| /* |
| * SPDX-License-Identifier: Apache-2.0 |
| * |
| * Copyright (c) 2017-2018 Linaro LTD |
| * Copyright (c) 2017-2019 JUUL Labs |
| * Copyright (c) 2020-2021 Arm Limited |
| * |
| * Original license: |
| * |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| #include <string.h> |
| |
| #include "mcuboot_config/mcuboot_config.h" |
| |
| #ifdef MCUBOOT_SIGN_RSA |
| #include "bootutil/sign_key.h" |
| #include "bootutil/crypto/sha256.h" |
| #include "bootutil/crypto/common.h" |
| |
| #include "mbedtls/rsa.h" |
| #include "mbedtls/asn1.h" |
| #include "mbedtls/version.h" |
| |
| #include "bootutil_priv.h" |
| #include "bootutil/fault_injection_hardening.h" |
| |
| /* |
| * Constants for this particular constrained implementation of |
| * RSA-PSS. In particular, we support RSA 2048, with a SHA256 hash, |
| * and a 32-byte salt. A signature with different parameters will be |
| * rejected as invalid. |
| */ |
| |
| /* The size, in octets, of the message. */ |
| #define PSS_EMLEN (MCUBOOT_SIGN_RSA_LEN / 8) |
| |
| /* The size of the hash function. For SHA256, this is 32 bytes. */ |
| #define PSS_HLEN 32 |
| |
| /* Size of the salt, should be fixed. */ |
| #define PSS_SLEN 32 |
| |
| /* The length of the mask: emLen - hLen - 1. */ |
| #define PSS_MASK_LEN (PSS_EMLEN - PSS_HLEN - 1) |
| |
| #define PSS_HASH_OFFSET PSS_MASK_LEN |
| |
| /* For the mask itself, how many bytes should be all zeros. */ |
| #define PSS_MASK_ZERO_COUNT (PSS_MASK_LEN - PSS_SLEN - 1) |
| #define PSS_MASK_ONE_POS PSS_MASK_ZERO_COUNT |
| |
| /* Where the salt starts. */ |
| #define PSS_MASK_SALT_POS (PSS_MASK_ONE_POS + 1) |
| |
| static const uint8_t pss_zeros[8] = {0}; |
| |
| /* |
| * Parse the public key used for signing. Simple RSA format. |
| */ |
| static int |
| bootutil_parse_rsakey(mbedtls_rsa_context *ctx, uint8_t **p, uint8_t *end) |
| { |
| int rc; |
| size_t len; |
| |
| if ((rc = mbedtls_asn1_get_tag(p, end, &len, |
| MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) { |
| return -1; |
| } |
| |
| if (*p + len != end) { |
| return -2; |
| } |
| |
| if ((rc = mbedtls_asn1_get_mpi(p, end, &ctx->MBEDTLS_CONTEXT_MEMBER(N))) != 0 || |
| (rc = mbedtls_asn1_get_mpi(p, end, &ctx->MBEDTLS_CONTEXT_MEMBER(E))) != 0) { |
| return -3; |
| } |
| |
| ctx->MBEDTLS_CONTEXT_MEMBER(len) = mbedtls_mpi_size(&ctx->MBEDTLS_CONTEXT_MEMBER(N)); |
| |
| if (*p != end) { |
| return -4; |
| } |
| |
| /* The mbedtls version is more than 2.6.1 */ |
| #if MBEDTLS_VERSION_NUMBER > 0x02060100 |
| rc = mbedtls_rsa_import(ctx, &ctx->MBEDTLS_CONTEXT_MEMBER(N), NULL, |
| NULL, NULL, &ctx->MBEDTLS_CONTEXT_MEMBER(E)); |
| if (rc != 0) { |
| return -5; |
| } |
| #endif |
| |
| rc = mbedtls_rsa_check_pubkey(ctx); |
| if (rc != 0) { |
| return -6; |
| } |
| |
| ctx->MBEDTLS_CONTEXT_MEMBER(len) = mbedtls_mpi_size(&ctx->MBEDTLS_CONTEXT_MEMBER(N)); |
| |
| return 0; |
| } |
| |
| /* |
| * Compute the RSA-PSS mask-generation function, MGF1. Assumptions |
| * are that the mask length will be less than 256 * PSS_HLEN, and |
| * therefore we never need to increment anything other than the low |
| * byte of the counter. |
| * |
| * This is described in PKCS#1, B.2.1. |
| */ |
| static void |
| pss_mgf1(uint8_t *mask, const uint8_t *hash) |
| { |
| bootutil_sha256_context ctx; |
| uint8_t counter[4] = { 0, 0, 0, 0 }; |
| uint8_t htmp[PSS_HLEN]; |
| int count = PSS_MASK_LEN; |
| int bytes; |
| |
| while (count > 0) { |
| bootutil_sha256_init(&ctx); |
| bootutil_sha256_update(&ctx, hash, PSS_HLEN); |
| bootutil_sha256_update(&ctx, counter, 4); |
| bootutil_sha256_finish(&ctx, htmp); |
| |
| counter[3]++; |
| |
| bytes = PSS_HLEN; |
| if (bytes > count) |
| bytes = count; |
| |
| (void)memcpy(mask, htmp, bytes); |
| mask += bytes; |
| count -= bytes; |
| } |
| |
| bootutil_sha256_drop(&ctx); |
| } |
| |
| /* |
| * Validate an RSA signature, using RSA-PSS, as described in PKCS #1 |
| * v2.2, section 9.1.2, with many parameters required to have fixed |
| * values. |
| */ |
| static fih_int |
| bootutil_cmp_rsasig(mbedtls_rsa_context *ctx, uint8_t *hash, uint32_t hlen, |
| uint8_t *sig) |
| { |
| bootutil_sha256_context shactx; |
| uint8_t em[MBEDTLS_MPI_MAX_SIZE]; |
| uint8_t db_mask[PSS_MASK_LEN]; |
| uint8_t h2[PSS_HLEN]; |
| int i; |
| int rc = 0; |
| fih_int fih_rc = FIH_FAILURE; |
| |
| if (ctx->MBEDTLS_CONTEXT_MEMBER(len) != PSS_EMLEN || |
| PSS_EMLEN > MBEDTLS_MPI_MAX_SIZE) { |
| rc = -1; |
| goto out; |
| } |
| |
| if (hlen != PSS_HLEN) { |
| rc = -1; |
| goto out; |
| } |
| |
| if (mbedtls_rsa_public(ctx, sig, em)) { |
| rc = -1; |
| goto out; |
| } |
| |
| /* |
| * PKCS #1 v2.2, 9.1.2 EMSA-PSS-Verify |
| * |
| * emBits is 2048 |
| * emLen = ceil(emBits/8) = 256 |
| * |
| * The salt length is not known at the beginning. |
| */ |
| |
| /* Step 1. The message is constrained by the address space of a |
| * 32-bit processor, which is far less than the 2^61-1 limit of |
| * SHA-256. |
| */ |
| |
| /* Step 2. mHash is passed in as 'hash', with hLen the hlen |
| * argument. */ |
| |
| /* Step 3. if emLen < hLen + sLen + 2, inconsistent and stop. |
| * The salt length is not known at this point. |
| */ |
| |
| /* Step 4. If the rightmost octet of EM does have the value |
| * 0xbc, output inconsistent and stop. |
| */ |
| if (em[PSS_EMLEN - 1] != 0xbc) { |
| rc = -1; |
| goto out; |
| } |
| |
| /* Step 5. Let maskedDB be the leftmost emLen - hLen - 1 octets |
| * of EM, and H be the next hLen octets. |
| * |
| * maskedDB is then the first 256 - 32 - 1 = 0-222 |
| * H is 32 bytes 223-254 |
| */ |
| |
| /* Step 6. If the leftmost 8emLen - emBits bits of the leftmost |
| * octet in maskedDB are not all equal to zero, output |
| * inconsistent and stop. |
| * |
| * 8emLen - emBits is zero, so there is nothing to test here. |
| */ |
| |
| /* Step 7. let dbMask = MGF(H, emLen - hLen - 1). */ |
| pss_mgf1(db_mask, &em[PSS_HASH_OFFSET]); |
| |
| /* Step 8. let DB = maskedDB xor dbMask. |
| * To avoid needing an additional buffer, store the 'db' in the |
| * same buffer as db_mask. From now, to the end of this function, |
| * db_mask refers to the unmasked 'db'. */ |
| for (i = 0; i < PSS_MASK_LEN; i++) { |
| db_mask[i] ^= em[i]; |
| } |
| |
| /* Step 9. Set the leftmost 8emLen - emBits bits of the leftmost |
| * octet in DB to zero. |
| * pycrypto seems to always make the emBits 2047, so we need to |
| * clear the top bit. */ |
| db_mask[0] &= 0x7F; |
| |
| /* Step 10. If the emLen - hLen - sLen - 2 leftmost octets of DB |
| * are not zero or if the octet at position emLen - hLen - sLen - |
| * 1 (the leftmost position is "position 1") does not have |
| * hexadecimal value 0x01, output "inconsistent" and stop. */ |
| for (i = 0; i < PSS_MASK_ZERO_COUNT; i++) { |
| if (db_mask[i] != 0) { |
| rc = -1; |
| goto out; |
| } |
| } |
| |
| if (db_mask[PSS_MASK_ONE_POS] != 1) { |
| rc = -1; |
| goto out; |
| } |
| |
| /* Step 11. Let salt be the last sLen octets of DB */ |
| |
| /* Step 12. Let M' = 0x00 00 00 00 00 00 00 00 || mHash || salt; */ |
| |
| /* Step 13. Let H' = Hash(M') */ |
| bootutil_sha256_init(&shactx); |
| bootutil_sha256_update(&shactx, pss_zeros, 8); |
| bootutil_sha256_update(&shactx, hash, PSS_HLEN); |
| bootutil_sha256_update(&shactx, &db_mask[PSS_MASK_SALT_POS], PSS_SLEN); |
| bootutil_sha256_finish(&shactx, h2); |
| bootutil_sha256_drop(&shactx); |
| |
| /* Step 14. If H = H', output "consistent". Otherwise, output |
| * "inconsistent". */ |
| FIH_CALL(boot_fih_memequal, fih_rc, h2, &em[PSS_HASH_OFFSET], PSS_HLEN); |
| |
| out: |
| if (rc) { |
| fih_rc = fih_int_encode(rc); |
| } |
| |
| FIH_RET(fih_rc); |
| } |
| |
| fih_int |
| bootutil_verify_sig(uint8_t *hash, uint32_t hlen, uint8_t *sig, size_t slen, |
| uint8_t key_id) |
| { |
| mbedtls_rsa_context ctx; |
| int rc; |
| fih_int fih_rc = FIH_FAILURE; |
| uint8_t *cp; |
| uint8_t *end; |
| |
| #if MBEDTLS_VERSION_NUMBER >= 0x03000000 |
| mbedtls_rsa_init(&ctx); |
| #else |
| mbedtls_rsa_init(&ctx, 0, 0); |
| #endif |
| |
| cp = (uint8_t *)bootutil_keys[key_id].key; |
| end = cp + *bootutil_keys[key_id].len; |
| |
| rc = bootutil_parse_rsakey(&ctx, &cp, end); |
| if (rc || slen != ctx.MBEDTLS_CONTEXT_MEMBER(len)) { |
| mbedtls_rsa_free(&ctx); |
| goto out; |
| } |
| FIH_CALL(bootutil_cmp_rsasig, fih_rc, &ctx, hash, hlen, sig); |
| |
| out: |
| mbedtls_rsa_free(&ctx); |
| |
| FIH_RET(fih_rc); |
| } |
| #endif /* MCUBOOT_SIGN_RSA */ |