Implementations should generate sufficient |
| 248 | * entropy during initialization and subsequently use a cryptographically |
| 249 | * secure pseudorandom generator (PRNG). However implementations may return |
| 250 | * this error at any time if a policy requires the PRNG to be reseeded |
| 251 | * during normal operation. */ |
| 252 | #define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)15) |
| 253 | |
| 254 | /** The signature, MAC or hash is incorrect. |
| 255 | * |
| 256 | * Verification functions return this error if the verification |
| 257 | * calculations completed successfully, and the value to be verified |
| 258 | * was determined to be incorrect. |
| 259 | * |
| 260 | * If the value to verify has an invalid size, implementations may return |
| 261 | * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */ |
| 262 | #define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)16) |
| 263 | |
| 264 | /** The decrypted padding is incorrect. |
| 265 | * |
| 266 | * \warning In some protocols, when decrypting data, it is essential that |
| 267 | * the behavior of the application does not depend on whether the padding |
| 268 | * is correct, down to precise timing. Applications should prefer |
| 269 | * protocols that use authenticated encryption rather than plain |
| 270 | * encryption. If the application must perform a decryption of |
| 271 | * unauthenticated data, the application writer should take care not |
| 272 | * to reveal whether the padding is invalid. |
| 273 | * |
| 274 | * Implementations should strive to make valid and invalid padding |
| 275 | * as close as possible to indistinguishable to an external observer. |
| 276 | * In particular, the timing of a decryption operation should not |
| 277 | * depend on the validity of the padding. */ |
| 278 | #define PSA_ERROR_INVALID_PADDING ((psa_status_t)17) |
| 279 | |
| 280 | /** The generator has insufficient capacity left. |
| 281 | * |
| 282 | * Once a function returns this error, attempts to read from the |
| 283 | * generator will always return this error. */ |
| 284 | #define PSA_ERROR_INSUFFICIENT_CAPACITY ((psa_status_t)18) |
| 285 | |
| 286 | /** The key handle is not valid. |
| 287 | */ |
| 288 | #define PSA_ERROR_INVALID_HANDLE ((psa_status_t)19) |
| 289 | |
| 290 | /**@}*/ |
| 291 | |
| 292 | /** \defgroup crypto_types Key and algorithm types |
| 293 | * @{ |
| 294 | */ |
| 295 | |
| 296 | /** An invalid key type value. |
| 297 | * |
| 298 | * Zero is not the encoding of any key type. |
| 299 | */ |
| 300 | #define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000) |
| 301 | |
| 302 | /** Vendor-defined flag |
| 303 | * |
| 304 | * Key types defined by this standard will never have the |
| 305 | * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types |
| 306 | * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should |
| 307 | * respect the bitwise structure used by standard encodings whenever practical. |
| 308 | */ |
| 309 | #define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000) |
| 310 | |
| 311 | #define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x70000000) |
| 312 | #define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x40000000) |
| 313 | #define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x50000000) |
| 314 | #define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x60000000) |
| 315 | #define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x70000000) |
| 316 | |
| 317 | #define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x10000000) |
| 318 | |
| 319 | /** Whether a key type is vendor-defined. */ |
| 320 | #define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \ |
| 321 | (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0) |
| 322 | |
| 323 | /** Whether a key type is an unstructured array of bytes. |
| 324 | * |
| 325 | * This encompasses both symmetric keys and non-key data. |
| 326 | */ |
| 327 | #define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \ |
| 328 | (((type) & PSA_KEY_TYPE_CATEGORY_MASK & ~(psa_key_type_t)0x10000000) == \ |
| 329 | PSA_KEY_TYPE_CATEGORY_SYMMETRIC) |
| 330 | |
| 331 | /** Whether a key type is asymmetric: either a key pair or a public key. */ |
| 332 | #define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \ |
| 333 | (((type) & PSA_KEY_TYPE_CATEGORY_MASK \ |
| 334 | & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \ |
| 335 | PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY) |
| 336 | /** Whether a key type is the public part of a key pair. */ |
| 337 | #define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \ |
| 338 | (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY) |
| 339 | /** Whether a key type is a key pair containing a private part and a public |
| 340 | * part. */ |
| 341 | #define PSA_KEY_TYPE_IS_KEYPAIR(type) \ |
| 342 | (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR) |
| 343 | /** The key pair type corresponding to a public key type. |
| 344 | * |
| 345 | * You may also pass a key pair type as \p type, it will be left unchanged. |
| 346 | * |
| 347 | * \param type A public key type or key pair type. |
| 348 | * |
| 349 | * \return The corresponding key pair type. |
| 350 | * If \p type is not a public key or a key pair, |
| 351 | * the return value is undefined. |
| 352 | */ |
| 353 | #define PSA_KEY_TYPE_KEYPAIR_OF_PUBLIC_KEY(type) \ |
| 354 | ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) |
| 355 | /** The public key type corresponding to a key pair type. |
| 356 | * |
| 357 | * You may also pass a key pair type as \p type, it will be left unchanged. |
| 358 | * |
| 359 | * \param type A public key type or key pair type. |
| 360 | * |
| 361 | * \return The corresponding public key type. |
| 362 | * If \p type is not a public key or a key pair, |
| 363 | * the return value is undefined. |
| 364 | */ |
| 365 | #define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) \ |
| 366 | ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) |
| 367 | |
| 368 | /** Raw data. |
| 369 | * |
| 370 | * A "key" of this type cannot be used for any cryptographic operation. |
| 371 | * Applications may use this type to store arbitrary data in the keystore. */ |
| 372 | #define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x50000001) |
| 373 | |
| 374 | /** HMAC key. |
| 375 | * |
| 376 | * The key policy determines which underlying hash algorithm the key can be |
| 377 | * used for. |
| 378 | * |
| 379 | * HMAC keys should generally have the same size as the underlying hash. |
| 380 | * This size can be calculated with #PSA_HASH_SIZE(\c alg) where |
| 381 | * \c alg is the HMAC algorithm or the underlying hash algorithm. */ |
| 382 | #define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x51000000) |
| 383 | |
| 384 | /** A secret for key derivation. |
| 385 | * |
| 386 | * The key policy determines which key derivation algorithm the key |
| 387 | * can be used for. |
| 388 | */ |
| 389 | #define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x52000000) |
| 390 | |
| 391 | /** Key for an cipher, AEAD or MAC algorithm based on the AES block cipher. |
| 392 | * |
| 393 | * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or |
| 394 | * 32 bytes (AES-256). |
| 395 | */ |
| 396 | #define PSA_KEY_TYPE_AES ((psa_key_type_t)0x40000001) |
| 397 | |
| 398 | /** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES). |
| 399 | * |
| 400 | * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or |
| 401 | * 24 bytes (3-key 3DES). |
| 402 | * |
| 403 | * Note that single DES and 2-key 3DES are weak and strongly |
| 404 | * deprecated and should only be used to decrypt legacy data. 3-key 3DES |
| 405 | * is weak and deprecated and should only be used in legacy protocols. |
| 406 | */ |
| 407 | #define PSA_KEY_TYPE_DES ((psa_key_type_t)0x40000002) |
| 408 | |
| 409 | /** Key for an cipher, AEAD or MAC algorithm based on the |
| 410 | * Camellia block cipher. */ |
| 411 | #define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x40000003) |
| 412 | |
| 413 | /** Key for the RC4 stream cipher. |
| 414 | * |
| 415 | * Note that RC4 is weak and deprecated and should only be used in |
| 416 | * legacy protocols. */ |
| 417 | #define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x40000004) |
| 418 | |
| 419 | /** RSA public key. */ |
| 420 | #define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x60010000) |
| 421 | /** RSA key pair (private and public key). */ |
| 422 | #define PSA_KEY_TYPE_RSA_KEYPAIR ((psa_key_type_t)0x70010000) |
| 423 | /** Whether a key type is an RSA key (pair or public-only). */ |
| 424 | #define PSA_KEY_TYPE_IS_RSA(type) \ |
| 425 | (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY) |
| 426 | |
| 427 | /** DSA public key. */ |
| 428 | #define PSA_KEY_TYPE_DSA_PUBLIC_KEY ((psa_key_type_t)0x60020000) |
| 429 | /** DSA key pair (private and public key). */ |
| 430 | #define PSA_KEY_TYPE_DSA_KEYPAIR ((psa_key_type_t)0x70020000) |
| 431 | /** Whether a key type is an DSA key (pair or public-only). */ |
| 432 | #define PSA_KEY_TYPE_IS_DSA(type) \ |
| 433 | (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_DSA_PUBLIC_KEY) |
| 434 | |
| 435 | #define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x60030000) |
| 436 | #define PSA_KEY_TYPE_ECC_KEYPAIR_BASE ((psa_key_type_t)0x70030000) |
| 437 | #define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x0000ffff) |
| 438 | /** Elliptic curve key pair. */ |
| 439 | #define PSA_KEY_TYPE_ECC_KEYPAIR(curve) \ |
| 440 | (PSA_KEY_TYPE_ECC_KEYPAIR_BASE | (curve)) |
| 441 | /** Elliptic curve public key. */ |
| 442 | #define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \ |
| 443 | (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve)) |
| 444 | |
| 445 | /** Whether a key type is an elliptic curve key (pair or public-only). */ |
| 446 | #define PSA_KEY_TYPE_IS_ECC(type) \ |
| 447 | ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) & \ |
| 448 | ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE) |
Gilles Peskine | 5e9c9cc | 2018-12-12 14:02:48 +0100 | [diff] [blame] | 449 | /** Whether a key type is an elliptic curve key pair. */ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 450 | #define PSA_KEY_TYPE_IS_ECC_KEYPAIR(type) \ |
| 451 | (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \ |
| 452 | PSA_KEY_TYPE_ECC_KEYPAIR_BASE) |
Gilles Peskine | 5e9c9cc | 2018-12-12 14:02:48 +0100 | [diff] [blame] | 453 | /** Whether a key type is an elliptic curve public key. */ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 454 | #define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \ |
| 455 | (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \ |
| 456 | PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE) |
| 457 | |
| 458 | /** Extract the curve from an elliptic curve key type. */ |
| 459 | #define PSA_KEY_TYPE_GET_CURVE(type) \ |
| 460 | ((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \ |
| 461 | ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \ |
| 462 | 0)) |
| 463 | |
| 464 | /* The encoding of curve identifiers is currently aligned with the |
| 465 | * TLS Supported Groups Registry (formerly known as the |
| 466 | * TLS EC Named Curve Registry) |
| 467 | * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8 |
| 468 | * The values are defined by RFC 8422 and RFC 7027. */ |
| 469 | #define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x0001) |
| 470 | #define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x0002) |
| 471 | #define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x0003) |
| 472 | #define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x0004) |
| 473 | #define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x0005) |
| 474 | #define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x0006) |
| 475 | #define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x0007) |
| 476 | #define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x0008) |
| 477 | #define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x0009) |
| 478 | #define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x000a) |
| 479 | #define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x000b) |
| 480 | #define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x000c) |
| 481 | #define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x000d) |
| 482 | #define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x000e) |
| 483 | #define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x000f) |
| 484 | #define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x0010) |
| 485 | #define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x0011) |
| 486 | #define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x0012) |
| 487 | #define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x0013) |
| 488 | #define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x0014) |
| 489 | #define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x0015) |
| 490 | #define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x0016) |
| 491 | #define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x0017) |
| 492 | #define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x0018) |
| 493 | #define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x0019) |
| 494 | #define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x001a) |
| 495 | #define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x001b) |
| 496 | #define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x001c) |
| 497 | #define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x001d) |
| 498 | #define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x001e) |
| 499 | |
| 500 | /** The block size of a block cipher. |
| 501 | * |
| 502 | * \param type A cipher key type (value of type #psa_key_type_t). |
| 503 | * |
| 504 | * \return The block size for a block cipher, or 1 for a stream cipher. |
| 505 | * The return value is undefined if \p type is not a supported |
| 506 | * cipher key type. |
| 507 | * |
| 508 | * \note It is possible to build stream cipher algorithms on top of a block |
| 509 | * cipher, for example CTR mode (#PSA_ALG_CTR). |
| 510 | * This macro only takes the key type into account, so it cannot be |
| 511 | * used to determine the size of the data that #psa_cipher_update() |
| 512 | * might buffer for future processing in general. |
| 513 | * |
| 514 | * \note This macro returns a compile-time constant if its argument is one. |
| 515 | * |
| 516 | * \warning This macro may evaluate its argument multiple times. |
| 517 | */ |
| 518 | #define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \ |
| 519 | ( \ |
| 520 | (type) == PSA_KEY_TYPE_AES ? 16 : \ |
| 521 | (type) == PSA_KEY_TYPE_DES ? 8 : \ |
| 522 | (type) == PSA_KEY_TYPE_CAMELLIA ? 16 : \ |
| 523 | (type) == PSA_KEY_TYPE_ARC4 ? 1 : \ |
| 524 | 0) |
| 525 | |
| 526 | #define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000) |
| 527 | #define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000) |
| 528 | #define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000) |
| 529 | #define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000) |
| 530 | #define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000) |
| 531 | #define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000) |
| 532 | #define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000) |
| 533 | #define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000) |
| 534 | #define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x22000000) |
| 535 | #define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x30000000) |
| 536 | #define PSA_ALG_CATEGORY_KEY_SELECTION ((psa_algorithm_t)0x31000000) |
| 537 | |
| 538 | #define PSA_ALG_IS_VENDOR_DEFINED(alg) \ |
| 539 | (((alg) & PSA_ALG_VENDOR_FLAG) != 0) |
| 540 | |
| 541 | /** Whether the specified algorithm is a hash algorithm. |
| 542 | * |
| 543 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 544 | * |
| 545 | * \return 1 if \p alg is a hash algorithm, 0 otherwise. |
| 546 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 547 | * algorithm identifier. |
| 548 | */ |
| 549 | #define PSA_ALG_IS_HASH(alg) \ |
| 550 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH) |
| 551 | |
| 552 | /** Whether the specified algorithm is a MAC algorithm. |
| 553 | * |
| 554 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 555 | * |
| 556 | * \return 1 if \p alg is a MAC algorithm, 0 otherwise. |
| 557 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 558 | * algorithm identifier. |
| 559 | */ |
| 560 | #define PSA_ALG_IS_MAC(alg) \ |
| 561 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC) |
| 562 | |
| 563 | /** Whether the specified algorithm is a symmetric cipher algorithm. |
| 564 | * |
| 565 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 566 | * |
| 567 | * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise. |
| 568 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 569 | * algorithm identifier. |
| 570 | */ |
| 571 | #define PSA_ALG_IS_CIPHER(alg) \ |
| 572 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER) |
| 573 | |
| 574 | /** Whether the specified algorithm is an authenticated encryption |
| 575 | * with associated data (AEAD) algorithm. |
| 576 | * |
| 577 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 578 | * |
| 579 | * \return 1 if \p alg is an AEAD algorithm, 0 otherwise. |
| 580 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 581 | * algorithm identifier. |
| 582 | */ |
| 583 | #define PSA_ALG_IS_AEAD(alg) \ |
| 584 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD) |
| 585 | |
| 586 | /** Whether the specified algorithm is a public-key signature algorithm. |
| 587 | * |
| 588 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 589 | * |
| 590 | * \return 1 if \p alg is a public-key signature algorithm, 0 otherwise. |
| 591 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 592 | * algorithm identifier. |
| 593 | */ |
| 594 | #define PSA_ALG_IS_SIGN(alg) \ |
| 595 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN) |
| 596 | |
| 597 | /** Whether the specified algorithm is a public-key encryption algorithm. |
| 598 | * |
| 599 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 600 | * |
| 601 | * \return 1 if \p alg is a public-key encryption algorithm, 0 otherwise. |
| 602 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 603 | * algorithm identifier. |
| 604 | */ |
| 605 | #define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \ |
| 606 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION) |
| 607 | |
| 608 | #define PSA_ALG_KEY_SELECTION_FLAG ((psa_algorithm_t)0x01000000) |
| 609 | /** Whether the specified algorithm is a key agreement algorithm. |
| 610 | * |
| 611 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 612 | * |
| 613 | * \return 1 if \p alg is a key agreement algorithm, 0 otherwise. |
| 614 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 615 | * algorithm identifier. |
| 616 | */ |
| 617 | #define PSA_ALG_IS_KEY_AGREEMENT(alg) \ |
| 618 | (((alg) & PSA_ALG_CATEGORY_MASK & ~PSA_ALG_KEY_SELECTION_FLAG) == \ |
| 619 | PSA_ALG_CATEGORY_KEY_AGREEMENT) |
| 620 | |
| 621 | /** Whether the specified algorithm is a key derivation algorithm. |
| 622 | * |
| 623 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 624 | * |
| 625 | * \return 1 if \p alg is a key derivation algorithm, 0 otherwise. |
| 626 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 627 | * algorithm identifier. |
| 628 | */ |
| 629 | #define PSA_ALG_IS_KEY_DERIVATION(alg) \ |
| 630 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION) |
| 631 | |
| 632 | /** Whether the specified algorithm is a key selection algorithm. |
| 633 | * |
| 634 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 635 | * |
| 636 | * \return 1 if \p alg is a key selection algorithm, 0 otherwise. |
| 637 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 638 | * algorithm identifier. |
| 639 | */ |
| 640 | #define PSA_ALG_IS_KEY_SELECTION(alg) \ |
| 641 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_SELECTION) |
| 642 | |
| 643 | #define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff) |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 644 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 645 | #define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001) |
| 646 | #define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002) |
| 647 | #define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003) |
| 648 | #define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004) |
| 649 | #define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005) |
| 650 | /** SHA2-224 */ |
| 651 | #define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008) |
| 652 | /** SHA2-256 */ |
| 653 | #define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009) |
| 654 | /** SHA2-384 */ |
| 655 | #define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a) |
| 656 | /** SHA2-512 */ |
| 657 | #define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b) |
| 658 | /** SHA2-512/224 */ |
| 659 | #define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c) |
| 660 | /** SHA2-512/256 */ |
| 661 | #define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d) |
| 662 | /** SHA3-224 */ |
| 663 | #define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010) |
| 664 | /** SHA3-256 */ |
| 665 | #define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011) |
| 666 | /** SHA3-384 */ |
| 667 | #define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012) |
| 668 | /** SHA3-512 */ |
| 669 | #define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013) |
| 670 | |
Gilles Peskine | 763fb9a | 2019-01-28 13:29:01 +0100 | [diff] [blame^] | 671 | /** In a hash-and-sign algorithm policy, allow any hash algorithm. |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 672 | * |
Gilles Peskine | 763fb9a | 2019-01-28 13:29:01 +0100 | [diff] [blame^] | 673 | * This value may be used to form the algorithm usage field of a policy |
| 674 | * for a signature algorithm that is parametrized by a hash. The key |
| 675 | * may then be used to perform operations using the same signature |
| 676 | * algorithm parametrized with any supported hash. |
| 677 | * |
| 678 | * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros: |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 679 | * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, |
| 680 | * - #PSA_ALG_DSA, #PSA_ALG_DETERMINISTIC_DSA, |
| 681 | * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA. |
Gilles Peskine | 763fb9a | 2019-01-28 13:29:01 +0100 | [diff] [blame^] | 682 | * Then you may create and use a key as follows: |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 683 | * - Set the key usage field using #PSA_ALG_ANY_HASH, for example: |
| 684 | * ``` |
| 685 | * psa_key_policy_set_usage(&policy, |
| 686 | * PSA_KEY_USAGE_SIGN, //or PSA_KEY_USAGE_VERIFY |
| 687 | * PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH)); |
| 688 | * psa_set_key_policy(handle, &policy); |
| 689 | * ``` |
| 690 | * - Import or generate key material. |
| 691 | * - Call psa_asymmetric_sign() or psa_asymmetric_verify(), passing |
| 692 | * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each |
| 693 | * call to sign or verify a message may use a different hash. |
| 694 | * ``` |
| 695 | * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...); |
| 696 | * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...); |
| 697 | * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...); |
| 698 | * ``` |
| 699 | * |
| 700 | * This value may not be used to build other algorithms that are |
| 701 | * parametrized over a hash. For any valid use of this macro to build |
| 702 | * an algorithm `\p alg`, #PSA_ALG_IS_HASH_AND_SIGN(\p alg) is true. |
| 703 | * |
| 704 | * This value may not be used to build an algorithm specification to |
| 705 | * perform an operation. It is only valid to build policies. |
| 706 | */ |
| 707 | #define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x010000ff) |
| 708 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 709 | #define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000) |
| 710 | #define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000) |
| 711 | /** Macro to build an HMAC algorithm. |
| 712 | * |
| 713 | * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256. |
| 714 | * |
| 715 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 716 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
| 717 | * |
| 718 | * \return The corresponding HMAC algorithm. |
| 719 | * \return Unspecified if \p alg is not a supported |
| 720 | * hash algorithm. |
| 721 | */ |
| 722 | #define PSA_ALG_HMAC(hash_alg) \ |
| 723 | (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 724 | |
| 725 | #define PSA_ALG_HMAC_GET_HASH(hmac_alg) \ |
| 726 | (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK)) |
| 727 | |
| 728 | /** Whether the specified algorithm is an HMAC algorithm. |
| 729 | * |
| 730 | * HMAC is a family of MAC algorithms that are based on a hash function. |
| 731 | * |
| 732 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 733 | * |
| 734 | * \return 1 if \p alg is an HMAC algorithm, 0 otherwise. |
| 735 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 736 | * algorithm identifier. |
| 737 | */ |
| 738 | #define PSA_ALG_IS_HMAC(alg) \ |
| 739 | (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \ |
| 740 | PSA_ALG_HMAC_BASE) |
| 741 | |
| 742 | /* In the encoding of a MAC algorithm, the bits corresponding to |
| 743 | * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is |
| 744 | * truncated. As an exception, the value 0 means the untruncated algorithm, |
| 745 | * whatever its length is. The length is encoded in 6 bits, so it can |
| 746 | * reach up to 63; the largest MAC is 64 bytes so its trivial truncation |
| 747 | * to full length is correctly encoded as 0 and any non-trivial truncation |
| 748 | * is correctly encoded as a value between 1 and 63. */ |
| 749 | #define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00) |
| 750 | #define PSA_MAC_TRUNCATION_OFFSET 8 |
| 751 | |
| 752 | /** Macro to build a truncated MAC algorithm. |
| 753 | * |
| 754 | * A truncated MAC algorithm is identical to the corresponding MAC |
| 755 | * algorithm except that the MAC value for the truncated algorithm |
| 756 | * consists of only the first \p mac_length bytes of the MAC value |
| 757 | * for the untruncated algorithm. |
| 758 | * |
| 759 | * \note This macro may allow constructing algorithm identifiers that |
| 760 | * are not valid, either because the specified length is larger |
| 761 | * than the untruncated MAC or because the specified length is |
| 762 | * smaller than permitted by the implementation. |
| 763 | * |
| 764 | * \note It is implementation-defined whether a truncated MAC that |
| 765 | * is truncated to the same length as the MAC of the untruncated |
| 766 | * algorithm is considered identical to the untruncated algorithm |
| 767 | * for policy comparison purposes. |
| 768 | * |
| 769 | * \param alg A MAC algorithm identifier (value of type |
| 770 | * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg) |
| 771 | * is true). This may be a truncated or untruncated |
| 772 | * MAC algorithm. |
| 773 | * \param mac_length Desired length of the truncated MAC in bytes. |
| 774 | * This must be at most the full length of the MAC |
| 775 | * and must be at least an implementation-specified |
| 776 | * minimum. The implementation-specified minimum |
| 777 | * shall not be zero. |
| 778 | * |
| 779 | * \return The corresponding MAC algorithm with the specified |
| 780 | * length. |
| 781 | * \return Unspecified if \p alg is not a supported |
| 782 | * MAC algorithm or if \p mac_length is too small or |
| 783 | * too large for the specified MAC algorithm. |
| 784 | */ |
| 785 | #define PSA_ALG_TRUNCATED_MAC(alg, mac_length) \ |
| 786 | (((alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \ |
| 787 | ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK)) |
| 788 | |
| 789 | /** Macro to build the base MAC algorithm corresponding to a truncated |
| 790 | * MAC algorithm. |
| 791 | * |
| 792 | * \param alg A MAC algorithm identifier (value of type |
| 793 | * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg) |
| 794 | * is true). This may be a truncated or untruncated |
| 795 | * MAC algorithm. |
| 796 | * |
| 797 | * \return The corresponding base MAC algorithm. |
| 798 | * \return Unspecified if \p alg is not a supported |
| 799 | * MAC algorithm. |
| 800 | */ |
| 801 | #define PSA_ALG_FULL_LENGTH_MAC(alg) \ |
| 802 | ((alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) |
| 803 | |
| 804 | /** Length to which a MAC algorithm is truncated. |
| 805 | * |
| 806 | * \param alg A MAC algorithm identifier (value of type |
| 807 | * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg) |
| 808 | * is true). |
| 809 | * |
| 810 | * \return Length of the truncated MAC in bytes. |
| 811 | * \return 0 if \p alg is a non-truncated MAC algorithm. |
| 812 | * \return Unspecified if \p alg is not a supported |
| 813 | * MAC algorithm. |
| 814 | */ |
| 815 | #define PSA_MAC_TRUNCATED_LENGTH(alg) \ |
| 816 | (((alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET) |
| 817 | |
| 818 | #define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000) |
| 819 | #define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001) |
| 820 | #define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002) |
| 821 | #define PSA_ALG_GMAC ((psa_algorithm_t)0x02c00003) |
| 822 | |
| 823 | /** Whether the specified algorithm is a MAC algorithm based on a block cipher. |
| 824 | * |
| 825 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 826 | * |
| 827 | * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise. |
| 828 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 829 | * algorithm identifier. |
| 830 | */ |
| 831 | #define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \ |
| 832 | (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \ |
| 833 | PSA_ALG_CIPHER_MAC_BASE) |
| 834 | |
| 835 | #define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000) |
| 836 | #define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000) |
| 837 | |
| 838 | /** Whether the specified algorithm is a stream cipher. |
| 839 | * |
| 840 | * A stream cipher is a symmetric cipher that encrypts or decrypts messages |
| 841 | * by applying a bitwise-xor with a stream of bytes that is generated |
| 842 | * from a key. |
| 843 | * |
| 844 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 845 | * |
| 846 | * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise. |
| 847 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 848 | * algorithm identifier or if it is not a symmetric cipher algorithm. |
| 849 | */ |
| 850 | #define PSA_ALG_IS_STREAM_CIPHER(alg) \ |
| 851 | (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \ |
| 852 | (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG)) |
| 853 | |
| 854 | /** The ARC4 stream cipher algorithm. |
| 855 | */ |
| 856 | #define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001) |
| 857 | |
| 858 | /** The CTR stream cipher mode. |
| 859 | * |
| 860 | * CTR is a stream cipher which is built from a block cipher. |
| 861 | * The underlying block cipher is determined by the key type. |
| 862 | * For example, to use AES-128-CTR, use this algorithm with |
| 863 | * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes). |
| 864 | */ |
| 865 | #define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001) |
| 866 | |
| 867 | #define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002) |
| 868 | |
| 869 | #define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003) |
| 870 | |
| 871 | /** The XTS cipher mode. |
| 872 | * |
| 873 | * XTS is a cipher mode which is built from a block cipher. It requires at |
| 874 | * least one full block of input, but beyond this minimum the input |
| 875 | * does not need to be a whole number of blocks. |
| 876 | */ |
| 877 | #define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff) |
| 878 | |
| 879 | /** The CBC block cipher chaining mode, with no padding. |
| 880 | * |
| 881 | * The underlying block cipher is determined by the key type. |
| 882 | * |
| 883 | * This symmetric cipher mode can only be used with messages whose lengths |
| 884 | * are whole number of blocks for the chosen block cipher. |
| 885 | */ |
| 886 | #define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100) |
| 887 | |
| 888 | /** The CBC block cipher chaining mode with PKCS#7 padding. |
| 889 | * |
| 890 | * The underlying block cipher is determined by the key type. |
| 891 | * |
| 892 | * This is the padding method defined by PKCS#7 (RFC 2315) §10.3. |
| 893 | */ |
| 894 | #define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101) |
| 895 | |
| 896 | #define PSA_ALG_CCM ((psa_algorithm_t)0x06001001) |
| 897 | #define PSA_ALG_GCM ((psa_algorithm_t)0x06001002) |
| 898 | |
| 899 | /* In the encoding of a AEAD algorithm, the bits corresponding to |
| 900 | * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag. |
| 901 | * The constants for default lengths follow this encoding. |
| 902 | */ |
| 903 | #define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00) |
| 904 | #define PSA_AEAD_TAG_LENGTH_OFFSET 8 |
| 905 | |
| 906 | /** Macro to build a shortened AEAD algorithm. |
| 907 | * |
| 908 | * A shortened AEAD algorithm is similar to the corresponding AEAD |
| 909 | * algorithm, but has an authentication tag that consists of fewer bytes. |
| 910 | * Depending on the algorithm, the tag length may affect the calculation |
| 911 | * of the ciphertext. |
| 912 | * |
| 913 | * \param alg A AEAD algorithm identifier (value of type |
| 914 | * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg) |
| 915 | * is true). |
| 916 | * \param tag_length Desired length of the authentication tag in bytes. |
| 917 | * |
| 918 | * \return The corresponding AEAD algorithm with the specified |
| 919 | * length. |
| 920 | * \return Unspecified if \p alg is not a supported |
| 921 | * AEAD algorithm or if \p tag_length is not valid |
| 922 | * for the specified AEAD algorithm. |
| 923 | */ |
| 924 | #define PSA_ALG_AEAD_WITH_TAG_LENGTH(alg, tag_length) \ |
| 925 | (((alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \ |
| 926 | ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \ |
| 927 | PSA_ALG_AEAD_TAG_LENGTH_MASK)) |
| 928 | |
| 929 | /** Calculate the corresponding AEAD algorithm with the default tag length. |
| 930 | * |
| 931 | * \param alg An AEAD algorithm (\c PSA_ALG_XXX value such that |
| 932 | * #PSA_ALG_IS_AEAD(\p alg) is true). |
| 933 | * |
| 934 | * \return The corresponding AEAD algorithm with the default tag length |
| 935 | * for that algorithm. |
| 936 | */ |
| 937 | #define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(alg) \ |
| 938 | ( \ |
| 939 | PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(alg, PSA_ALG_CCM) \ |
| 940 | PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(alg, PSA_ALG_GCM) \ |
| 941 | 0) |
| 942 | #define PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(alg, ref) \ |
| 943 | PSA_ALG_AEAD_WITH_TAG_LENGTH(alg, 0) == \ |
| 944 | PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \ |
| 945 | ref : |
| 946 | |
| 947 | #define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000) |
| 948 | /** RSA PKCS#1 v1.5 signature with hashing. |
| 949 | * |
| 950 | * This is the signature scheme defined by RFC 8017 |
| 951 | * (PKCS#1: RSA Cryptography Specifications) under the name |
| 952 | * RSASSA-PKCS1-v1_5. |
| 953 | * |
| 954 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 955 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 956 | * This includes #PSA_ALG_ANY_HASH |
| 957 | * when specifying the algorithm in a usage policy. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 958 | * |
| 959 | * \return The corresponding RSA PKCS#1 v1.5 signature algorithm. |
| 960 | * \return Unspecified if \p alg is not a supported |
| 961 | * hash algorithm. |
| 962 | */ |
| 963 | #define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \ |
| 964 | (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 965 | /** Raw PKCS#1 v1.5 signature. |
| 966 | * |
| 967 | * The input to this algorithm is the DigestInfo structure used by |
| 968 | * RFC 8017 (PKCS#1: RSA Cryptography Specifications), §9.2 |
| 969 | * steps 3–6. |
| 970 | */ |
| 971 | #define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE |
| 972 | #define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \ |
| 973 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE) |
| 974 | |
| 975 | #define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000) |
| 976 | /** RSA PSS signature with hashing. |
| 977 | * |
| 978 | * This is the signature scheme defined by RFC 8017 |
| 979 | * (PKCS#1: RSA Cryptography Specifications) under the name |
| 980 | * RSASSA-PSS, with the message generation function MGF1, and with |
| 981 | * a salt length equal to the length of the hash. The specified |
| 982 | * hash algorithm is used to hash the input message, to create the |
| 983 | * salted hash, and for the mask generation. |
| 984 | * |
| 985 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 986 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 987 | * This includes #PSA_ALG_ANY_HASH |
| 988 | * when specifying the algorithm in a usage policy. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 989 | * |
| 990 | * \return The corresponding RSA PSS signature algorithm. |
| 991 | * \return Unspecified if \p alg is not a supported |
| 992 | * hash algorithm. |
| 993 | */ |
| 994 | #define PSA_ALG_RSA_PSS(hash_alg) \ |
| 995 | (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 996 | #define PSA_ALG_IS_RSA_PSS(alg) \ |
| 997 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE) |
| 998 | |
| 999 | #define PSA_ALG_DSA_BASE ((psa_algorithm_t)0x10040000) |
| 1000 | /** DSA signature with hashing. |
| 1001 | * |
| 1002 | * This is the signature scheme defined by FIPS 186-4, |
| 1003 | * with a random per-message secret number (*k*). |
| 1004 | * |
| 1005 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1006 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 1007 | * This includes #PSA_ALG_ANY_HASH |
| 1008 | * when specifying the algorithm in a usage policy. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1009 | * |
| 1010 | * \return The corresponding DSA signature algorithm. |
| 1011 | * \return Unspecified if \p alg is not a supported |
| 1012 | * hash algorithm. |
| 1013 | */ |
| 1014 | #define PSA_ALG_DSA(hash_alg) \ |
| 1015 | (PSA_ALG_DSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1016 | #define PSA_ALG_DETERMINISTIC_DSA_BASE ((psa_algorithm_t)0x10050000) |
| 1017 | #define PSA_ALG_DSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00010000) |
| 1018 | #define PSA_ALG_DETERMINISTIC_DSA(hash_alg) \ |
| 1019 | (PSA_ALG_DETERMINISTIC_DSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1020 | #define PSA_ALG_IS_DSA(alg) \ |
| 1021 | (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \ |
| 1022 | PSA_ALG_DSA_BASE) |
| 1023 | #define PSA_ALG_DSA_IS_DETERMINISTIC(alg) \ |
| 1024 | (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0) |
| 1025 | #define PSA_ALG_IS_DETERMINISTIC_DSA(alg) \ |
| 1026 | (PSA_ALG_IS_DSA(alg) && PSA_ALG_DSA_IS_DETERMINISTIC(alg)) |
| 1027 | #define PSA_ALG_IS_RANDOMIZED_DSA(alg) \ |
| 1028 | (PSA_ALG_IS_DSA(alg) && !PSA_ALG_DSA_IS_DETERMINISTIC(alg)) |
| 1029 | |
| 1030 | #define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000) |
| 1031 | /** ECDSA signature with hashing. |
| 1032 | * |
| 1033 | * This is the ECDSA signature scheme defined by ANSI X9.62, |
| 1034 | * with a random per-message secret number (*k*). |
| 1035 | * |
| 1036 | * The representation of the signature as a byte string consists of |
| 1037 | * the concatentation of the signature values *r* and *s*. Each of |
| 1038 | * *r* and *s* is encoded as an *N*-octet string, where *N* is the length |
| 1039 | * of the base point of the curve in octets. Each value is represented |
| 1040 | * in big-endian order (most significant octet first). |
| 1041 | * |
| 1042 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1043 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 1044 | * This includes #PSA_ALG_ANY_HASH |
| 1045 | * when specifying the algorithm in a usage policy. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1046 | * |
| 1047 | * \return The corresponding ECDSA signature algorithm. |
| 1048 | * \return Unspecified if \p alg is not a supported |
| 1049 | * hash algorithm. |
| 1050 | */ |
| 1051 | #define PSA_ALG_ECDSA(hash_alg) \ |
| 1052 | (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1053 | /** ECDSA signature without hashing. |
| 1054 | * |
| 1055 | * This is the same signature scheme as #PSA_ALG_ECDSA(), but |
| 1056 | * without specifying a hash algorithm. This algorithm may only be |
| 1057 | * used to sign or verify a sequence of bytes that should be an |
| 1058 | * already-calculated hash. Note that the input is padded with |
| 1059 | * zeros on the left or truncated on the left as required to fit |
| 1060 | * the curve size. |
| 1061 | */ |
| 1062 | #define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE |
| 1063 | #define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000) |
| 1064 | /** Deterministic ECDSA signature with hashing. |
| 1065 | * |
| 1066 | * This is the deterministic ECDSA signature scheme defined by RFC 6979. |
| 1067 | * |
| 1068 | * The representation of a signature is the same as with #PSA_ALG_ECDSA(). |
| 1069 | * |
| 1070 | * Note that when this algorithm is used for verification, signatures |
| 1071 | * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the |
| 1072 | * same private key are accepted. In other words, |
| 1073 | * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from |
| 1074 | * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification. |
| 1075 | * |
| 1076 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1077 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 1078 | * This includes #PSA_ALG_ANY_HASH |
| 1079 | * when specifying the algorithm in a usage policy. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1080 | * |
| 1081 | * \return The corresponding deterministic ECDSA signature |
| 1082 | * algorithm. |
| 1083 | * \return Unspecified if \p alg is not a supported |
| 1084 | * hash algorithm. |
| 1085 | */ |
| 1086 | #define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \ |
| 1087 | (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1088 | #define PSA_ALG_IS_ECDSA(alg) \ |
| 1089 | (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \ |
| 1090 | PSA_ALG_ECDSA_BASE) |
| 1091 | #define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \ |
| 1092 | (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0) |
| 1093 | #define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \ |
| 1094 | (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg)) |
| 1095 | #define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \ |
| 1096 | (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg)) |
| 1097 | |
Gilles Peskine | d35b489 | 2019-01-14 16:02:15 +0100 | [diff] [blame] | 1098 | /** Whether the specified algorithm is a hash-and-sign algorithm. |
| 1099 | * |
| 1100 | * Hash-and-sign algorithms are public-key signature algorithms structured |
| 1101 | * in two parts: first the calculation of a hash in a way that does not |
| 1102 | * depend on the key, then the calculation of a signature from the |
| 1103 | * hash value and the key. |
| 1104 | * |
| 1105 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1106 | * |
| 1107 | * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise. |
| 1108 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 1109 | * algorithm identifier. |
| 1110 | */ |
| 1111 | #define PSA_ALG_IS_HASH_AND_SIGN(alg) \ |
| 1112 | (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \ |
| 1113 | PSA_ALG_IS_DSA(alg) || PSA_ALG_IS_ECDSA(alg)) |
| 1114 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1115 | /** Get the hash used by a hash-and-sign signature algorithm. |
| 1116 | * |
| 1117 | * A hash-and-sign algorithm is a signature algorithm which is |
| 1118 | * composed of two phases: first a hashing phase which does not use |
| 1119 | * the key and produces a hash of the input message, then a signing |
| 1120 | * phase which only uses the hash and the key and not the message |
| 1121 | * itself. |
| 1122 | * |
| 1123 | * \param alg A signature algorithm (\c PSA_ALG_XXX value such that |
| 1124 | * #PSA_ALG_IS_SIGN(\p alg) is true). |
| 1125 | * |
| 1126 | * \return The underlying hash algorithm if \p alg is a hash-and-sign |
| 1127 | * algorithm. |
| 1128 | * \return 0 if \p alg is a signature algorithm that does not |
| 1129 | * follow the hash-and-sign structure. |
| 1130 | * \return Unspecified if \p alg is not a signature algorithm or |
| 1131 | * if it is not supported by the implementation. |
| 1132 | */ |
| 1133 | #define PSA_ALG_SIGN_GET_HASH(alg) \ |
Gilles Peskine | d35b489 | 2019-01-14 16:02:15 +0100 | [diff] [blame] | 1134 | (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1135 | ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \ |
| 1136 | ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \ |
| 1137 | 0) |
| 1138 | |
| 1139 | /** RSA PKCS#1 v1.5 encryption. |
| 1140 | */ |
| 1141 | #define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000) |
| 1142 | |
| 1143 | #define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000) |
| 1144 | /** RSA OAEP encryption. |
| 1145 | * |
| 1146 | * This is the encryption scheme defined by RFC 8017 |
| 1147 | * (PKCS#1: RSA Cryptography Specifications) under the name |
| 1148 | * RSAES-OAEP, with the message generation function MGF1. |
| 1149 | * |
| 1150 | * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that |
| 1151 | * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use |
| 1152 | * for MGF1. |
| 1153 | * |
| 1154 | * \return The corresponding RSA OAEP signature algorithm. |
| 1155 | * \return Unspecified if \p alg is not a supported |
| 1156 | * hash algorithm. |
| 1157 | */ |
| 1158 | #define PSA_ALG_RSA_OAEP(hash_alg) \ |
| 1159 | (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1160 | #define PSA_ALG_IS_RSA_OAEP(alg) \ |
| 1161 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE) |
| 1162 | #define PSA_ALG_RSA_OAEP_GET_HASH(alg) \ |
| 1163 | (PSA_ALG_IS_RSA_OAEP(alg) ? \ |
| 1164 | ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \ |
| 1165 | 0) |
| 1166 | |
| 1167 | #define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x30000100) |
| 1168 | /** Macro to build an HKDF algorithm. |
| 1169 | * |
| 1170 | * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256. |
| 1171 | * |
| 1172 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1173 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
| 1174 | * |
| 1175 | * \return The corresponding HKDF algorithm. |
| 1176 | * \return Unspecified if \p alg is not a supported |
| 1177 | * hash algorithm. |
| 1178 | */ |
| 1179 | #define PSA_ALG_HKDF(hash_alg) \ |
| 1180 | (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1181 | /** Whether the specified algorithm is an HKDF algorithm. |
| 1182 | * |
| 1183 | * HKDF is a family of key derivation algorithms that are based on a hash |
| 1184 | * function and the HMAC construction. |
| 1185 | * |
| 1186 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1187 | * |
| 1188 | * \return 1 if \c alg is an HKDF algorithm, 0 otherwise. |
| 1189 | * This macro may return either 0 or 1 if \c alg is not a supported |
| 1190 | * key derivation algorithm identifier. |
| 1191 | */ |
| 1192 | #define PSA_ALG_IS_HKDF(alg) \ |
| 1193 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE) |
| 1194 | #define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \ |
| 1195 | (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK)) |
| 1196 | |
| 1197 | #define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x30000200) |
| 1198 | /** Macro to build a TLS-1.2 PRF algorithm. |
| 1199 | * |
| 1200 | * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule, |
| 1201 | * specified in Section 5 of RFC 5246. It is based on HMAC and can be |
| 1202 | * used with either SHA-256 or SHA-384. |
| 1203 | * |
| 1204 | * For the application to TLS-1.2, the salt and label arguments passed |
| 1205 | * to psa_key_derivation() are what's called 'seed' and 'label' in RFC 5246, |
| 1206 | * respectively. For example, for TLS key expansion, the salt is the |
| 1207 | * concatenation of ServerHello.Random + ClientHello.Random, |
| 1208 | * while the label is "key expansion". |
| 1209 | * |
| 1210 | * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the |
| 1211 | * TLS 1.2 PRF using HMAC-SHA-256. |
| 1212 | * |
| 1213 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1214 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
| 1215 | * |
| 1216 | * \return The corresponding TLS-1.2 PRF algorithm. |
| 1217 | * \return Unspecified if \p alg is not a supported |
| 1218 | * hash algorithm. |
| 1219 | */ |
| 1220 | #define PSA_ALG_TLS12_PRF(hash_alg) \ |
| 1221 | (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1222 | |
| 1223 | /** Whether the specified algorithm is a TLS-1.2 PRF algorithm. |
| 1224 | * |
| 1225 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1226 | * |
| 1227 | * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise. |
| 1228 | * This macro may return either 0 or 1 if \c alg is not a supported |
| 1229 | * key derivation algorithm identifier. |
| 1230 | */ |
| 1231 | #define PSA_ALG_IS_TLS12_PRF(alg) \ |
| 1232 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE) |
| 1233 | #define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \ |
| 1234 | (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK)) |
| 1235 | |
| 1236 | #define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x30000300) |
| 1237 | /** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm. |
| 1238 | * |
| 1239 | * In a pure-PSK handshake in TLS 1.2, the master secret is derived |
| 1240 | * from the PreSharedKey (PSK) through the application of padding |
| 1241 | * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5). |
| 1242 | * The latter is based on HMAC and can be used with either SHA-256 |
| 1243 | * or SHA-384. |
| 1244 | * |
| 1245 | * For the application to TLS-1.2, the salt passed to psa_key_derivation() |
| 1246 | * (and forwarded to the TLS-1.2 PRF) is the concatenation of the |
| 1247 | * ClientHello.Random + ServerHello.Random, while the label is "master secret" |
| 1248 | * or "extended master secret". |
| 1249 | * |
| 1250 | * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the |
| 1251 | * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256. |
| 1252 | * |
| 1253 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1254 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
| 1255 | * |
| 1256 | * \return The corresponding TLS-1.2 PSK to MS algorithm. |
| 1257 | * \return Unspecified if \p alg is not a supported |
| 1258 | * hash algorithm. |
| 1259 | */ |
| 1260 | #define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \ |
| 1261 | (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1262 | |
| 1263 | /** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm. |
| 1264 | * |
| 1265 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1266 | * |
| 1267 | * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise. |
| 1268 | * This macro may return either 0 or 1 if \c alg is not a supported |
| 1269 | * key derivation algorithm identifier. |
| 1270 | */ |
| 1271 | #define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \ |
| 1272 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE) |
| 1273 | #define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \ |
| 1274 | (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK)) |
| 1275 | |
| 1276 | #define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x010fffff) |
| 1277 | |
| 1278 | /** Use a shared secret as is. |
| 1279 | * |
| 1280 | * Specify this algorithm as the selection component of a key agreement |
| 1281 | * to use the raw result of the key agreement as key material. |
| 1282 | * |
| 1283 | * \warning The raw result of a key agreement algorithm such as finite-field |
| 1284 | * Diffie-Hellman or elliptic curve Diffie-Hellman has biases and should |
| 1285 | * not be used directly as key material. It can however be used as the secret |
| 1286 | * input in a key derivation algorithm. |
| 1287 | */ |
| 1288 | #define PSA_ALG_SELECT_RAW ((psa_algorithm_t)0x31000001) |
| 1289 | |
| 1290 | #define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \ |
| 1291 | (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION) |
| 1292 | |
| 1293 | #define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \ |
| 1294 | ((alg) & ~PSA_ALG_KEY_DERIVATION_MASK) |
| 1295 | |
| 1296 | #define PSA_ALG_FFDH_BASE ((psa_algorithm_t)0x22100000) |
| 1297 | /** The Diffie-Hellman key agreement algorithm. |
| 1298 | * |
| 1299 | * This algorithm combines the finite-field Diffie-Hellman (DH) key |
| 1300 | * agreement, also known as Diffie-Hellman-Merkle (DHM) key agreement, |
| 1301 | * to produce a shared secret from a private key and the peer's |
| 1302 | * public key, with a key selection or key derivation algorithm to produce |
| 1303 | * one or more shared keys and other shared cryptographic material. |
| 1304 | * |
| 1305 | * The shared secret produced by key agreement and passed as input to the |
| 1306 | * derivation or selection algorithm \p kdf_alg is the shared secret |
| 1307 | * `g^{ab}` in big-endian format. |
| 1308 | * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p` |
| 1309 | * in bits. |
| 1310 | * |
| 1311 | * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such |
| 1312 | * that #PSA_ALG_IS_KEY_DERIVATION(\p hash_alg) is true) |
| 1313 | * or a key selection algorithm (\c PSA_ALG_XXX value such |
| 1314 | * that #PSA_ALG_IS_KEY_SELECTION(\p hash_alg) is true). |
| 1315 | * |
| 1316 | * \return The Diffie-Hellman algorithm with the specified |
| 1317 | * selection or derivation algorithm. |
| 1318 | */ |
| 1319 | #define PSA_ALG_FFDH(kdf_alg) \ |
| 1320 | (PSA_ALG_FFDH_BASE | ((kdf_alg) & PSA_ALG_KEY_DERIVATION_MASK)) |
| 1321 | /** Whether the specified algorithm is a finite field Diffie-Hellman algorithm. |
| 1322 | * |
| 1323 | * This includes every supported key selection or key agreement algorithm |
| 1324 | * for the output of the Diffie-Hellman calculation. |
| 1325 | * |
| 1326 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1327 | * |
| 1328 | * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise. |
| 1329 | * This macro may return either 0 or 1 if \c alg is not a supported |
| 1330 | * key agreement algorithm identifier. |
| 1331 | */ |
| 1332 | #define PSA_ALG_IS_FFDH(alg) \ |
| 1333 | (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH_BASE) |
| 1334 | |
| 1335 | #define PSA_ALG_ECDH_BASE ((psa_algorithm_t)0x22200000) |
| 1336 | /** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm. |
| 1337 | * |
| 1338 | * This algorithm combines the elliptic curve Diffie-Hellman key |
| 1339 | * agreement to produce a shared secret from a private key and the peer's |
| 1340 | * public key, with a key selection or key derivation algorithm to produce |
| 1341 | * one or more shared keys and other shared cryptographic material. |
| 1342 | * |
| 1343 | * The shared secret produced by key agreement and passed as input to the |
| 1344 | * derivation or selection algorithm \p kdf_alg is the x-coordinate of |
| 1345 | * the shared secret point. It is always `ceiling(m / 8)` bytes long where |
| 1346 | * `m` is the bit size associated with the curve, i.e. the bit size of the |
| 1347 | * order of the curve's coordinate field. When `m` is not a multiple of 8, |
| 1348 | * the byte containing the most significant bit of the shared secret |
| 1349 | * is padded with zero bits. The byte order is either little-endian |
| 1350 | * or big-endian depending on the curve type. |
| 1351 | * |
| 1352 | * - For Montgomery curves (curve types `PSA_ECC_CURVE_CURVEXXX`), |
| 1353 | * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A` |
| 1354 | * in little-endian byte order. |
| 1355 | * The bit size is 448 for Curve448 and 255 for Curve25519. |
| 1356 | * - For Weierstrass curves over prime fields (curve types |
| 1357 | * `PSA_ECC_CURVE_SECPXXX` and `PSA_ECC_CURVE_BRAINPOOL_PXXX`), |
| 1358 | * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A` |
| 1359 | * in big-endian byte order. |
| 1360 | * The bit size is `m = ceiling(log_2(p))` for the field `F_p`. |
| 1361 | * - For Weierstrass curves over binary fields (curve types |
| 1362 | * `PSA_ECC_CURVE_SECTXXX`), |
| 1363 | * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A` |
| 1364 | * in big-endian byte order. |
| 1365 | * The bit size is `m` for the field `F_{2^m}`. |
| 1366 | * |
| 1367 | * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such |
| 1368 | * that #PSA_ALG_IS_KEY_DERIVATION(\p hash_alg) is true) |
| 1369 | * or a selection algorithm (\c PSA_ALG_XXX value such |
| 1370 | * that #PSA_ALG_IS_KEY_SELECTION(\p hash_alg) is true). |
| 1371 | * |
| 1372 | * \return The Diffie-Hellman algorithm with the specified |
| 1373 | * selection or derivation algorithm. |
| 1374 | */ |
| 1375 | #define PSA_ALG_ECDH(kdf_alg) \ |
| 1376 | (PSA_ALG_ECDH_BASE | ((kdf_alg) & PSA_ALG_KEY_DERIVATION_MASK)) |
| 1377 | /** Whether the specified algorithm is an elliptic curve Diffie-Hellman |
| 1378 | * algorithm. |
| 1379 | * |
| 1380 | * This includes every supported key selection or key agreement algorithm |
| 1381 | * for the output of the Diffie-Hellman calculation. |
| 1382 | * |
| 1383 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1384 | * |
| 1385 | * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm, |
| 1386 | * 0 otherwise. |
| 1387 | * This macro may return either 0 or 1 if \c alg is not a supported |
| 1388 | * key agreement algorithm identifier. |
| 1389 | */ |
| 1390 | #define PSA_ALG_IS_ECDH(alg) \ |
| 1391 | (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH_BASE) |
| 1392 | |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 1393 | /** Whether the specified algorithm encoding is a wildcard. |
| 1394 | * |
| 1395 | * Wildcard values may only be used to set the usage algorithm field in |
| 1396 | * a policy, not to perform an operation. |
| 1397 | * |
| 1398 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1399 | * |
| 1400 | * \return 1 if \c alg is a wildcard algorithm encoding. |
| 1401 | * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for |
| 1402 | * an operation). |
| 1403 | * \return This macro may return either 0 or 1 if \c alg is not a supported |
| 1404 | * algorithm identifier. |
| 1405 | */ |
| 1406 | #define PSA_ALG_IS_WILDCARD(alg) \ |
| 1407 | (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \ |
| 1408 | PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \ |
| 1409 | (alg) == PSA_ALG_ANY_HASH) |
| 1410 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1411 | /**@}*/ |
| 1412 | |
| 1413 | /** \defgroup key_lifetimes Key lifetimes |
| 1414 | * @{ |
| 1415 | */ |
| 1416 | |
| 1417 | /** A volatile key only exists as long as the handle to it is not closed. |
| 1418 | * The key material is guaranteed to be erased on a power reset. |
| 1419 | */ |
| 1420 | #define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000) |
| 1421 | |
| 1422 | /** The default storage area for persistent keys. |
| 1423 | * |
| 1424 | * A persistent key remains in storage until it is explicitly destroyed or |
| 1425 | * until the corresponding storage area is wiped. This specification does |
| 1426 | * not define any mechanism to wipe a storage area, but implementations may |
| 1427 | * provide their own mechanism (for example to perform a factory reset, |
| 1428 | * to prepare for device refurbishment, or to uninstall an application). |
| 1429 | * |
| 1430 | * This lifetime value is the default storage area for the calling |
| 1431 | * application. Implementations may offer other storage areas designated |
| 1432 | * by other lifetime values as implementation-specific extensions. |
| 1433 | */ |
| 1434 | #define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001) |
| 1435 | |
| 1436 | /**@}*/ |
| 1437 | |
| 1438 | /** \defgroup policy Key policies |
| 1439 | * @{ |
| 1440 | */ |
| 1441 | |
| 1442 | /** Whether the key may be exported. |
| 1443 | * |
| 1444 | * A public key or the public part of a key pair may always be exported |
| 1445 | * regardless of the value of this permission flag. |
| 1446 | * |
| 1447 | * If a key does not have export permission, implementations shall not |
| 1448 | * allow the key to be exported in plain form from the cryptoprocessor, |
| 1449 | * whether through psa_export_key() or through a proprietary interface. |
| 1450 | * The key may however be exportable in a wrapped form, i.e. in a form |
| 1451 | * where it is encrypted by another key. |
| 1452 | */ |
| 1453 | #define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001) |
| 1454 | |
| 1455 | /** Whether the key may be used to encrypt a message. |
| 1456 | * |
| 1457 | * This flag allows the key to be used for a symmetric encryption operation, |
| 1458 | * for an AEAD encryption-and-authentication operation, |
| 1459 | * or for an asymmetric encryption operation, |
| 1460 | * if otherwise permitted by the key's type and policy. |
| 1461 | * |
| 1462 | * For a key pair, this concerns the public key. |
| 1463 | */ |
| 1464 | #define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100) |
| 1465 | |
| 1466 | /** Whether the key may be used to decrypt a message. |
| 1467 | * |
| 1468 | * This flag allows the key to be used for a symmetric decryption operation, |
| 1469 | * for an AEAD decryption-and-verification operation, |
| 1470 | * or for an asymmetric decryption operation, |
| 1471 | * if otherwise permitted by the key's type and policy. |
| 1472 | * |
| 1473 | * For a key pair, this concerns the private key. |
| 1474 | */ |
| 1475 | #define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200) |
| 1476 | |
| 1477 | /** Whether the key may be used to sign a message. |
| 1478 | * |
| 1479 | * This flag allows the key to be used for a MAC calculation operation |
| 1480 | * or for an asymmetric signature operation, |
| 1481 | * if otherwise permitted by the key's type and policy. |
| 1482 | * |
| 1483 | * For a key pair, this concerns the private key. |
| 1484 | */ |
| 1485 | #define PSA_KEY_USAGE_SIGN ((psa_key_usage_t)0x00000400) |
| 1486 | |
| 1487 | /** Whether the key may be used to verify a message signature. |
| 1488 | * |
| 1489 | * This flag allows the key to be used for a MAC verification operation |
| 1490 | * or for an asymmetric signature verification operation, |
| 1491 | * if otherwise permitted by by the key's type and policy. |
| 1492 | * |
| 1493 | * For a key pair, this concerns the public key. |
| 1494 | */ |
| 1495 | #define PSA_KEY_USAGE_VERIFY ((psa_key_usage_t)0x00000800) |
| 1496 | |
| 1497 | /** Whether the key may be used to derive other keys. |
| 1498 | */ |
| 1499 | #define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000) |
| 1500 | |
| 1501 | /**@}*/ |
| 1502 | |
| 1503 | #endif /* PSA_CRYPTO_VALUES_H */ |