blob: 6e983692f7c8a1e5627f291681fce2b95a6dcc3e [file] [log] [blame]
Jarno Lamsa18987a42019-04-24 15:40:43 +03001/* ecc.c - TinyCrypt implementation of common ECC functions */
2
3/*
Simon Butcher92c3d1f2019-09-09 17:25:08 +01004 * Copyright (c) 2019, Arm Limited (or its affiliates), All Rights Reserved.
5 * SPDX-License-Identifier: BSD-3-Clause
6 */
7
8/*
Jarno Lamsa18987a42019-04-24 15:40:43 +03009 * Copyright (c) 2014, Kenneth MacKay
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions are met:
14 * * Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above copyright notice,
17 * this list of conditions and the following disclaimer in the documentation
18 * and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
22 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
24 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
25 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
27 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions are met:
35 *
36 * - Redistributions of source code must retain the above copyright notice,
37 * this list of conditions and the following disclaimer.
38 *
39 * - Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 *
43 * - Neither the name of Intel Corporation nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
48 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
51 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
52 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
53 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
54 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
55 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
56 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
57 * POSSIBILITY OF SUCH DAMAGE.
58 */
59
Hanno Becker36ae7582019-07-23 15:52:35 +010060#if !defined(MBEDTLS_CONFIG_FILE)
61#include "mbedtls/config.h"
62#else
63#include MBEDTLS_CONFIG_FILE
64#endif
65
Manuel Pégourié-Gonnardafdc1b52019-05-09 11:24:11 +020066#if defined(MBEDTLS_USE_TINYCRYPT)
Jarno Lamsa18987a42019-04-24 15:40:43 +030067#include <tinycrypt/ecc.h>
Jarno Lamsa18987a42019-04-24 15:40:43 +030068#include <string.h>
69
70/* IMPORTANT: Make sure a cryptographically-secure PRNG is set and the platform
71 * has access to enough entropy in order to feed the PRNG regularly. */
72#if default_RNG_defined
73static uECC_RNG_Function g_rng_function = &default_CSPRNG;
74#else
75static uECC_RNG_Function g_rng_function = 0;
76#endif
77
78void uECC_set_rng(uECC_RNG_Function rng_function)
79{
80 g_rng_function = rng_function;
81}
82
83uECC_RNG_Function uECC_get_rng(void)
84{
85 return g_rng_function;
86}
87
88int uECC_curve_private_key_size(uECC_Curve curve)
89{
90 return BITS_TO_BYTES(curve->num_n_bits);
91}
92
93int uECC_curve_public_key_size(uECC_Curve curve)
94{
95 return 2 * curve->num_bytes;
96}
97
98void uECC_vli_clear(uECC_word_t *vli, wordcount_t num_words)
99{
100 wordcount_t i;
101 for (i = 0; i < num_words; ++i) {
102 vli[i] = 0;
103 }
104}
105
106uECC_word_t uECC_vli_isZero(const uECC_word_t *vli, wordcount_t num_words)
107{
108 uECC_word_t bits = 0;
109 wordcount_t i;
110 for (i = 0; i < num_words; ++i) {
111 bits |= vli[i];
112 }
113 return (bits == 0);
114}
115
116uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit)
117{
118 return (vli[bit >> uECC_WORD_BITS_SHIFT] &
119 ((uECC_word_t)1 << (bit & uECC_WORD_BITS_MASK)));
120}
121
122/* Counts the number of words in vli. */
123static wordcount_t vli_numDigits(const uECC_word_t *vli,
124 const wordcount_t max_words)
125{
126
127 wordcount_t i;
128 /* Search from the end until we find a non-zero digit. We do it in reverse
129 * because we expect that most digits will be nonzero. */
130 for (i = max_words - 1; i >= 0 && vli[i] == 0; --i) {
131 }
132
133 return (i + 1);
134}
135
136bitcount_t uECC_vli_numBits(const uECC_word_t *vli,
137 const wordcount_t max_words)
138{
139
140 uECC_word_t i;
141 uECC_word_t digit;
142
143 wordcount_t num_digits = vli_numDigits(vli, max_words);
144 if (num_digits == 0) {
145 return 0;
146 }
147
148 digit = vli[num_digits - 1];
149 for (i = 0; digit; ++i) {
150 digit >>= 1;
151 }
152
153 return (((bitcount_t)(num_digits - 1) << uECC_WORD_BITS_SHIFT) + i);
154}
155
156void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src,
157 wordcount_t num_words)
158{
159 wordcount_t i;
160
161 for (i = 0; i < num_words; ++i) {
162 dest[i] = src[i];
163 }
164}
165
166cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left,
167 const uECC_word_t *right,
168 wordcount_t num_words)
169{
170 wordcount_t i;
171
172 for (i = num_words - 1; i >= 0; --i) {
173 if (left[i] > right[i]) {
174 return 1;
175 } else if (left[i] < right[i]) {
176 return -1;
177 }
178 }
179 return 0;
180}
181
182uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right,
183 wordcount_t num_words)
184{
185
186 uECC_word_t diff = 0;
187 wordcount_t i;
188
189 for (i = num_words - 1; i >= 0; --i) {
190 diff |= (left[i] ^ right[i]);
191 }
192 return !(diff == 0);
193}
194
195uECC_word_t cond_set(uECC_word_t p_true, uECC_word_t p_false, unsigned int cond)
196{
197 return (p_true*(cond)) | (p_false*(!cond));
198}
199
200/* Computes result = left - right, returning borrow, in constant time.
201 * Can modify in place. */
202uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left,
203 const uECC_word_t *right, wordcount_t num_words)
204{
205 uECC_word_t borrow = 0;
206 wordcount_t i;
207 for (i = 0; i < num_words; ++i) {
208 uECC_word_t diff = left[i] - right[i] - borrow;
209 uECC_word_t val = (diff > left[i]);
210 borrow = cond_set(val, borrow, (diff != left[i]));
211
212 result[i] = diff;
213 }
214 return borrow;
215}
216
217/* Computes result = left + right, returning carry, in constant time.
218 * Can modify in place. */
219static uECC_word_t uECC_vli_add(uECC_word_t *result, const uECC_word_t *left,
220 const uECC_word_t *right, wordcount_t num_words)
221{
222 uECC_word_t carry = 0;
223 wordcount_t i;
224 for (i = 0; i < num_words; ++i) {
225 uECC_word_t sum = left[i] + right[i] + carry;
226 uECC_word_t val = (sum < left[i]);
227 carry = cond_set(val, carry, (sum != left[i]));
228 result[i] = sum;
229 }
230 return carry;
231}
232
233cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right,
234 wordcount_t num_words)
235{
236 uECC_word_t tmp[NUM_ECC_WORDS];
237 uECC_word_t neg = !!uECC_vli_sub(tmp, left, right, num_words);
238 uECC_word_t equal = uECC_vli_isZero(tmp, num_words);
239 return (!equal - 2 * neg);
240}
241
242/* Computes vli = vli >> 1. */
243static void uECC_vli_rshift1(uECC_word_t *vli, wordcount_t num_words)
244{
245 uECC_word_t *end = vli;
246 uECC_word_t carry = 0;
247
248 vli += num_words;
249 while (vli-- > end) {
250 uECC_word_t temp = *vli;
251 *vli = (temp >> 1) | carry;
252 carry = temp << (uECC_WORD_BITS - 1);
253 }
254}
255
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200256/* Compute (r2, r1, r0) = a * b + (r1, r0):
257 * [in] a, b: operands to be multiplied
258 * [in] r0, r1: low and high-order words of operand to add
259 * [out] r0, r1: low and high-order words of the result
260 * [out] r2: carry
261 */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300262static void muladd(uECC_word_t a, uECC_word_t b, uECC_word_t *r0,
263 uECC_word_t *r1, uECC_word_t *r2)
264{
265
266 uECC_dword_t p = (uECC_dword_t)a * b;
267 uECC_dword_t r01 = ((uECC_dword_t)(*r1) << uECC_WORD_BITS) | *r0;
268 r01 += p;
269 *r2 += (r01 < p);
270 *r1 = r01 >> uECC_WORD_BITS;
271 *r0 = (uECC_word_t)r01;
272
273}
274
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200275/* State for implementing random delays in uECC_vli_mult_rnd().
276 *
277 * The state is initialised by randomizing delays and setting i = 0.
278 * Each call to uECC_vli_mult_rnd() uses one byte of delays and increments i.
279 *
280 * A scalar muliplication uses 14 field multiplications per bit of exponent.
281 */
282typedef struct {
283 uint8_t delays[14 * 256];
284 uint16_t i;
285} wait_state_t;
286
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200287/* Computes result = left * right. Result must be 2 * num_words long.
288 *
289 * As a counter-measure against horizontal attacks, add noise by performing
290 * a random number of extra computations performing random additional accesses
291 * to limbs of the input.
292 *
293 * Each of the two actual computation loops is surrounded by two
294 * similar-looking waiting loops, to make the beginning and end of the actual
295 * computation harder to spot.
296 *
297 * We add 4 waiting loops of between 0 and 3 calls to muladd() each. That
298 * makes an average of 6 extra calls. Compared to the main computation which
299 * makes 64 such calls, this represents an average performance degradation of
300 * less than 10%.
301 *
302 * Compared to the original uECC_vli_mult(), loose the num_words argument as we
303 * know it's always 8. This saves a bit of code size and execution speed.
304 */
305static void uECC_vli_mult_rnd(uECC_word_t *result, const uECC_word_t *left,
306 const uECC_word_t *right, wait_state_t *s)
Jarno Lamsa18987a42019-04-24 15:40:43 +0300307{
308
309 uECC_word_t r0 = 0;
310 uECC_word_t r1 = 0;
311 uECC_word_t r2 = 0;
312 wordcount_t i, k;
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200313 const uint8_t num_words = 8;
314
315 /* Fetch 8 bit worth of delay from the state; 0 if we have no state */
316 uint8_t delays = s ? s->delays[s->i++] : 0;
317 uECC_word_t rr0 = 0, rr1 = 0;
318 volatile uECC_word_t r;
319
320 /* Mimic start of next loop: k in [0, 3] */
321 k = 0 + (delays & 0x03);
322 delays >>= 2;
323 /* k = 0 -> i in [1, 0] -> 0 extra muladd;
324 * k = 3 -> i in [1, 3] -> 3 extra muladd */
325 for (i = 0; i <= k; ++i) {
326 muladd(left[i], right[k - i], &rr0, &rr1, &r2);
327 }
328 r = rr0;
329 rr0 = rr1;
330 rr1 = r2;
331 r2 = 0;
Jarno Lamsa18987a42019-04-24 15:40:43 +0300332
333 /* Compute each digit of result in sequence, maintaining the carries. */
334 for (k = 0; k < num_words; ++k) {
335
336 for (i = 0; i <= k; ++i) {
337 muladd(left[i], right[k - i], &r0, &r1, &r2);
338 }
339
340 result[k] = r0;
341 r0 = r1;
342 r1 = r2;
343 r2 = 0;
344 }
345
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200346 /* Mimic end of previous loop: k in [4, 7] */
347 k = 4 + (delays & 0x03);
348 delays >>= 2;
349 /* k = 4 -> i in [5, 4] -> 0 extra muladd;
350 * k = 7 -> i in [5, 7] -> 3 extra muladd */
351 for (i = 5; i <= k; ++i) {
352 muladd(left[i], right[k - i], &rr0, &rr1, &r2);
353 }
354 r = rr0;
355 rr0 = rr1;
356 rr1 = r2;
357 r2 = 0;
358
359 /* Mimic start of next loop: k in [8, 11] */
360 k = 11 - (delays & 0x03);
361 delays >>= 2;
362 /* k = 8 -> i in [5, 7] -> 3 extra muladd;
363 * k = 11 -> i in [8, 7] -> 0 extra muladd */
364 for (i = (k + 5) - num_words; i < num_words; ++i) {
365 muladd(left[i], right[k - i], &rr0, &rr1, &r2);
366 }
367 r = rr0;
368 rr0 = rr1;
369 rr1 = r2;
370 r2 = 0;
371
Jarno Lamsa18987a42019-04-24 15:40:43 +0300372 for (k = num_words; k < num_words * 2 - 1; ++k) {
373
374 for (i = (k + 1) - num_words; i < num_words; ++i) {
375 muladd(left[i], right[k - i], &r0, &r1, &r2);
376 }
377 result[k] = r0;
378 r0 = r1;
379 r1 = r2;
380 r2 = 0;
381 }
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200382
Jarno Lamsa18987a42019-04-24 15:40:43 +0300383 result[num_words * 2 - 1] = r0;
Manuel Pégourié-Gonnard14ab9c22019-10-22 09:49:53 +0200384
385 /* Mimic end of previous loop: k in [12, 15] */
386 k = 15 - (delays & 0x03);
387 delays >>= 2;
388 /* k = 12 -> i in [5, 7] -> 3 extra muladd;
389 * k = 15 -> i in [8, 7] -> 0 extra muladd */
390 for (i = (k + 1) - num_words; i < num_words; ++i) {
391 muladd(left[i], right[k - i], &rr0, &rr1, &r2);
392 }
393 r = rr0;
394 rr0 = rr1;
395 rr1 = r2;
396 r2 = 0;
397
398 /* avoid warning that r is set but not used */
399 (void) r;
400}
401
402/* Computes result = left * right. Result must be 2 * num_words long. */
403static void uECC_vli_mult(uECC_word_t *result, const uECC_word_t *left,
404 const uECC_word_t *right, wordcount_t num_words)
405{
406 (void) num_words;
407 uECC_vli_mult_rnd(result, left, right, NULL);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300408}
409
410void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left,
411 const uECC_word_t *right, const uECC_word_t *mod,
412 wordcount_t num_words)
413{
414 uECC_word_t carry = uECC_vli_add(result, left, right, num_words);
415 if (carry || uECC_vli_cmp_unsafe(mod, result, num_words) != 1) {
416 /* result > mod (result = mod + remainder), so subtract mod to get
417 * remainder. */
418 uECC_vli_sub(result, result, mod, num_words);
419 }
420}
421
422void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left,
423 const uECC_word_t *right, const uECC_word_t *mod,
424 wordcount_t num_words)
425{
426 uECC_word_t l_borrow = uECC_vli_sub(result, left, right, num_words);
427 if (l_borrow) {
428 /* In this case, result == -diff == (max int) - diff. Since -x % d == d - x,
429 * we can get the correct result from result + mod (with overflow). */
430 uECC_vli_add(result, result, mod, num_words);
431 }
432}
433
434/* Computes result = product % mod, where product is 2N words long. */
435/* Currently only designed to work for curve_p or curve_n. */
436void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product,
437 const uECC_word_t *mod, wordcount_t num_words)
438{
439 uECC_word_t mod_multiple[2 * NUM_ECC_WORDS];
440 uECC_word_t tmp[2 * NUM_ECC_WORDS];
441 uECC_word_t *v[2] = {tmp, product};
442 uECC_word_t index;
443
444 /* Shift mod so its highest set bit is at the maximum position. */
445 bitcount_t shift = (num_words * 2 * uECC_WORD_BITS) -
446 uECC_vli_numBits(mod, num_words);
447 wordcount_t word_shift = shift / uECC_WORD_BITS;
448 wordcount_t bit_shift = shift % uECC_WORD_BITS;
449 uECC_word_t carry = 0;
450 uECC_vli_clear(mod_multiple, word_shift);
451 if (bit_shift > 0) {
452 for(index = 0; index < (uECC_word_t)num_words; ++index) {
453 mod_multiple[word_shift + index] = (mod[index] << bit_shift) | carry;
454 carry = mod[index] >> (uECC_WORD_BITS - bit_shift);
455 }
456 } else {
457 uECC_vli_set(mod_multiple + word_shift, mod, num_words);
458 }
459
460 for (index = 1; shift >= 0; --shift) {
461 uECC_word_t borrow = 0;
462 wordcount_t i;
463 for (i = 0; i < num_words * 2; ++i) {
464 uECC_word_t diff = v[index][i] - mod_multiple[i] - borrow;
465 if (diff != v[index][i]) {
466 borrow = (diff > v[index][i]);
467 }
468 v[1 - index][i] = diff;
469 }
470 /* Swap the index if there was no borrow */
471 index = !(index ^ borrow);
472 uECC_vli_rshift1(mod_multiple, num_words);
473 mod_multiple[num_words - 1] |= mod_multiple[num_words] <<
474 (uECC_WORD_BITS - 1);
475 uECC_vli_rshift1(mod_multiple + num_words, num_words);
476 }
477 uECC_vli_set(result, v[index], num_words);
478}
479
480void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left,
481 const uECC_word_t *right, const uECC_word_t *mod,
482 wordcount_t num_words)
483{
484 uECC_word_t product[2 * NUM_ECC_WORDS];
485 uECC_vli_mult(product, left, right, num_words);
486 uECC_vli_mmod(result, product, mod, num_words);
487}
488
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100489static void uECC_vli_modMult_rnd(uECC_word_t *result, const uECC_word_t *left,
490 const uECC_word_t *right, wait_state_t *s)
491{
492 uECC_word_t product[2 * NUM_ECC_WORDS];
493 uECC_vli_mult_rnd(product, left, right, s);
494
495 vli_mmod_fast_secp256r1(result, product);
496}
497
Jarno Lamsa18987a42019-04-24 15:40:43 +0300498void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left,
499 const uECC_word_t *right, uECC_Curve curve)
500{
501 uECC_word_t product[2 * NUM_ECC_WORDS];
502 uECC_vli_mult(product, left, right, curve->num_words);
503
504 curve->mmod_fast(result, product);
505}
506
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100507static void uECC_vli_modSquare_rnd(uECC_word_t *result,
508 const uECC_word_t *left,
509 wait_state_t *s)
510{
511 uECC_vli_modMult_rnd(result, left, left, s);
512}
513
Jarno Lamsa18987a42019-04-24 15:40:43 +0300514static void uECC_vli_modSquare_fast(uECC_word_t *result,
515 const uECC_word_t *left,
516 uECC_Curve curve)
517{
518 uECC_vli_modMult_fast(result, left, left, curve);
519}
520
521
522#define EVEN(vli) (!(vli[0] & 1))
523
524static void vli_modInv_update(uECC_word_t *uv,
525 const uECC_word_t *mod,
526 wordcount_t num_words)
527{
528
529 uECC_word_t carry = 0;
530
531 if (!EVEN(uv)) {
532 carry = uECC_vli_add(uv, uv, mod, num_words);
533 }
534 uECC_vli_rshift1(uv, num_words);
535 if (carry) {
536 uv[num_words - 1] |= HIGH_BIT_SET;
537 }
538}
539
540void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input,
541 const uECC_word_t *mod, wordcount_t num_words)
542{
543 uECC_word_t a[NUM_ECC_WORDS], b[NUM_ECC_WORDS];
544 uECC_word_t u[NUM_ECC_WORDS], v[NUM_ECC_WORDS];
545 cmpresult_t cmpResult;
546
547 if (uECC_vli_isZero(input, num_words)) {
548 uECC_vli_clear(result, num_words);
549 return;
550 }
551
552 uECC_vli_set(a, input, num_words);
553 uECC_vli_set(b, mod, num_words);
554 uECC_vli_clear(u, num_words);
555 u[0] = 1;
556 uECC_vli_clear(v, num_words);
557 while ((cmpResult = uECC_vli_cmp_unsafe(a, b, num_words)) != 0) {
558 if (EVEN(a)) {
559 uECC_vli_rshift1(a, num_words);
560 vli_modInv_update(u, mod, num_words);
561 } else if (EVEN(b)) {
562 uECC_vli_rshift1(b, num_words);
563 vli_modInv_update(v, mod, num_words);
564 } else if (cmpResult > 0) {
565 uECC_vli_sub(a, a, b, num_words);
566 uECC_vli_rshift1(a, num_words);
567 if (uECC_vli_cmp_unsafe(u, v, num_words) < 0) {
568 uECC_vli_add(u, u, mod, num_words);
569 }
570 uECC_vli_sub(u, u, v, num_words);
571 vli_modInv_update(u, mod, num_words);
572 } else {
573 uECC_vli_sub(b, b, a, num_words);
574 uECC_vli_rshift1(b, num_words);
575 if (uECC_vli_cmp_unsafe(v, u, num_words) < 0) {
576 uECC_vli_add(v, v, mod, num_words);
577 }
578 uECC_vli_sub(v, v, u, num_words);
579 vli_modInv_update(v, mod, num_words);
580 }
581 }
582 uECC_vli_set(result, u, num_words);
583}
584
585/* ------ Point operations ------ */
586
587void double_jacobian_default(uECC_word_t * X1, uECC_word_t * Y1,
588 uECC_word_t * Z1, uECC_Curve curve)
589{
590 /* t1 = X, t2 = Y, t3 = Z */
591 uECC_word_t t4[NUM_ECC_WORDS];
592 uECC_word_t t5[NUM_ECC_WORDS];
593 wordcount_t num_words = curve->num_words;
594
595 if (uECC_vli_isZero(Z1, num_words)) {
596 return;
597 }
598
599 uECC_vli_modSquare_fast(t4, Y1, curve); /* t4 = y1^2 */
600 uECC_vli_modMult_fast(t5, X1, t4, curve); /* t5 = x1*y1^2 = A */
601 uECC_vli_modSquare_fast(t4, t4, curve); /* t4 = y1^4 */
602 uECC_vli_modMult_fast(Y1, Y1, Z1, curve); /* t2 = y1*z1 = z3 */
603 uECC_vli_modSquare_fast(Z1, Z1, curve); /* t3 = z1^2 */
604
605 uECC_vli_modAdd(X1, X1, Z1, curve->p, num_words); /* t1 = x1 + z1^2 */
606 uECC_vli_modAdd(Z1, Z1, Z1, curve->p, num_words); /* t3 = 2*z1^2 */
607 uECC_vli_modSub(Z1, X1, Z1, curve->p, num_words); /* t3 = x1 - z1^2 */
608 uECC_vli_modMult_fast(X1, X1, Z1, curve); /* t1 = x1^2 - z1^4 */
609
610 uECC_vli_modAdd(Z1, X1, X1, curve->p, num_words); /* t3 = 2*(x1^2 - z1^4) */
611 uECC_vli_modAdd(X1, X1, Z1, curve->p, num_words); /* t1 = 3*(x1^2 - z1^4) */
612 if (uECC_vli_testBit(X1, 0)) {
613 uECC_word_t l_carry = uECC_vli_add(X1, X1, curve->p, num_words);
614 uECC_vli_rshift1(X1, num_words);
615 X1[num_words - 1] |= l_carry << (uECC_WORD_BITS - 1);
616 } else {
617 uECC_vli_rshift1(X1, num_words);
618 }
619
620 /* t1 = 3/2*(x1^2 - z1^4) = B */
621 uECC_vli_modSquare_fast(Z1, X1, curve); /* t3 = B^2 */
622 uECC_vli_modSub(Z1, Z1, t5, curve->p, num_words); /* t3 = B^2 - A */
623 uECC_vli_modSub(Z1, Z1, t5, curve->p, num_words); /* t3 = B^2 - 2A = x3 */
624 uECC_vli_modSub(t5, t5, Z1, curve->p, num_words); /* t5 = A - x3 */
625 uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = B * (A - x3) */
626 /* t4 = B * (A - x3) - y1^4 = y3: */
627 uECC_vli_modSub(t4, X1, t4, curve->p, num_words);
628
629 uECC_vli_set(X1, Z1, num_words);
630 uECC_vli_set(Z1, Y1, num_words);
631 uECC_vli_set(Y1, t4, num_words);
632}
633
634void x_side_default(uECC_word_t *result,
635 const uECC_word_t *x,
636 uECC_Curve curve)
637{
638 uECC_word_t _3[NUM_ECC_WORDS] = {3}; /* -a = 3 */
639 wordcount_t num_words = curve->num_words;
640
641 uECC_vli_modSquare_fast(result, x, curve); /* r = x^2 */
642 uECC_vli_modSub(result, result, _3, curve->p, num_words); /* r = x^2 - 3 */
643 uECC_vli_modMult_fast(result, result, x, curve); /* r = x^3 - 3x */
644 /* r = x^3 - 3x + b: */
645 uECC_vli_modAdd(result, result, curve->b, curve->p, num_words);
646}
647
648uECC_Curve uECC_secp256r1(void)
649{
650 return &curve_secp256r1;
651}
652
653void vli_mmod_fast_secp256r1(unsigned int *result, unsigned int*product)
654{
655 unsigned int tmp[NUM_ECC_WORDS];
656 int carry;
657
658 /* t */
659 uECC_vli_set(result, product, NUM_ECC_WORDS);
660
661 /* s1 */
662 tmp[0] = tmp[1] = tmp[2] = 0;
663 tmp[3] = product[11];
664 tmp[4] = product[12];
665 tmp[5] = product[13];
666 tmp[6] = product[14];
667 tmp[7] = product[15];
668 carry = uECC_vli_add(tmp, tmp, tmp, NUM_ECC_WORDS);
669 carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
670
671 /* s2 */
672 tmp[3] = product[12];
673 tmp[4] = product[13];
674 tmp[5] = product[14];
675 tmp[6] = product[15];
676 tmp[7] = 0;
677 carry += uECC_vli_add(tmp, tmp, tmp, NUM_ECC_WORDS);
678 carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
679
680 /* s3 */
681 tmp[0] = product[8];
682 tmp[1] = product[9];
683 tmp[2] = product[10];
684 tmp[3] = tmp[4] = tmp[5] = 0;
685 tmp[6] = product[14];
686 tmp[7] = product[15];
687 carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
688
689 /* s4 */
690 tmp[0] = product[9];
691 tmp[1] = product[10];
692 tmp[2] = product[11];
693 tmp[3] = product[13];
694 tmp[4] = product[14];
695 tmp[5] = product[15];
696 tmp[6] = product[13];
697 tmp[7] = product[8];
698 carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
699
700 /* d1 */
701 tmp[0] = product[11];
702 tmp[1] = product[12];
703 tmp[2] = product[13];
704 tmp[3] = tmp[4] = tmp[5] = 0;
705 tmp[6] = product[8];
706 tmp[7] = product[10];
707 carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
708
709 /* d2 */
710 tmp[0] = product[12];
711 tmp[1] = product[13];
712 tmp[2] = product[14];
713 tmp[3] = product[15];
714 tmp[4] = tmp[5] = 0;
715 tmp[6] = product[9];
716 tmp[7] = product[11];
717 carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
718
719 /* d3 */
720 tmp[0] = product[13];
721 tmp[1] = product[14];
722 tmp[2] = product[15];
723 tmp[3] = product[8];
724 tmp[4] = product[9];
725 tmp[5] = product[10];
726 tmp[6] = 0;
727 tmp[7] = product[12];
728 carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
729
730 /* d4 */
731 tmp[0] = product[14];
732 tmp[1] = product[15];
733 tmp[2] = 0;
734 tmp[3] = product[9];
735 tmp[4] = product[10];
736 tmp[5] = product[11];
737 tmp[6] = 0;
738 tmp[7] = product[13];
739 carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
740
741 if (carry < 0) {
742 do {
743 carry += uECC_vli_add(result, result, curve_secp256r1.p, NUM_ECC_WORDS);
744 }
745 while (carry < 0);
746 } else {
747 while (carry ||
748 uECC_vli_cmp_unsafe(curve_secp256r1.p, result, NUM_ECC_WORDS) != 1) {
749 carry -= uECC_vli_sub(result, result, curve_secp256r1.p, NUM_ECC_WORDS);
750 }
751 }
752}
753
754uECC_word_t EccPoint_isZero(const uECC_word_t *point, uECC_Curve curve)
755{
756 return uECC_vli_isZero(point, curve->num_words * 2);
757}
758
759void apply_z(uECC_word_t * X1, uECC_word_t * Y1, const uECC_word_t * const Z,
760 uECC_Curve curve)
761{
762 uECC_word_t t1[NUM_ECC_WORDS];
763
764 uECC_vli_modSquare_fast(t1, Z, curve); /* z^2 */
765 uECC_vli_modMult_fast(X1, X1, t1, curve); /* x1 * z^2 */
766 uECC_vli_modMult_fast(t1, t1, Z, curve); /* z^3 */
767 uECC_vli_modMult_fast(Y1, Y1, t1, curve); /* y1 * z^3 */
768}
769
770/* P = (x1, y1) => 2P, (x2, y2) => P' */
771static void XYcZ_initial_double(uECC_word_t * X1, uECC_word_t * Y1,
772 uECC_word_t * X2, uECC_word_t * Y2,
773 const uECC_word_t * const initial_Z,
774 uECC_Curve curve)
775{
776 uECC_word_t z[NUM_ECC_WORDS];
777 wordcount_t num_words = curve->num_words;
778 if (initial_Z) {
779 uECC_vli_set(z, initial_Z, num_words);
780 } else {
781 uECC_vli_clear(z, num_words);
782 z[0] = 1;
783 }
784
785 uECC_vli_set(X2, X1, num_words);
786 uECC_vli_set(Y2, Y1, num_words);
787
788 apply_z(X1, Y1, z, curve);
789 curve->double_jacobian(X1, Y1, z, curve);
790 apply_z(X2, Y2, z, curve);
791}
792
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100793static void XYcZ_add_rnd(uECC_word_t * X1, uECC_word_t * Y1,
794 uECC_word_t * X2, uECC_word_t * Y2,
795 wait_state_t *s)
Jarno Lamsa18987a42019-04-24 15:40:43 +0300796{
797 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
798 uECC_word_t t5[NUM_ECC_WORDS];
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100799 const uECC_Curve curve = &curve_secp256r1;
800 const wordcount_t num_words = 8;
Jarno Lamsa18987a42019-04-24 15:40:43 +0300801
802 uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100803 uECC_vli_modSquare_rnd(t5, t5, s); /* t5 = (x2 - x1)^2 = A */
804 uECC_vli_modMult_rnd(X1, X1, t5, s); /* t1 = x1*A = B */
805 uECC_vli_modMult_rnd(X2, X2, t5, s); /* t3 = x2*A = C */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300806 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100807 uECC_vli_modSquare_rnd(t5, Y2, s); /* t5 = (y2 - y1)^2 = D */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300808
809 uECC_vli_modSub(t5, t5, X1, curve->p, num_words); /* t5 = D - B */
810 uECC_vli_modSub(t5, t5, X2, curve->p, num_words); /* t5 = D - B - C = x3 */
811 uECC_vli_modSub(X2, X2, X1, curve->p, num_words); /* t3 = C - B */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100812 uECC_vli_modMult_rnd(Y1, Y1, X2, s); /* t2 = y1*(C - B) */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300813 uECC_vli_modSub(X2, X1, t5, curve->p, num_words); /* t3 = B - x3 */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100814 uECC_vli_modMult_rnd(Y2, Y2, X2, s); /* t4 = (y2 - y1)*(B - x3) */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300815 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y3 */
816
817 uECC_vli_set(X2, t5, num_words);
818}
819
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100820void XYcZ_add(uECC_word_t * X1, uECC_word_t * Y1,
821 uECC_word_t * X2, uECC_word_t * Y2,
822 uECC_Curve curve)
823{
824 (void) curve;
825 XYcZ_add_rnd(X1, Y1, X2, Y2, NULL);
826}
827
Jarno Lamsa18987a42019-04-24 15:40:43 +0300828/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
829 Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
830 or P => P - Q, Q => P + Q
831 */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100832static void XYcZ_addC_rnd(uECC_word_t * X1, uECC_word_t * Y1,
833 uECC_word_t * X2, uECC_word_t * Y2,
834 wait_state_t *s)
Jarno Lamsa18987a42019-04-24 15:40:43 +0300835{
836 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
837 uECC_word_t t5[NUM_ECC_WORDS];
838 uECC_word_t t6[NUM_ECC_WORDS];
839 uECC_word_t t7[NUM_ECC_WORDS];
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100840 const uECC_Curve curve = &curve_secp256r1;
841 const wordcount_t num_words = 8;
Jarno Lamsa18987a42019-04-24 15:40:43 +0300842
843 uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100844 uECC_vli_modSquare_rnd(t5, t5, s); /* t5 = (x2 - x1)^2 = A */
845 uECC_vli_modMult_rnd(X1, X1, t5, s); /* t1 = x1*A = B */
846 uECC_vli_modMult_rnd(X2, X2, t5, s); /* t3 = x2*A = C */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300847 uECC_vli_modAdd(t5, Y2, Y1, curve->p, num_words); /* t5 = y2 + y1 */
848 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
849
850 uECC_vli_modSub(t6, X2, X1, curve->p, num_words); /* t6 = C - B */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100851 uECC_vli_modMult_rnd(Y1, Y1, t6, s); /* t2 = y1 * (C - B) = E */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300852 uECC_vli_modAdd(t6, X1, X2, curve->p, num_words); /* t6 = B + C */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100853 uECC_vli_modSquare_rnd(X2, Y2, s); /* t3 = (y2 - y1)^2 = D */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300854 uECC_vli_modSub(X2, X2, t6, curve->p, num_words); /* t3 = D - (B + C) = x3 */
855
856 uECC_vli_modSub(t7, X1, X2, curve->p, num_words); /* t7 = B - x3 */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100857 uECC_vli_modMult_rnd(Y2, Y2, t7, s); /* t4 = (y2 - y1)*(B - x3) */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300858 /* t4 = (y2 - y1)*(B - x3) - E = y3: */
859 uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words);
860
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100861 uECC_vli_modSquare_rnd(t7, t5, s); /* t7 = (y2 + y1)^2 = F */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300862 uECC_vli_modSub(t7, t7, t6, curve->p, num_words); /* t7 = F - (B + C) = x3' */
863 uECC_vli_modSub(t6, t7, X1, curve->p, num_words); /* t6 = x3' - B */
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100864 uECC_vli_modMult_rnd(t6, t6, t5, s); /* t6 = (y2+y1)*(x3' - B) */
Jarno Lamsa18987a42019-04-24 15:40:43 +0300865 /* t2 = (y2+y1)*(x3' - B) - E = y3': */
866 uECC_vli_modSub(Y1, t6, Y1, curve->p, num_words);
867
868 uECC_vli_set(X1, t7, num_words);
869}
870
871void EccPoint_mult(uECC_word_t * result, const uECC_word_t * point,
872 const uECC_word_t * scalar,
873 const uECC_word_t * initial_Z,
874 bitcount_t num_bits, uECC_Curve curve)
875{
876 /* R0 and R1 */
877 uECC_word_t Rx[2][NUM_ECC_WORDS];
878 uECC_word_t Ry[2][NUM_ECC_WORDS];
879 uECC_word_t z[NUM_ECC_WORDS];
880 bitcount_t i;
881 uECC_word_t nb;
882 wordcount_t num_words = curve->num_words;
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100883 wait_state_t wait_state, *ws = NULL;
884
885 if (g_rng_function) {
886 ws = &wait_state;
887 g_rng_function(ws->delays, sizeof(ws->delays));
888 ws->i = 0;
889 }
Jarno Lamsa18987a42019-04-24 15:40:43 +0300890
891 uECC_vli_set(Rx[1], point, num_words);
892 uECC_vli_set(Ry[1], point + num_words, num_words);
893
894 XYcZ_initial_double(Rx[1], Ry[1], Rx[0], Ry[0], initial_Z, curve);
895
896 for (i = num_bits - 2; i > 0; --i) {
897 nb = !uECC_vli_testBit(scalar, i);
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100898 XYcZ_addC_rnd(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], ws);
899 XYcZ_add_rnd(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], ws);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300900 }
901
902 nb = !uECC_vli_testBit(scalar, 0);
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100903 XYcZ_addC_rnd(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], ws);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300904
905 /* Find final 1/Z value. */
906 uECC_vli_modSub(z, Rx[1], Rx[0], curve->p, num_words); /* X1 - X0 */
907 uECC_vli_modMult_fast(z, z, Ry[1 - nb], curve); /* Yb * (X1 - X0) */
908 uECC_vli_modMult_fast(z, z, point, curve); /* xP * Yb * (X1 - X0) */
909 uECC_vli_modInv(z, z, curve->p, num_words); /* 1 / (xP * Yb * (X1 - X0))*/
910 /* yP / (xP * Yb * (X1 - X0)) */
911 uECC_vli_modMult_fast(z, z, point + num_words, curve);
912 /* Xb * yP / (xP * Yb * (X1 - X0)) */
913 uECC_vli_modMult_fast(z, z, Rx[1 - nb], curve);
914 /* End 1/Z calculation */
915
Manuel Pégourié-Gonnard938f53f2019-10-29 11:23:43 +0100916 XYcZ_add_rnd(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], ws);
Jarno Lamsa18987a42019-04-24 15:40:43 +0300917 apply_z(Rx[0], Ry[0], z, curve);
918
919 uECC_vli_set(result, Rx[0], num_words);
920 uECC_vli_set(result + num_words, Ry[0], num_words);
921}
922
923uECC_word_t regularize_k(const uECC_word_t * const k, uECC_word_t *k0,
924 uECC_word_t *k1, uECC_Curve curve)
925{
926
927 wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
928
929 bitcount_t num_n_bits = curve->num_n_bits;
930
931 uECC_word_t carry = uECC_vli_add(k0, k, curve->n, num_n_words) ||
932 (num_n_bits < ((bitcount_t)num_n_words * uECC_WORD_SIZE * 8) &&
933 uECC_vli_testBit(k0, num_n_bits));
934
935 uECC_vli_add(k1, k0, curve->n, num_n_words);
936
937 return carry;
938}
939
940uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
941 uECC_word_t *private_key,
942 uECC_Curve curve)
943{
944
945 uECC_word_t tmp1[NUM_ECC_WORDS];
946 uECC_word_t tmp2[NUM_ECC_WORDS];
947 uECC_word_t *p2[2] = {tmp1, tmp2};
948 uECC_word_t carry;
949
950 /* Regularize the bitcount for the private key so that attackers cannot
951 * use a side channel attack to learn the number of leading zeros. */
952 carry = regularize_k(private_key, tmp1, tmp2, curve);
953
954 EccPoint_mult(result, curve->G, p2[!carry], 0, curve->num_n_bits + 1, curve);
955
956 if (EccPoint_isZero(result, curve)) {
957 return 0;
958 }
959 return 1;
960}
961
962/* Converts an integer in uECC native format to big-endian bytes. */
963void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes,
964 const unsigned int *native)
965{
966 wordcount_t i;
967 for (i = 0; i < num_bytes; ++i) {
968 unsigned b = num_bytes - 1 - i;
969 bytes[i] = native[b / uECC_WORD_SIZE] >> (8 * (b % uECC_WORD_SIZE));
970 }
971}
972
973/* Converts big-endian bytes to an integer in uECC native format. */
974void uECC_vli_bytesToNative(unsigned int *native, const uint8_t *bytes,
975 int num_bytes)
976{
977 wordcount_t i;
978 uECC_vli_clear(native, (num_bytes + (uECC_WORD_SIZE - 1)) / uECC_WORD_SIZE);
979 for (i = 0; i < num_bytes; ++i) {
980 unsigned b = num_bytes - 1 - i;
981 native[b / uECC_WORD_SIZE] |=
982 (uECC_word_t)bytes[i] << (8 * (b % uECC_WORD_SIZE));
983 }
984}
985
986int uECC_generate_random_int(uECC_word_t *random, const uECC_word_t *top,
987 wordcount_t num_words)
988{
989 uECC_word_t mask = (uECC_word_t)-1;
990 uECC_word_t tries;
991 bitcount_t num_bits = uECC_vli_numBits(top, num_words);
992
993 if (!g_rng_function) {
994 return 0;
995 }
996
997 for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
998 if (!g_rng_function((uint8_t *)random, num_words * uECC_WORD_SIZE)) {
999 return 0;
1000 }
1001 random[num_words - 1] &=
1002 mask >> ((bitcount_t)(num_words * uECC_WORD_SIZE * 8 - num_bits));
1003 if (!uECC_vli_isZero(random, num_words) &&
1004 uECC_vli_cmp(top, random, num_words) == 1) {
1005 return 1;
1006 }
1007 }
1008 return 0;
1009}
1010
1011
1012int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve)
1013{
1014 uECC_word_t tmp1[NUM_ECC_WORDS];
1015 uECC_word_t tmp2[NUM_ECC_WORDS];
1016 wordcount_t num_words = curve->num_words;
1017
1018 /* The point at infinity is invalid. */
1019 if (EccPoint_isZero(point, curve)) {
1020 return -1;
1021 }
1022
1023 /* x and y must be smaller than p. */
1024 if (uECC_vli_cmp_unsafe(curve->p, point, num_words) != 1 ||
1025 uECC_vli_cmp_unsafe(curve->p, point + num_words, num_words) != 1) {
1026 return -2;
1027 }
1028
1029 uECC_vli_modSquare_fast(tmp1, point + num_words, curve);
1030 curve->x_side(tmp2, point, curve); /* tmp2 = x^3 + ax + b */
1031
1032 /* Make sure that y^2 == x^3 + ax + b */
1033 if (uECC_vli_equal(tmp1, tmp2, num_words) != 0)
1034 return -3;
1035
1036 return 0;
1037}
1038
1039int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve)
1040{
1041
1042 uECC_word_t _public[NUM_ECC_WORDS * 2];
1043
1044 uECC_vli_bytesToNative(_public, public_key, curve->num_bytes);
1045 uECC_vli_bytesToNative(
1046 _public + curve->num_words,
1047 public_key + curve->num_bytes,
1048 curve->num_bytes);
1049
1050 if (uECC_vli_cmp_unsafe(_public, curve->G, NUM_ECC_WORDS * 2) == 0) {
1051 return -4;
1052 }
1053
1054 return uECC_valid_point(_public, curve);
1055}
1056
1057int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key,
1058 uECC_Curve curve)
1059{
1060
1061 uECC_word_t _private[NUM_ECC_WORDS];
1062 uECC_word_t _public[NUM_ECC_WORDS * 2];
1063
1064 uECC_vli_bytesToNative(
1065 _private,
1066 private_key,
1067 BITS_TO_BYTES(curve->num_n_bits));
1068
1069 /* Make sure the private key is in the range [1, n-1]. */
1070 if (uECC_vli_isZero(_private, BITS_TO_WORDS(curve->num_n_bits))) {
1071 return 0;
1072 }
1073
1074 if (uECC_vli_cmp(curve->n, _private, BITS_TO_WORDS(curve->num_n_bits)) != 1) {
1075 return 0;
1076 }
1077
1078 /* Compute public key. */
1079 if (!EccPoint_compute_public_key(_public, _private, curve)) {
1080 return 0;
1081 }
1082
1083 uECC_vli_nativeToBytes(public_key, curve->num_bytes, _public);
1084 uECC_vli_nativeToBytes(
1085 public_key +
1086 curve->num_bytes, curve->num_bytes, _public + curve->num_words);
1087 return 1;
1088}
Jarno Lamsa46132202019-04-29 14:29:52 +03001089#else
Manuel Pégourié-Gonnardafdc1b52019-05-09 11:24:11 +02001090typedef int mbedtls_dummy_tinycrypt_def;
1091#endif /* MBEDTLS_USE_TINYCRYPT */
Jarno Lamsa18987a42019-04-24 15:40:43 +03001092