blob: 7664df929d6ed8c03d86b3c6b1c6bcdfe03deeb7 [file] [log] [blame]
/*
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2019 JUUL Labs
* Copyright (c) 2025 Nordic Semiconductor ASA
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stddef.h>
#include <stdbool.h>
#include <inttypes.h>
#include <stdlib.h>
#include <string.h>
#include "bootutil/bootutil.h"
#include "bootutil_priv.h"
#include "swap_priv.h"
#include "bootutil/bootutil_log.h"
#include "mcuboot_config/mcuboot_config.h"
BOOT_LOG_MODULE_DECLARE(mcuboot);
#ifdef MCUBOOT_SWAP_USING_OFFSET
#if defined(MCUBOOT_VALIDATE_PRIMARY_SLOT)
/*
* FIXME: this might have to be updated for threaded sim
*/
int boot_status_fails = 0;
#define BOOT_STATUS_ASSERT(x) \
do { \
if (!(x)) { \
boot_status_fails++; \
} \
} while (0)
#else
#define BOOT_STATUS_ASSERT(x) ASSERT(x)
#endif
#if defined(MCUBOOT_ENC_IMAGES)
#define BOOT_COPY_REGION(state, fap_pri, fap_sec, pri_off, sec_off, sz, sector_off) \
boot_copy_region(state, fap_pri, fap_sec, pri_off, sec_off, sz, sector_off)
#else
#define BOOT_COPY_REGION(state, fap_pri, fap_sec, pri_off, sec_off, sz, sector_off) \
boot_copy_region(state, fap_pri, fap_sec, pri_off, sec_off, sz)
#endif
uint32_t find_last_idx(struct boot_loader_state *state, uint32_t swap_size)
{
uint32_t sector_sz;
uint32_t sz;
uint32_t last_idx;
sector_sz = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, 0);
sz = 0;
last_idx = 0;
while (1) {
sz += sector_sz;
last_idx++;
if (sz >= swap_size) {
break;
}
}
return last_idx;
}
int boot_read_image_header(struct boot_loader_state *state, int slot,
struct image_header *out_hdr, struct boot_status *bs)
{
const struct flash_area *fap;
uint32_t off = 0;
uint32_t sz;
uint32_t last_idx;
uint32_t swap_size;
int area_id;
int rc;
bool check_other_sector = true;
#if (BOOT_IMAGE_NUMBER == 1)
(void)state;
#endif
if (bs == NULL) {
area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot);
if (slot == BOOT_SECONDARY_SLOT &&
boot_swap_type_multi(BOOT_CURR_IMG(state)) != BOOT_SWAP_TYPE_REVERT) {
off = boot_img_sector_size(state, BOOT_SECONDARY_SLOT, 0);
}
} else {
if (!boot_status_is_reset(bs)) {
check_other_sector = false;
boot_find_status(BOOT_CURR_IMG(state), &fap);
if (fap == NULL || boot_read_swap_size(fap, &swap_size)) {
rc = BOOT_EFLASH;
goto done;
}
flash_area_close(fap);
last_idx = find_last_idx(state, swap_size);
sz = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, 0);
/*
* Find the correct offset or slot where the image header is expected to
* be found for the steps where it is moved or swapped.
*/
if (bs->swap_type == BOOT_SWAP_TYPE_REVERT ||
boot_swap_type_multi(BOOT_CURR_IMG(state)) == BOOT_SWAP_TYPE_REVERT) {
if (slot == 0) {
if (((bs->idx - BOOT_STATUS_IDX_0) > last_idx ||
((bs->idx - BOOT_STATUS_IDX_0) == last_idx &&
bs->state == BOOT_STATUS_STATE_1))) {
slot = 1;
off = sz;
} else {
slot = 0;
off = 0;
}
} else if (slot == 1) {
if ((bs->idx - BOOT_STATUS_IDX_0) > last_idx ||
((bs->idx - BOOT_STATUS_IDX_0) == last_idx &&
bs->state == BOOT_STATUS_STATE_2)) {
slot = 0;
off = 0;
} else {
slot = 1;
off = 0;
}
}
} else {
if (slot == 0) {
if ((bs->idx > BOOT_STATUS_IDX_0 ||
(bs->idx == BOOT_STATUS_IDX_0 && bs->state == BOOT_STATUS_STATE_1)) &&
bs->idx <= last_idx) {
slot = 1;
off = 0;
} else {
slot = 0;
off = 0;
}
} else if (slot == 1) {
if (bs->idx > BOOT_STATUS_IDX_0) {
slot = 0;
off = 0;
} else {
slot = 1;
off = sz;
}
}
}
area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot);
} else {
area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot);
if (bs->swap_type == BOOT_SWAP_TYPE_REVERT ||
boot_swap_type_multi(BOOT_CURR_IMG(state)) == BOOT_SWAP_TYPE_REVERT) {
off = 0;
}
else if (slot == BOOT_SECONDARY_SLOT) {
off = boot_img_sector_size(state, BOOT_SECONDARY_SLOT, 0);
}
}
}
rc = flash_area_open(area_id, &fap);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
rc = flash_area_read(fap, off, out_hdr, sizeof *out_hdr);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
if (check_other_sector == true && out_hdr->ih_magic != IMAGE_MAGIC &&
slot == BOOT_SECONDARY_SLOT) {
if (boot_swap_type_multi(BOOT_CURR_IMG(state)) != BOOT_SWAP_TYPE_REVERT) {
off = 0;
} else {
off = boot_img_sector_size(state, BOOT_SECONDARY_SLOT, 0);
}
rc = flash_area_read(fap, off, out_hdr, sizeof(*out_hdr));
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
}
#if defined(MCUBOOT_BOOTSTRAP)
if (out_hdr->ih_magic == IMAGE_MAGIC && (bs != NULL || state->bootstrap_secondary_offset_set[
BOOT_CURR_IMG(state)] == false) &&
slot == BOOT_SECONDARY_SLOT) {
state->bootstrap_secondary_offset_set[BOOT_CURR_IMG(state)] = true;
#else
if (out_hdr->ih_magic == IMAGE_MAGIC && bs != NULL && slot == BOOT_SECONDARY_SLOT) {
#endif
state->secondary_offset[BOOT_CURR_IMG(state)] = off;
}
/* We only know where the headers are located when bs is valid */
if (bs != NULL && out_hdr->ih_magic != IMAGE_MAGIC) {
rc = -1;
goto done;
}
rc = 0;
done:
flash_area_close(fap);
return rc;
}
int swap_read_status_bytes(const struct flash_area *fap, struct boot_loader_state *state,
struct boot_status *bs)
{
uint32_t off;
uint8_t status;
int max_entries;
int found_idx;
uint8_t write_sz;
int rc;
int last_rc;
int erased_sections;
int i;
max_entries = boot_status_entries(BOOT_CURR_IMG(state), fap);
if (max_entries < 0) {
return BOOT_EBADARGS;
}
erased_sections = 0;
found_idx = -1;
/* Skip erased sectors at the end */
last_rc = 1;
write_sz = BOOT_WRITE_SZ(state);
off = boot_status_off(fap);
for (i = max_entries; i > 0; i--) {
rc = flash_area_read(fap, off + (i - 1) * write_sz, &status, 1);
if (rc < 0) {
return BOOT_EFLASH;
}
if (bootutil_buffer_is_erased(fap, &status, 1)) {
if (rc != last_rc) {
erased_sections++;
}
} else {
if (found_idx == -1) {
found_idx = i;
}
}
last_rc = rc;
}
if (erased_sections > 1) {
/* This means there was an error writing status on the last swap. Tell user and move on
* to validation!
*/
#if !defined(__BOOTSIM__)
BOOT_LOG_ERR("Detected inconsistent status!");
#endif
#if !defined(MCUBOOT_VALIDATE_PRIMARY_SLOT)
/* With validation of the primary slot disabled, there is no way to be sure the swapped
* primary slot is OK, so abort!
*/
assert(0);
#endif
}
if (found_idx == -1) {
/* no swap status found; nothing to do */
} else {
bs->op = BOOT_STATUS_OP_SWAP;
bs->idx = (found_idx / BOOT_STATUS_SWAP_STATE_COUNT) + BOOT_STATUS_IDX_0;
bs->state = (found_idx % BOOT_STATUS_SWAP_STATE_COUNT) + BOOT_STATUS_STATE_0;
}
return 0;
}
uint32_t boot_status_internal_off(const struct boot_status *bs, int elem_sz)
{
uint32_t off;
int idx_sz;
idx_sz = elem_sz * BOOT_STATUS_STATE_COUNT;
off = (bs->idx - BOOT_STATUS_IDX_0) * idx_sz +
(bs->state - BOOT_STATUS_STATE_0) * elem_sz;
return off;
}
static int app_max_sectors(struct boot_loader_state *state)
{
uint32_t sz = 0;
uint32_t sector_sz;
uint32_t trailer_sz;
uint32_t first_trailer_idx;
sector_sz = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, 0);
trailer_sz = boot_trailer_sz(BOOT_WRITE_SZ(state));
first_trailer_idx = boot_img_num_sectors(state, BOOT_PRIMARY_SLOT);
while (1) {
sz += sector_sz;
if (sz >= trailer_sz) {
break;
}
first_trailer_idx--;
}
return first_trailer_idx;
}
int boot_slots_compatible(struct boot_loader_state *state)
{
size_t num_sectors_pri;
size_t num_sectors_sec;
size_t sector_sz_pri = 0;
size_t sector_sz_sec = 0;
size_t i;
size_t num_usable_sectors_pri;
num_sectors_pri = boot_img_num_sectors(state, BOOT_PRIMARY_SLOT);
num_sectors_sec = boot_img_num_sectors(state, BOOT_SECONDARY_SLOT);
num_usable_sectors_pri = app_max_sectors(state);
if ((num_sectors_pri != num_sectors_sec) &&
((num_sectors_pri + 1) != num_sectors_sec) &&
((num_usable_sectors_pri + 1) != (num_sectors_sec))) {
BOOT_LOG_WRN("Cannot upgrade: not a compatible amount of sectors");
BOOT_LOG_DBG("slot0 sectors: %d, slot1 sectors: %d, usable slot0 sectors: %d",
(int)num_sectors_pri, (int)num_sectors_sec,
(int)(num_usable_sectors_pri - 1));
return 0;
} else if (num_sectors_pri > BOOT_MAX_IMG_SECTORS) {
BOOT_LOG_WRN("Cannot upgrade: more sectors than allowed");
return 0;
}
if ((num_usable_sectors_pri + 1) != num_sectors_sec) {
BOOT_LOG_DBG("Non-optimal sector distribution, slot0 has %d usable sectors "
"but slot1 has %d usable sectors", (int)(num_usable_sectors_pri),
((int)num_sectors_sec - 1));
}
for (i = 0; i < num_sectors_pri; i++) {
sector_sz_pri = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, i);
sector_sz_sec = boot_img_sector_size(state, BOOT_SECONDARY_SLOT, i);
if (sector_sz_pri != sector_sz_sec) {
BOOT_LOG_WRN("Cannot upgrade: not same sector layout");
return 0;
}
}
#ifdef MCUBOOT_SLOT0_EXPECTED_ERASE_SIZE
if (sector_sz_pri != MCUBOOT_SLOT0_EXPECTED_ERASE_SIZE) {
BOOT_LOG_DBG("Discrepancy, slot0 expected erase size: %d, actual: %d",
MCUBOOT_SLOT0_EXPECTED_ERASE_SIZE, sector_sz_pri);
}
#endif
#ifdef MCUBOOT_SLOT1_EXPECTED_ERASE_SIZE
if (sector_sz_sec != MCUBOOT_SLOT1_EXPECTED_ERASE_SIZE) {
BOOT_LOG_DBG("Discrepancy, slot1 expected erase size: %d, actual: %d",
MCUBOOT_SLOT1_EXPECTED_ERASE_SIZE, sector_sz_sec);
}
#endif
#if defined(MCUBOOT_SLOT0_EXPECTED_WRITE_SIZE) || defined(MCUBOOT_SLOT1_EXPECTED_WRITE_SIZE)
if (!swap_write_block_size_check(state)) {
BOOT_LOG_WRN("Cannot upgrade: slot write sizes are not compatible");
return 0;
}
#endif
if (num_sectors_pri > num_sectors_sec) {
if (sector_sz_pri != boot_img_sector_size(state, BOOT_PRIMARY_SLOT, i)) {
BOOT_LOG_WRN("Cannot upgrade: not same sector layout");
return 0;
}
}
return 1;
}
#define BOOT_LOG_SWAP_STATE(area, state) \
BOOT_LOG_INF("%s: magic=%s, swap_type=0x%x, copy_done=0x%x, " \
"image_ok=0x%x", \
(area), \
((state)->magic == BOOT_MAGIC_GOOD ? "good" : \
(state)->magic == BOOT_MAGIC_UNSET ? "unset" : \
"bad"), \
(state)->swap_type, \
(state)->copy_done, \
(state)->image_ok)
int swap_status_source(struct boot_loader_state *state)
{
struct boot_swap_state state_primary_slot;
struct boot_swap_state state_secondary_slot;
int rc;
uint8_t source;
uint8_t image_index;
#if (BOOT_IMAGE_NUMBER == 1)
(void)state;
#endif
image_index = BOOT_CURR_IMG(state);
rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_PRIMARY(image_index), &state_primary_slot);
assert(rc == 0);
BOOT_LOG_SWAP_STATE("Primary image", &state_primary_slot);
rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_SECONDARY(image_index),
&state_secondary_slot);
assert(rc == 0);
BOOT_LOG_SWAP_STATE("Secondary image", &state_secondary_slot);
if (state_primary_slot.magic == BOOT_MAGIC_GOOD &&
state_primary_slot.copy_done == BOOT_FLAG_UNSET &&
state_secondary_slot.magic != BOOT_MAGIC_GOOD) {
source = BOOT_STATUS_SOURCE_PRIMARY_SLOT;
BOOT_LOG_INF("Boot source: primary slot");
return source;
}
BOOT_LOG_INF("Boot source: none");
return BOOT_STATUS_SOURCE_NONE;
}
static void boot_swap_sectors(int idx, uint32_t sz, struct boot_loader_state *state,
struct boot_status *bs, const struct flash_area *fap_pri,
const struct flash_area *fap_sec)
{
uint32_t pri_off;
uint32_t sec_off;
uint32_t sec_up_off;
int rc = 0;
pri_off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, idx);
sec_off = boot_img_sector_off(state, BOOT_SECONDARY_SLOT, idx);
sec_up_off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, (idx + 1));
if (bs->state == BOOT_STATUS_STATE_0) {
/* Copy from slot 0 X to slot 1 X */
BOOT_LOG_DBG("Erasing secondary 0x%x of 0x%x", sec_off, sz);
rc = boot_erase_region(fap_sec, sec_off, sz);
assert(rc == 0);
BOOT_LOG_DBG("Copying primary 0x%x -> secondary 0x%x of 0x%x", pri_off, sec_off, sz);
rc = BOOT_COPY_REGION(state, fap_pri, fap_sec, pri_off, sec_off, sz, 0);
assert(rc == 0);
rc = boot_write_status(state, bs);
bs->state = BOOT_STATUS_STATE_1;
BOOT_STATUS_ASSERT(rc == 0);
}
if (bs->state == BOOT_STATUS_STATE_1) {
/* Erase slot 0 X */
BOOT_LOG_DBG("Erasing primary 0x%x of 0x%x", pri_off, sz);
rc = boot_erase_region(fap_pri, pri_off, sz);
assert(rc == 0);
/* Copy from slot 1 (X + 1) to slot 0 X */
BOOT_LOG_DBG("Copying secondary 0x%x -> primary 0x%x of 0x%x", sec_up_off, pri_off,
sz);
rc = BOOT_COPY_REGION(state, fap_sec, fap_pri, sec_up_off, pri_off, sz, 0);
assert(rc == 0);
rc = boot_write_status(state, bs);
bs->idx++;
bs->state = BOOT_STATUS_STATE_0;
BOOT_STATUS_ASSERT(rc == 0);
}
}
static void boot_swap_sectors_revert(int idx, uint32_t sz, struct boot_loader_state *state,
struct boot_status *bs, const struct flash_area *fap_pri,
const struct flash_area *fap_sec, uint32_t sector_sz)
{
uint32_t pri_off;
uint32_t sec_off;
uint32_t sec_up_off;
int rc = 0;
#if !defined(MCUBOOT_ENC_IMAGES)
(void)sector_sz;
#endif
pri_off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, idx);
sec_off = boot_img_sector_off(state, BOOT_SECONDARY_SLOT, idx + 1);
sec_up_off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, idx);
if (bs->state == BOOT_STATUS_STATE_0) {
/* Copy from slot 0 X to slot 1 X */
BOOT_LOG_DBG("Erasing secondary 0x%x of 0x%x", sec_off, sz);
rc = boot_erase_region(fap_sec, sec_off, sz);
assert(rc == 0);
BOOT_LOG_DBG("Copying primary 0x%x -> secondary 0x%x of 0x%x", pri_off, sec_off, sz);
rc = BOOT_COPY_REGION(state, fap_pri, fap_sec, pri_off, sec_off, sz, sector_sz);
assert(rc == 0);
rc = boot_write_status(state, bs);
bs->state = BOOT_STATUS_STATE_1;
BOOT_STATUS_ASSERT(rc == 0);
}
if (bs->state == BOOT_STATUS_STATE_1) {
/* Erase slot 0 X */
BOOT_LOG_DBG("Erasing primary 0x%x of 0x%x", pri_off, sz);
rc = boot_erase_region(fap_pri, pri_off, sz);
assert(rc == 0);
/* Copy from slot 1 (X + 1) to slot 0 X */
BOOT_LOG_DBG("Copying secondary 0x%x -> primary 0x%x of 0x%x", sec_up_off, pri_off,
sz);
rc = BOOT_COPY_REGION(state, fap_sec, fap_pri, sec_up_off, pri_off, sz, 0);
assert(rc == 0);
rc = boot_write_status(state, bs);
bs->idx++;
bs->state = BOOT_STATUS_STATE_0;
BOOT_STATUS_ASSERT(rc == 0);
}
}
/*
* When starting a revert the swap status exists in the primary slot, and
* the status in the secondary slot is erased. To start the swap, the status
* area in the primary slot must be re-initialized; if during the small
* window of time between re-initializing it and writing the first metadata
* a reset happens, the swap process is broken and cannot be resumed.
*
* This function handles the issue by making the revert look like a permanent
* upgrade (by initializing the secondary slot).
*/
void fixup_revert(const struct boot_loader_state *state, struct boot_status *bs,
const struct flash_area *fap_sec)
{
struct boot_swap_state swap_state;
int rc;
#if (BOOT_IMAGE_NUMBER == 1)
(void)state;
#endif
/* No fixup required */
if (bs->swap_type != BOOT_SWAP_TYPE_REVERT ||
bs->idx != BOOT_STATUS_IDX_0) {
return;
}
rc = boot_read_swap_state(fap_sec, &swap_state);
assert(rc == 0);
BOOT_LOG_SWAP_STATE("Secondary image", &swap_state);
if (swap_state.magic == BOOT_MAGIC_UNSET) {
rc = swap_erase_trailer_sectors(state, fap_sec);
assert(rc == 0);
rc = boot_write_copy_done(fap_sec);
assert(rc == 0);
rc = swap_status_init(state, fap_sec, bs);
assert(rc == 0);
}
}
void swap_run(struct boot_loader_state *state, struct boot_status *bs,
uint32_t copy_size)
{
uint32_t sz;
uint32_t sector_sz;
uint32_t idx;
uint32_t trailer_sz;
uint32_t first_trailer_idx;
uint32_t last_idx;
uint8_t image_index;
const struct flash_area *fap_pri;
const struct flash_area *fap_sec;
int rc;
BOOT_LOG_INF("Starting swap using offset algorithm.");
last_idx = find_last_idx(state, copy_size);
sector_sz = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, 0);
/* When starting a new swap upgrade, check that there is enough space */
if (boot_status_is_reset(bs)) {
sz = 0;
trailer_sz = boot_trailer_sz(BOOT_WRITE_SZ(state));
first_trailer_idx = boot_img_num_sectors(state, BOOT_PRIMARY_SLOT) - 1;
while (1) {
sz += sector_sz;
if (sz >= trailer_sz) {
break;
}
first_trailer_idx--;
}
if (last_idx >= first_trailer_idx) {
BOOT_LOG_WRN("Not enough free space to run swap upgrade");
BOOT_LOG_WRN("required %d bytes but only %d are available",
(last_idx + 1) * sector_sz,
first_trailer_idx * sector_sz);
bs->swap_type = BOOT_SWAP_TYPE_NONE;
return;
}
}
image_index = BOOT_CURR_IMG(state);
rc = flash_area_open(FLASH_AREA_IMAGE_PRIMARY(image_index), &fap_pri);
assert (rc == 0);
rc = flash_area_open(FLASH_AREA_IMAGE_SECONDARY(image_index), &fap_sec);
assert (rc == 0);
fixup_revert(state, bs, fap_sec);
/* Init areas for storing swap status */
if (bs->idx == BOOT_STATUS_IDX_0) {
int rc;
if (bs->source != BOOT_STATUS_SOURCE_PRIMARY_SLOT) {
rc = swap_erase_trailer_sectors(state, fap_pri);
assert(rc == 0);
rc = swap_status_init(state, fap_pri, bs);
assert(rc == 0);
}
rc = swap_erase_trailer_sectors(state, fap_sec);
assert(rc == 0);
}
bs->op = BOOT_STATUS_OP_SWAP;
idx = 0;
if (bs->swap_type == BOOT_SWAP_TYPE_REVERT ||
boot_swap_type_multi(BOOT_CURR_IMG(state)) == BOOT_SWAP_TYPE_REVERT) {
while (idx <= last_idx) {
if (idx >= (bs->idx - BOOT_STATUS_IDX_0)) {
uint32_t mirror_idx = last_idx - idx;
boot_swap_sectors_revert(mirror_idx, sector_sz, state, bs, fap_pri, fap_sec,
sector_sz);
}
idx++;
}
/* Erase the first sector in the secondary slot before completing revert so that the
* status is not wrongly used as a valid header. Also erase the trailer in the secondary
* to allow for a future update to be loaded
*/
rc = boot_erase_region(fap_sec, boot_img_sector_off(state, BOOT_SECONDARY_SLOT, 0),
sector_sz);
assert(rc == 0);
rc = swap_erase_trailer_sectors(state, fap_sec);
assert(rc == 0);
} else {
while (idx <= last_idx) {
if (idx >= (bs->idx - BOOT_STATUS_IDX_0)) {
boot_swap_sectors(idx, sector_sz, state, bs, fap_pri, fap_sec);
}
idx++;
}
}
flash_area_close(fap_pri);
flash_area_close(fap_sec);
}
int app_max_size(struct boot_loader_state *state)
{
uint32_t sector_sz_primary;
uint32_t sector_sz_secondary;
uint32_t sz_primary;
uint32_t sz_secondary;
sector_sz_primary = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, 0);
sector_sz_secondary = boot_img_sector_size(state, BOOT_SECONDARY_SLOT, 0);
/* Account for image flags and move sector */
sz_primary = app_max_sectors(state) * sector_sz_primary;
sz_secondary = boot_img_num_sectors(state, BOOT_SECONDARY_SLOT) * sector_sz_secondary -
sector_sz_primary;
return (sz_primary <= sz_secondary ? sz_primary : sz_secondary);
}
/* Compute the total size of the given image. Includes the size of the TLVs. */
int boot_read_image_size(struct boot_loader_state *state, int slot, uint32_t *size)
{
const struct flash_area *fap;
struct image_tlv_info info;
uint32_t off;
uint32_t secondary_slot_off = 0;
uint32_t protect_tlv_size;
int area_id;
int rc;
#if (BOOT_IMAGE_NUMBER == 1)
(void)state;
#endif
area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot);
rc = flash_area_open(area_id, &fap);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
off = BOOT_TLV_OFF(boot_img_hdr(state, slot));
if (slot == BOOT_SECONDARY_SLOT) {
/* Check in the secondary position in the upgrade slot */
secondary_slot_off = state->secondary_offset[BOOT_CURR_IMG(state)];
}
if (flash_area_read(fap, (off + secondary_slot_off), &info, sizeof(info))) {
rc = BOOT_EFLASH;
goto done;
}
protect_tlv_size = boot_img_hdr(state, slot)->ih_protect_tlv_size;
if (info.it_magic == IMAGE_TLV_PROT_INFO_MAGIC) {
if (protect_tlv_size != info.it_tlv_tot) {
rc = BOOT_EBADIMAGE;
goto done;
}
if (flash_area_read(fap, (off + secondary_slot_off + info.it_tlv_tot),
&info, sizeof(info))) {
rc = BOOT_EFLASH;
goto done;
}
} else if (protect_tlv_size != 0) {
rc = BOOT_EBADIMAGE;
goto done;
}
if (info.it_magic != IMAGE_TLV_INFO_MAGIC) {
rc = BOOT_EBADIMAGE;
goto done;
}
*size = off + protect_tlv_size + info.it_tlv_tot;
rc = 0;
done:
flash_area_close(fap);
return rc;
}
#endif