| """ |
| Cryptographic key management for imgtool. |
| """ |
| |
| from Crypto.Hash import SHA256 |
| from Crypto.PublicKey import RSA |
| from Crypto.Signature import PKCS1_v1_5 |
| from ecdsa import SigningKey, NIST256p, util |
| from pyasn1.type import namedtype, univ |
| from pyasn1.codec.der.encoder import encode |
| |
| AUTOGEN_MESSAGE = "/* Autogenerated by imgtool.py, do not edit. */" |
| |
| class RSAPublicKey(univ.Sequence): |
| componentType = namedtype.NamedTypes( |
| namedtype.NamedType('modulus', univ.Integer()), |
| namedtype.NamedType('publicExponent', univ.Integer())) |
| |
| class RSA2048(): |
| def __init__(self, key): |
| """Construct an RSA2048 key with the given key data""" |
| self.key = key |
| |
| @staticmethod |
| def generate(): |
| return RSA2048(RSA.generate(2048)) |
| |
| def export_private(self, path): |
| with open(path, 'wb') as f: |
| f.write(self.key.exportKey('PEM')) |
| |
| def emit_c(self): |
| node = RSAPublicKey() |
| node['modulus'] = self.key.n |
| node['publicExponent'] = self.key.e |
| print(AUTOGEN_MESSAGE) |
| print("const unsigned char rsa_pub_key[] = {", end='') |
| encoded = bytearray(encode(node)) |
| for count, b in enumerate(encoded): |
| if count % 8 == 0: |
| print("\n\t", end='') |
| else: |
| print(" ", end='') |
| print("0x{:02x},".format(b), end='') |
| print("\n};") |
| print("const unsigned int rsa_pub_key_len = {};".format(len(encoded))) |
| |
| def sig_type(self): |
| """Return the type of this signature (as a string)""" |
| return "PKCS15_RSA2048_SHA256" |
| |
| def sig_len(self): |
| return 256 |
| |
| def sig_tlv(self): |
| return "RSA2048" |
| |
| def sign(self, payload): |
| sha = SHA256.new(payload) |
| signer = PKCS1_v1_5.new(self.key) |
| signature = signer.sign(sha) |
| assert len(signature) == self.sig_len() |
| return signature |
| |
| class ECDSA256P1(): |
| def __init__(self, key): |
| """Construct an ECDSA P-256 private key""" |
| self.key = key |
| |
| @staticmethod |
| def generate(): |
| return ECDSA256P1(SigningKey.generate(curve=NIST256p)) |
| |
| def export_private(self, path): |
| with open(path, 'wb') as f: |
| f.write(key.to_pem()) |
| |
| def emit_c(self): |
| vk = self.key.get_verifying_key() |
| print(AUTOGEN_MESSAGE) |
| print("const unsigned char ecdsa_pub_key[] = {", end='') |
| encoded = bytes(vk.to_der()) |
| for count, b in enumerate(encoded): |
| if count % 8 == 0: |
| print("\n\t", end='') |
| else: |
| print(" ", end='') |
| print("0x{:02x},".format(b), end='') |
| print("\n};") |
| print("const unsigned int ecdsa_pub_key_len = {};".format(len(encoded))) |
| |
| def sign(self, payload): |
| # To make this fixed length, possibly pad with zeros. |
| sig = self.key.sign(payload, hashfunc=hashlib.sha256, sigencode=util.sigencode_der) |
| sig += b'\000' * (self.sig_len() - len(sig)) |
| return sig |
| |
| def sig_len(self): |
| # The DER encoding depends on the high bit, and can be |
| # anywhere from 70 to 72 bytes. Because we have to fill in |
| # the length field before computing the signature, however, |
| # we'll give the largest, and the sig checking code will allow |
| # for it to be up to two bytes larger than the actual |
| # signature. |
| return 72 |
| |
| def sig_type(self): |
| """Return the type of this signature (as a string)""" |
| return "ECDSA256_SHA256" |
| |
| def sig_tlv(self): |
| return "ECDSA256" |
| |
| def load(path): |
| with open(path, 'rb') as f: |
| pem = f.read() |
| try: |
| key = RSA.importKey(pem) |
| if key.n.bit_length() != 2048: |
| raise Exception("Unsupported RSA bit length, only 2048 supported") |
| return RSA2048(key) |
| except ValueError: |
| key = SigningKey.from_pem(pem) |
| if key.curve.name != 'NIST256p': |
| raise Exception("Unsupported ECDSA curve") |
| return ECDSA256P1(key) |