| /* |
| * SPDX-FileCopyrightText: 2021 Espressif Systems (Shanghai) CO LTD |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #include <strings.h> |
| #include "bootloader_flash_priv.h" |
| #include "bootloader_random.h" |
| #include "esp_image_format.h" |
| #include "esp_flash_encrypt.h" |
| #include "esp_flash_partitions.h" |
| #include "esp_secure_boot.h" |
| #include "esp_efuse.h" |
| #include "esp_efuse_table.h" |
| #include "esp_log.h" |
| #include "hal/wdt_hal.h" |
| |
| #include "esp_mcuboot_image.h" |
| |
| #if CONFIG_IDF_TARGET_ESP32 |
| #define CRYPT_CNT ESP_EFUSE_FLASH_CRYPT_CNT |
| #define WR_DIS_CRYPT_CNT ESP_EFUSE_WR_DIS_FLASH_CRYPT_CNT |
| #else |
| #define CRYPT_CNT ESP_EFUSE_SPI_BOOT_CRYPT_CNT |
| #define WR_DIS_CRYPT_CNT ESP_EFUSE_WR_DIS_SPI_BOOT_CRYPT_CNT |
| #endif |
| |
| /* This file implements FLASH ENCRYPTION related APIs to perform |
| * various operations such as programming necessary flash encryption |
| * eFuses, detect whether flash encryption is enabled (by reading eFuse) |
| * and if required encrypt the partitions in flash memory |
| */ |
| |
| static const char *TAG = "flash_encrypt"; |
| |
| /* Static functions for stages of flash encryption */ |
| static esp_err_t initialise_flash_encryption(void); |
| static esp_err_t encrypt_flash_contents(uint32_t flash_crypt_cnt, bool flash_crypt_wr_dis) __attribute__((unused)); |
| static esp_err_t encrypt_bootloader(void); |
| static esp_err_t encrypt_primary_slot(void); |
| |
| esp_err_t esp_flash_encrypt_check_and_update(void) |
| { |
| size_t flash_crypt_cnt = 0; |
| esp_efuse_read_field_cnt(CRYPT_CNT, &flash_crypt_cnt); |
| bool flash_crypt_wr_dis = esp_efuse_read_field_bit(WR_DIS_CRYPT_CNT); |
| |
| ESP_LOGV(TAG, "CRYPT_CNT %d, write protection %d", flash_crypt_cnt, flash_crypt_wr_dis); |
| |
| if (flash_crypt_cnt % 2 == 1) { |
| /* Flash is already encrypted */ |
| int left = (CRYPT_CNT[0]->bit_count - flash_crypt_cnt) / 2; |
| if (flash_crypt_wr_dis) { |
| left = 0; /* can't update FLASH_CRYPT_CNT, no more flashes */ |
| } |
| ESP_LOGI(TAG, "flash encryption is enabled (%d plaintext flashes left)", left); |
| return ESP_OK; |
| } else { |
| #ifndef CONFIG_SECURE_FLASH_REQUIRE_ALREADY_ENABLED |
| /* Flash is not encrypted, so encrypt it! */ |
| return encrypt_flash_contents(flash_crypt_cnt, flash_crypt_wr_dis); |
| #else |
| ESP_LOGE(TAG, "flash encryption is not enabled, and SECURE_FLASH_REQUIRE_ALREADY_ENABLED " |
| "is set, refusing to boot."); |
| return ESP_ERR_INVALID_STATE; |
| #endif // CONFIG_SECURE_FLASH_REQUIRE_ALREADY_ENABLED |
| } |
| } |
| |
| static esp_err_t check_and_generate_encryption_keys(void) |
| { |
| size_t key_size = 32; |
| #ifdef CONFIG_IDF_TARGET_ESP32 |
| enum { BLOCKS_NEEDED = 1 }; |
| esp_efuse_purpose_t purposes[BLOCKS_NEEDED] = { |
| ESP_EFUSE_KEY_PURPOSE_FLASH_ENCRYPTION, |
| }; |
| esp_efuse_coding_scheme_t coding_scheme = esp_efuse_get_coding_scheme(EFUSE_BLK_ENCRYPT_FLASH); |
| if (coding_scheme != EFUSE_CODING_SCHEME_NONE && coding_scheme != EFUSE_CODING_SCHEME_3_4) { |
| ESP_LOGE(TAG, "Unknown/unsupported CODING_SCHEME value 0x%x", coding_scheme); |
| return ESP_ERR_NOT_SUPPORTED; |
| } |
| if (coding_scheme == EFUSE_CODING_SCHEME_3_4) { |
| key_size = 24; |
| } |
| #else |
| #ifdef CONFIG_SECURE_FLASH_ENCRYPTION_AES256 |
| enum { BLOCKS_NEEDED = 2 }; |
| esp_efuse_purpose_t purposes[BLOCKS_NEEDED] = { |
| ESP_EFUSE_KEY_PURPOSE_XTS_AES_256_KEY_1, |
| ESP_EFUSE_KEY_PURPOSE_XTS_AES_256_KEY_2, |
| }; |
| if (esp_efuse_find_purpose(ESP_EFUSE_KEY_PURPOSE_XTS_AES_128_KEY, NULL)) { |
| ESP_LOGE(TAG, "XTS_AES_128_KEY is already in use, XTS_AES_256_KEY_1/2 can not be used"); |
| return ESP_ERR_INVALID_STATE; |
| } |
| #else |
| enum { BLOCKS_NEEDED = 1 }; |
| esp_efuse_purpose_t purposes[BLOCKS_NEEDED] = { |
| ESP_EFUSE_KEY_PURPOSE_XTS_AES_128_KEY, |
| }; |
| #endif // CONFIG_SECURE_FLASH_ENCRYPTION_AES256 |
| #endif // CONFIG_IDF_TARGET_ESP32 |
| |
| /* Initialize all efuse block entries to invalid (max) value */ |
| esp_efuse_block_t blocks[BLOCKS_NEEDED] = {[0 ... BLOCKS_NEEDED-1] = EFUSE_BLK_KEY_MAX}; |
| bool has_key = true; |
| for (unsigned i = 0; i < BLOCKS_NEEDED; i++) { |
| bool tmp_has_key = esp_efuse_find_purpose(purposes[i], &blocks[i]); |
| if (tmp_has_key) { // For ESP32: esp_efuse_find_purpose() always returns True, need to check whether the key block is used or not. |
| tmp_has_key &= !esp_efuse_key_block_unused(blocks[i]); |
| } |
| if (i == 1 && tmp_has_key != has_key) { |
| ESP_LOGE(TAG, "Invalid efuse key blocks: Both AES-256 key blocks must be set."); |
| return ESP_ERR_INVALID_STATE; |
| } |
| has_key &= tmp_has_key; |
| } |
| |
| if (!has_key) { |
| /* Generate key */ |
| uint8_t keys[BLOCKS_NEEDED][32] = { 0 }; |
| ESP_LOGI(TAG, "Generating new flash encryption key..."); |
| for (unsigned i = 0; i < BLOCKS_NEEDED; ++i) { |
| bootloader_fill_random(keys[i], key_size); |
| } |
| ESP_LOGD(TAG, "Key generation complete"); |
| |
| esp_err_t err = esp_efuse_write_keys(purposes, keys, BLOCKS_NEEDED); |
| if (err != ESP_OK) { |
| if (err == ESP_ERR_NOT_ENOUGH_UNUSED_KEY_BLOCKS) { |
| ESP_LOGE(TAG, "Not enough free efuse key blocks (need %d) to continue", BLOCKS_NEEDED); |
| } else { |
| ESP_LOGE(TAG, "Failed to write efuse block with purpose (err=0x%x). Can't continue.", err); |
| } |
| return err; |
| } |
| } else { |
| for (unsigned i = 0; i < BLOCKS_NEEDED; i++) { |
| if (!esp_efuse_get_key_dis_write(blocks[i]) |
| || !esp_efuse_get_key_dis_read(blocks[i]) |
| || !esp_efuse_get_keypurpose_dis_write(blocks[i])) { // For ESP32: no keypurpose, it returns always True. |
| ESP_LOGE(TAG, "Invalid key state, check read&write protection for key and keypurpose(if exists)"); |
| return ESP_ERR_INVALID_STATE; |
| } |
| } |
| ESP_LOGI(TAG, "Using pre-loaded flash encryption key in efuse"); |
| } |
| return ESP_OK; |
| } |
| |
| static esp_err_t initialise_flash_encryption(void) |
| { |
| esp_efuse_batch_write_begin(); /* Batch all efuse writes at the end of this function */ |
| |
| /* Before first flash encryption pass, need to initialise key & crypto config */ |
| esp_err_t err = check_and_generate_encryption_keys(); |
| if (err != ESP_OK) { |
| esp_efuse_batch_write_cancel(); |
| return err; |
| } |
| |
| err = esp_flash_encryption_enable_secure_features(); |
| if (err != ESP_OK) { |
| esp_efuse_batch_write_cancel(); |
| return err; |
| } |
| |
| err = esp_efuse_batch_write_commit(); |
| if (err != ESP_OK) { |
| ESP_LOGE(TAG, "Error programming security eFuses (err=0x%x).", err); |
| return err; |
| } |
| |
| return ESP_OK; |
| } |
| |
| /* Encrypt all flash data that should be encrypted */ |
| static esp_err_t encrypt_flash_contents(uint32_t flash_crypt_cnt, bool flash_crypt_wr_dis) |
| { |
| esp_err_t err; |
| |
| /* If all flash_crypt_cnt bits are burned or write-disabled, the |
| device can't re-encrypt itself. */ |
| if (flash_crypt_wr_dis || flash_crypt_cnt == CRYPT_CNT[0]->bit_count) { |
| ESP_LOGE(TAG, "Cannot re-encrypt data CRYPT_CNT %d write disabled %d", flash_crypt_cnt, flash_crypt_wr_dis); |
| return ESP_FAIL; |
| } |
| |
| if (flash_crypt_cnt == 0) { |
| /* Very first flash of encrypted data: generate keys, etc. */ |
| err = initialise_flash_encryption(); |
| if (err != ESP_OK) { |
| return err; |
| } |
| } |
| |
| err = encrypt_bootloader(); |
| if (err != ESP_OK) { |
| return err; |
| } |
| |
| /* If the primary slot executable application is not encrypted, |
| * then encrypt it |
| */ |
| err = encrypt_primary_slot(); |
| if (err != ESP_OK) { |
| return err; |
| } |
| |
| /* Unconditionally encrypts remaining regions |
| * This will need changes when implementing multi-slot support |
| */ |
| ESP_LOGI(TAG, "Encrypting remaining flash..."); |
| uint32_t region_addr = CONFIG_ESP_APPLICATION_SECONDARY_START_ADDRESS; |
| size_t region_size = CONFIG_ESP_APPLICATION_SIZE; |
| err = esp_flash_encrypt_region(region_addr, region_size); |
| if (err != ESP_OK) { |
| return err; |
| } |
| region_addr = CONFIG_ESP_SCRATCH_OFFSET; |
| region_size = CONFIG_ESP_SCRATCH_SIZE; |
| err = esp_flash_encrypt_region(region_addr, region_size); |
| if (err != ESP_OK) { |
| return err; |
| } |
| |
| #ifdef CONFIG_SECURE_FLASH_ENCRYPTION_MODE_RELEASE |
| // Go straight to max, permanently enabled |
| ESP_LOGI(TAG, "Setting CRYPT_CNT for permanent encryption"); |
| size_t new_flash_crypt_cnt = CRYPT_CNT[0]->bit_count - flash_crypt_cnt; |
| #else |
| /* Set least significant 0-bit in flash_crypt_cnt */ |
| size_t new_flash_crypt_cnt = 1; |
| #endif |
| ESP_LOGD(TAG, "CRYPT_CNT %d -> %d", flash_crypt_cnt, new_flash_crypt_cnt); |
| err = esp_efuse_write_field_cnt(CRYPT_CNT, new_flash_crypt_cnt); |
| |
| ESP_LOGI(TAG, "Flash encryption completed"); |
| |
| return ESP_OK; |
| } |
| |
| static esp_err_t encrypt_bootloader(void) |
| { |
| esp_err_t err; |
| uint32_t image_length; |
| /* Check for plaintext bootloader (verification will fail if it's already encrypted) */ |
| if (esp_image_verify_bootloader(&image_length) == ESP_OK) { |
| ESP_LOGI(TAG, "Encrypting bootloader..."); |
| |
| err = esp_flash_encrypt_region(ESP_BOOTLOADER_OFFSET, CONFIG_ESP_BOOTLOADER_SIZE); |
| if (err != ESP_OK) { |
| ESP_LOGE(TAG, "Failed to encrypt bootloader in place: 0x%x", err); |
| return err; |
| } |
| ESP_LOGI(TAG, "Bootloader encrypted successfully"); |
| } else { |
| ESP_LOGW(TAG, "No valid bootloader was found"); |
| return ESP_ERR_NOT_FOUND; |
| } |
| |
| return ESP_OK; |
| } |
| |
| static esp_err_t verify_img_header(uint32_t addr, const esp_image_load_header_t *image, bool silent) |
| { |
| esp_err_t err = ESP_OK; |
| |
| if (image->header_magic != ESP_LOAD_HEADER_MAGIC) { |
| if (!silent) { |
| ESP_LOGE(TAG, "image at 0x%x has invalid magic byte", |
| addr); |
| } |
| err = ESP_ERR_IMAGE_INVALID; |
| } |
| |
| return err; |
| } |
| |
| static esp_err_t encrypt_primary_slot(void) |
| { |
| esp_err_t err; |
| |
| esp_image_load_header_t img_header; |
| |
| /* Check if the slot is plaintext or encrypted, 0x20 offset is for skipping |
| * MCUboot header |
| */ |
| err = bootloader_flash_read(CONFIG_ESP_APPLICATION_PRIMARY_START_ADDRESS + 0x20, |
| &img_header, sizeof(esp_image_load_header_t), true); |
| if (err != ESP_OK) { |
| ESP_LOGE(TAG, "Failed to read slot img header"); |
| return err; |
| } else { |
| err = verify_img_header(CONFIG_ESP_APPLICATION_PRIMARY_START_ADDRESS, |
| &img_header, true); |
| } |
| |
| if (err == ESP_OK) { |
| ESP_LOGI(TAG, "Encrypting primary slot..."); |
| |
| err = esp_flash_encrypt_region(CONFIG_ESP_APPLICATION_PRIMARY_START_ADDRESS, |
| CONFIG_ESP_APPLICATION_SIZE); |
| if (err != ESP_OK) { |
| ESP_LOGE(TAG, "Failed to encrypt slot in place: 0x%x", err); |
| return err; |
| } |
| } else { |
| ESP_LOGW(TAG, "Slot already encrypted or no valid image was found"); |
| } |
| |
| return ESP_OK; |
| } |
| |
| esp_err_t esp_flash_encrypt_region(uint32_t src_addr, size_t data_length) |
| { |
| esp_err_t err; |
| uint32_t buf[FLASH_SECTOR_SIZE / sizeof(uint32_t)]; |
| |
| if (src_addr % FLASH_SECTOR_SIZE != 0) { |
| ESP_LOGE(TAG, "esp_flash_encrypt_region bad src_addr 0x%x", src_addr); |
| return ESP_FAIL; |
| } |
| |
| wdt_hal_context_t rtc_wdt_ctx = {.inst = WDT_RWDT, .rwdt_dev = &RTCCNTL}; |
| for (size_t i = 0; i < data_length; i += FLASH_SECTOR_SIZE) { |
| wdt_hal_write_protect_disable(&rtc_wdt_ctx); |
| wdt_hal_feed(&rtc_wdt_ctx); |
| wdt_hal_write_protect_enable(&rtc_wdt_ctx); |
| uint32_t sec_start = i + src_addr; |
| err = bootloader_flash_read(sec_start, buf, FLASH_SECTOR_SIZE, true); |
| if (err != ESP_OK) { |
| goto flash_failed; |
| } |
| err = bootloader_flash_erase_sector(sec_start / FLASH_SECTOR_SIZE); |
| if (err != ESP_OK) { |
| goto flash_failed; |
| } |
| err = bootloader_flash_write(sec_start, buf, FLASH_SECTOR_SIZE, true); |
| if (err != ESP_OK) { |
| goto flash_failed; |
| } |
| } |
| return ESP_OK; |
| |
| flash_failed: |
| ESP_LOGE(TAG, "flash operation failed: 0x%x", err); |
| return err; |
| } |