blob: a4ce84b4df2bc218c96e0d1a67feeb1e88ca47f9 [file] [log] [blame]
/*
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2019 JUUL Labs
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stddef.h>
#include <stdbool.h>
#include <inttypes.h>
#include <stdlib.h>
#include <string.h>
#include "bootutil/bootutil.h"
#include "bootutil_priv.h"
#include "swap_priv.h"
#ifdef MCUBOOT_SWAP_USING_STATUS
#include "swap_status.h"
#endif
#include "bootutil/bootutil_log.h"
#include "mcuboot_config/mcuboot_config.h"
BOOT_LOG_MODULE_DECLARE(mcuboot);
#ifdef MCUBOOT_SWAP_USING_MOVE
#if defined(MCUBOOT_VALIDATE_PRIMARY_SLOT)
/*
* FIXME: this might have to be updated for threaded sim
*/
int boot_status_fails = 0;
#define BOOT_STATUS_ASSERT(x) \
do { \
if (!(x)) { \
boot_status_fails++; \
} \
} while (0)
#else
#define BOOT_STATUS_ASSERT(x) ASSERT(x)
#endif
static uint32_t g_last_idx = UINT32_MAX;
int
boot_read_image_header(struct boot_loader_state *state, int slot,
struct image_header *out_hdr, struct boot_status *bs)
{
const struct flash_area *fap;
uint32_t off;
uint32_t sz;
int area_id;
int rc;
#if (BOOT_IMAGE_NUMBER == 1)
(void)state;
#endif
off = 0;
if (bs) {
sz = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, 0);
if (bs->op == BOOT_STATUS_OP_MOVE) {
if (slot == 0 && bs->idx > g_last_idx) {
/* second sector */
off = sz;
}
} else if (bs->op == BOOT_STATUS_OP_SWAP) {
if (bs->idx > 1 && bs->idx <= g_last_idx) {
if (slot == 0) {
slot = 1;
} else {
slot = 0;
}
} else if (bs->idx == 1) {
if (slot == 0) {
off = sz;
}
if (slot == 1 && bs->state == 2) {
slot = 0;
}
}
}
}
area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot);
rc = flash_area_open(area_id, &fap);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
rc = flash_area_read(fap, off, out_hdr, sizeof *out_hdr);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
/* We only know where the headers are located when bs is valid */
if (bs != NULL && out_hdr->ih_magic != IMAGE_MAGIC) {
rc = -1;
goto done;
}
rc = 0;
done:
flash_area_close(fap);
return rc;
}
#ifndef MCUBOOT_SWAP_USING_STATUS
int
swap_read_status_bytes(const struct flash_area *fap,
struct boot_loader_state *state, struct boot_status *bs)
{
uint32_t off;
uint8_t status;
int max_entries;
int found_idx;
uint32_t write_sz;
int move_entries;
int rc;
int last_rc;
int erased_sections;
int i;
max_entries = boot_status_entries(BOOT_CURR_IMG(state), fap);
if (max_entries < 0) {
return BOOT_EBADARGS;
}
erased_sections = 0;
found_idx = -1;
/* skip erased sectors at the end */
last_rc = 1;
write_sz = BOOT_WRITE_SZ(state);
off = boot_status_off(fap);
for (i = max_entries; i > 0; i--) {
rc = flash_area_read(fap, off + (i - 1) * write_sz, &status, 1);
if (rc < 0) {
return BOOT_EFLASH;
}
if (flash_area_erased_val(fap) == status) {
if (rc != last_rc) {
erased_sections++;
}
} else {
if (found_idx == -1) {
found_idx = i;
}
}
last_rc = rc;
}
if (erased_sections > 1) {
/* This means there was an error writing status on the last
* swap. Tell user and move on to validation!
*/
#if !defined(__BOOTSIM__)
BOOT_LOG_ERR("Detected inconsistent status!");
#endif
#if !defined(MCUBOOT_VALIDATE_PRIMARY_SLOT)
/* With validation of the primary slot disabled, there is no way
* to be sure the swapped primary slot is OK, so abort!
*/
assert(0);
#endif
}
move_entries = BOOT_MAX_IMG_SECTORS * BOOT_STATUS_MOVE_STATE_COUNT;
if (found_idx == -1) {
/* no swap status found; nothing to do */
} else if (found_idx < move_entries) {
bs->op = BOOT_STATUS_OP_MOVE;
bs->idx = (found_idx / BOOT_STATUS_MOVE_STATE_COUNT) + BOOT_STATUS_IDX_0;
bs->state = (found_idx % BOOT_STATUS_MOVE_STATE_COUNT) + BOOT_STATUS_STATE_0;
} else {
bs->op = BOOT_STATUS_OP_SWAP;
bs->idx = ((found_idx - move_entries) / BOOT_STATUS_SWAP_STATE_COUNT) + BOOT_STATUS_IDX_0;
bs->state = ((found_idx - move_entries) % BOOT_STATUS_SWAP_STATE_COUNT) + BOOT_STATUS_STATE_0;
}
return 0;
}
uint32_t
boot_status_internal_off(const struct boot_status *bs, uint32_t elem_sz)
{
uint32_t off;
int idx_sz;
idx_sz = elem_sz * ((bs->op == BOOT_STATUS_OP_MOVE) ?
BOOT_STATUS_MOVE_STATE_COUNT : BOOT_STATUS_SWAP_STATE_COUNT);
off = ((bs->op == BOOT_STATUS_OP_MOVE) ?
0 : (BOOT_MAX_IMG_SECTORS * BOOT_STATUS_MOVE_STATE_COUNT * elem_sz)) +
(bs->idx - BOOT_STATUS_IDX_0) * idx_sz +
(bs->state - BOOT_STATUS_STATE_0) * elem_sz;
return off;
}
#endif /* !MCUBOOT_SWAP_USING_STATUS */
int
boot_slots_compatible(struct boot_loader_state *state)
{
size_t num_sectors_pri;
size_t num_sectors_sec;
size_t sector_sz_pri = 0;
size_t sector_sz_sec = 0;
size_t i;
num_sectors_pri = boot_img_num_sectors(state, BOOT_PRIMARY_SLOT);
num_sectors_sec = boot_img_num_sectors(state, BOOT_SECONDARY_SLOT);
if (num_sectors_sec == 0) {
BOOT_LOG_WRN("Upgrade disabled for image %u", (unsigned)BOOT_CURR_IMG(state));
return 0;
}
if ((num_sectors_pri != num_sectors_sec) &&
(num_sectors_pri != (num_sectors_sec + 1))) {
BOOT_LOG_WRN("Cannot upgrade: not a compatible amount of sectors");
return 0;
}
if (num_sectors_pri > BOOT_MAX_IMG_SECTORS) {
BOOT_LOG_WRN("Cannot upgrade: more sectors than allowed");
return 0;
}
for (i = 0; i < num_sectors_sec; i++) {
sector_sz_pri = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, i);
sector_sz_sec = boot_img_sector_size(state, BOOT_SECONDARY_SLOT, i);
if (sector_sz_pri != sector_sz_sec) {
BOOT_LOG_WRN("Cannot upgrade: not same sector layout");
return 0;
}
}
if (num_sectors_pri > num_sectors_sec) {
if (sector_sz_pri != boot_img_sector_size(state, BOOT_PRIMARY_SLOT, i)) {
BOOT_LOG_WRN("Cannot upgrade: not same sector layout");
return 0;
}
}
return 1;
}
#define BOOT_LOG_SWAP_STATE(area, state) \
BOOT_LOG_INF("%s: magic=%s, swap_type=0x%x, copy_done=0x%x, image_ok=0x%x", \
(area), \
((state)->magic == BOOT_MAGIC_GOOD ? "good" : \
(state)->magic == BOOT_MAGIC_UNSET ? "unset" : \
"bad"), \
(unsigned)(state)->swap_type, \
(unsigned)(state)->copy_done, \
(unsigned)(state)->image_ok)
int
swap_status_source(struct boot_loader_state *state)
{
struct boot_swap_state state_primary_slot;
struct boot_swap_state state_secondary_slot;
int rc;
uint8_t source;
uint8_t image_index;
#if (BOOT_IMAGE_NUMBER == 1)
(void)state;
#endif
image_index = BOOT_CURR_IMG(state);
rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_PRIMARY(image_index),
&state_primary_slot);
assert(rc == 0);
BOOT_LOG_SWAP_STATE("Primary image", &state_primary_slot);
rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_SECONDARY(image_index),
&state_secondary_slot);
assert(rc == 0);
BOOT_LOG_SWAP_STATE("Secondary image", &state_secondary_slot);
if (state_primary_slot.magic == BOOT_MAGIC_GOOD &&
state_primary_slot.copy_done == BOOT_FLAG_UNSET &&
state_secondary_slot.magic != BOOT_MAGIC_GOOD) {
source = BOOT_STATUS_SOURCE_PRIMARY_SLOT;
BOOT_LOG_INF("Boot source: primary slot");
return source;
}
BOOT_LOG_INF("Boot source: none");
return BOOT_STATUS_SOURCE_NONE;
}
/*
* "Moves" the sector located at idx - 1 to idx.
*/
static void
boot_move_sector_up(int idx, uint32_t sz, struct boot_loader_state *state,
struct boot_status *bs, const struct flash_area *fap_pri,
const struct flash_area *fap_sec)
{
uint32_t new_off;
uint32_t old_off;
int rc;
/*
* FIXME: assuming sectors of size == sz, a single off variable
* would be enough
*/
/* Calculate offset from start of image area. */
new_off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, idx);
old_off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, idx - 1);
if (bs->idx == BOOT_STATUS_IDX_0) {
if (bs->source != BOOT_STATUS_SOURCE_PRIMARY_SLOT) {
rc = swap_erase_trailer_sectors(state, fap_pri);
assert(rc == 0);
rc = swap_status_init(state, fap_pri, bs);
assert(rc == 0);
}
rc = swap_erase_trailer_sectors(state, fap_sec);
assert(rc == 0);
}
rc = boot_erase_region(fap_pri, new_off, sz);
assert(rc == 0);
rc = boot_copy_region(state, fap_pri, fap_pri, old_off, new_off, sz);
assert(rc == 0);
rc = boot_write_status(state, bs);
bs->idx++;
BOOT_STATUS_ASSERT(rc == 0);
}
static void
boot_swap_sectors(int idx, uint32_t sz, struct boot_loader_state *state,
struct boot_status *bs, const struct flash_area *fap_pri,
const struct flash_area *fap_sec)
{
uint32_t pri_off;
uint32_t pri_up_off;
uint32_t sec_off;
int rc;
pri_up_off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, idx);
pri_off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, idx - 1);
sec_off = boot_img_sector_off(state, BOOT_SECONDARY_SLOT, idx - 1);
if (bs->state == BOOT_STATUS_STATE_0) {
rc = boot_erase_region(fap_pri, pri_off, sz);
assert(rc == 0);
rc = boot_copy_region(state, fap_sec, fap_pri, sec_off, pri_off, sz);
assert(rc == 0);
rc = boot_write_status(state, bs);
bs->state = BOOT_STATUS_STATE_1;
BOOT_STATUS_ASSERT(rc == 0);
}
if (bs->state == BOOT_STATUS_STATE_1) {
rc = boot_erase_region(fap_sec, sec_off, sz);
assert(rc == 0);
rc = boot_copy_region(state, fap_pri, fap_sec, pri_up_off, sec_off, sz);
assert(rc == 0);
rc = boot_write_status(state, bs);
bs->idx++;
bs->state = BOOT_STATUS_STATE_0;
BOOT_STATUS_ASSERT(rc == 0);
}
}
/*
* When starting a revert the swap status exists in the primary slot, and
* the status in the secondary slot is erased. To start the swap, the status
* area in the primary slot must be re-initialized; if during the small
* window of time between re-initializing it and writing the first metadata
* a reset happens, the swap process is broken and cannot be resumed.
*
* This function handles the issue by making the revert look like a permanent
* upgrade (by initializing the secondary slot).
*/
void
fixup_revert(const struct boot_loader_state *state, struct boot_status *bs,
const struct flash_area *fap_sec)
{
struct boot_swap_state swap_state;
int rc;
#if (BOOT_IMAGE_NUMBER == 1)
(void)state;
#endif
/* No fixup required */
if (bs->swap_type != BOOT_SWAP_TYPE_REVERT ||
bs->op != BOOT_STATUS_OP_MOVE ||
bs->idx != BOOT_STATUS_IDX_0) {
return;
}
rc = boot_read_swap_state(fap_sec, &swap_state);
assert(rc == 0);
BOOT_LOG_SWAP_STATE("Secondary image", &swap_state);
if (swap_state.magic == BOOT_MAGIC_UNSET) {
rc = swap_erase_trailer_sectors(state, fap_sec);
assert(rc == 0);
rc = boot_write_image_ok(fap_sec);
assert(rc == 0);
rc = boot_write_swap_size(fap_sec, bs->swap_size);
assert(rc == 0);
rc = boot_write_magic(fap_sec);
assert(rc == 0);
}
}
void
swap_run(struct boot_loader_state *state, struct boot_status *bs,
uint32_t copy_size)
{
uint32_t sz;
uint32_t sector_sz;
uint32_t idx;
uint8_t image_index;
const struct flash_area *fap_pri;
const struct flash_area *fap_sec;
int rc;
BOOT_LOG_INF("Starting swap using move algorithm.");
sz = 0;
g_last_idx = 0;
sector_sz = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, 0);
while (1) {
sz += sector_sz;
/* Skip to next sector because all sectors will be moved up. */
g_last_idx++;
if (sz >= copy_size) {
break;
}
}
#ifndef MCUBOOT_SWAP_USING_STATUS
uint32_t trailer_sz;
uint32_t first_trailer_idx;
/*
* When starting a new swap upgrade, check that there is enough space.
*/
if (boot_status_is_reset(bs)) {
sz = 0;
trailer_sz = boot_trailer_sz(BOOT_WRITE_SZ(state));
first_trailer_idx = boot_img_num_sectors(state, BOOT_PRIMARY_SLOT) - 1;
while (1) {
sz += sector_sz;
if (sz >= trailer_sz) {
break;
}
first_trailer_idx--;
}
if (g_last_idx >= first_trailer_idx) {
BOOT_LOG_WRN("Not enough free space to run swap upgrade");
BOOT_LOG_WRN("required %d bytes but only %d are available",
(g_last_idx + 1) * sector_sz ,
first_trailer_idx * sector_sz);
bs->swap_type = BOOT_SWAP_TYPE_NONE;
return;
}
}
#endif
image_index = BOOT_CURR_IMG(state);
rc = flash_area_open(FLASH_AREA_IMAGE_PRIMARY(image_index), &fap_pri);
assert (rc == 0);
rc = flash_area_open(FLASH_AREA_IMAGE_SECONDARY(image_index), &fap_sec);
assert (rc == 0);
fixup_revert(state, bs, fap_sec);
if (bs->op == BOOT_STATUS_OP_MOVE) {
idx = g_last_idx;
while (idx > 0) {
if (idx <= (g_last_idx - bs->idx + 1)) {
boot_move_sector_up(idx, sector_sz, state, bs, fap_pri, fap_sec);
}
idx--;
}
bs->idx = BOOT_STATUS_IDX_0;
}
bs->op = BOOT_STATUS_OP_SWAP;
idx = 1;
while (idx <= g_last_idx) {
if (idx >= bs->idx) {
boot_swap_sectors(idx, sector_sz, state, bs, fap_pri, fap_sec);
}
idx++;
}
flash_area_close(fap_pri);
flash_area_close(fap_sec);
}
#endif