| /* Run the boot image. */ |
| |
| #include <assert.h> |
| #include <setjmp.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <bootutil/bootutil.h> |
| #include <bootutil/image.h> |
| |
| #include <flash_map_backend/flash_map_backend.h> |
| |
| #include "../../../boot/bootutil/src/bootutil_priv.h" |
| #include "bootsim.h" |
| |
| #ifdef MCUBOOT_ENCRYPT_RSA |
| #include "mbedtls/rsa.h" |
| #include "mbedtls/asn1.h" |
| #endif |
| |
| #ifdef MCUBOOT_ENCRYPT_KW |
| #include "mbedtls/nist_kw.h" |
| #endif |
| |
| #define BOOT_LOG_LEVEL BOOT_LOG_LEVEL_ERROR |
| #include <bootutil/bootutil_log.h> |
| #include "bootutil/crypto/common.h" |
| |
| #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) |
| |
| struct area_desc; |
| extern struct area_desc *sim_get_flash_areas(void); |
| extern void sim_set_flash_areas(struct area_desc *areas); |
| extern void sim_reset_flash_areas(void); |
| |
| struct sim_context; |
| extern struct sim_context *sim_get_context(void); |
| extern void sim_set_context(struct sim_context *ctx); |
| extern void sim_reset_context(void); |
| |
| extern int sim_flash_erase(uint8_t flash_id, uint32_t offset, uint32_t size); |
| extern int sim_flash_read(uint8_t flash_id, uint32_t offset, uint8_t *dest, |
| uint32_t size); |
| extern int sim_flash_write(uint8_t flash_id, uint32_t offset, const uint8_t *src, |
| uint32_t size); |
| extern uint32_t sim_flash_align(uint8_t flash_id); |
| extern uint8_t sim_flash_erased_val(uint8_t flash_id); |
| |
| struct sim_context { |
| int flash_counter; |
| int jumped; |
| uint8_t c_asserts; |
| uint8_t c_catch_asserts; |
| jmp_buf boot_jmpbuf; |
| }; |
| |
| #ifdef MCUBOOT_ENCRYPT_RSA |
| static int |
| parse_pubkey(mbedtls_rsa_context *ctx, uint8_t **p, uint8_t *end) |
| { |
| int rc; |
| size_t len; |
| |
| if ((rc = mbedtls_asn1_get_tag(p, end, &len, |
| MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) { |
| return -1; |
| } |
| |
| if (*p + len != end) { |
| return -2; |
| } |
| |
| if ((rc = mbedtls_asn1_get_tag(p, end, &len, |
| MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) { |
| return -3; |
| } |
| |
| *p += len; |
| |
| if ((rc = mbedtls_asn1_get_tag(p, end, &len, MBEDTLS_ASN1_BIT_STRING)) != 0) { |
| return -4; |
| } |
| |
| if (**p != MBEDTLS_ASN1_PRIMITIVE) { |
| return -5; |
| } |
| |
| *p += 1; |
| |
| if ((rc = mbedtls_asn1_get_tag(p, end, &len, |
| MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) { |
| return -6; |
| } |
| |
| if (mbedtls_asn1_get_mpi(p, end, &ctx->MBEDTLS_CONTEXT_MEMBER(N)) != 0) { |
| return -7; |
| } |
| |
| if (mbedtls_asn1_get_mpi(p, end, &ctx->MBEDTLS_CONTEXT_MEMBER(E)) != 0) { |
| return -8; |
| } |
| |
| ctx->MBEDTLS_CONTEXT_MEMBER(len) = mbedtls_mpi_size(&ctx->MBEDTLS_CONTEXT_MEMBER(N)); |
| |
| if (*p != end) { |
| return -9; |
| } |
| |
| if (mbedtls_rsa_check_pubkey(ctx) != 0) { |
| return -10; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| fake_rng(void *p_rng, unsigned char *output, size_t len) |
| { |
| size_t i; |
| |
| (void)p_rng; |
| for (i = 0; i < len; i++) { |
| output[i] = (char)i; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| int mbedtls_platform_set_calloc_free(void * (*calloc_func)(size_t, size_t), |
| void (*free_func)(void *)); |
| |
| int rsa_oaep_encrypt_(const uint8_t *pubkey, unsigned pubkey_len, |
| const uint8_t *seckey, unsigned seckey_len, |
| uint8_t *encbuf) |
| { |
| #ifdef MCUBOOT_ENCRYPT_RSA |
| mbedtls_rsa_context ctx; |
| uint8_t *cp; |
| uint8_t *cpend; |
| int rc; |
| |
| mbedtls_platform_set_calloc_free(calloc, free); |
| |
| #if MBEDTLS_VERSION_NUMBER >= 0x03000000 |
| mbedtls_rsa_init(&ctx); |
| mbedtls_rsa_set_padding(&ctx, MBEDTLS_RSA_PKCS_V21, MBEDTLS_MD_SHA256); |
| #else |
| mbedtls_rsa_init(&ctx, MBEDTLS_RSA_PKCS_V21, MBEDTLS_MD_SHA256); |
| #endif |
| |
| cp = (uint8_t *)pubkey; |
| cpend = cp + pubkey_len; |
| |
| rc = parse_pubkey(&ctx, &cp, cpend); |
| if (rc) { |
| goto done; |
| } |
| |
| #if MBEDTLS_VERSION_NUMBER >= 0x03000000 |
| rc = mbedtls_rsa_rsaes_oaep_encrypt(&ctx, fake_rng, NULL, |
| NULL, 0, seckey_len, seckey, encbuf); |
| #else |
| rc = mbedtls_rsa_rsaes_oaep_encrypt(&ctx, fake_rng, NULL, MBEDTLS_RSA_PUBLIC, |
| NULL, 0, seckey_len, seckey, encbuf); |
| #endif |
| if (rc) { |
| goto done; |
| } |
| |
| done: |
| mbedtls_rsa_free(&ctx); |
| return rc; |
| |
| #else |
| (void)pubkey; |
| (void)pubkey_len; |
| (void)seckey; |
| (void)seckey_len; |
| (void)encbuf; |
| return 0; |
| #endif |
| } |
| |
| int kw_encrypt_(const uint8_t *kek, const uint8_t *seckey, uint8_t *encbuf) |
| { |
| #ifdef MCUBOOT_ENCRYPT_KW |
| #ifdef MCUBOOT_AES_256 |
| int key_len = 256; |
| int out_size = 40; |
| int in_len = 32; |
| #else |
| int key_len = 128; |
| int out_size = 24; |
| int in_len = 16; |
| #endif |
| mbedtls_nist_kw_context kw; |
| size_t olen; |
| int rc; |
| |
| mbedtls_platform_set_calloc_free(calloc, free); |
| |
| mbedtls_nist_kw_init(&kw); |
| |
| rc = mbedtls_nist_kw_setkey(&kw, MBEDTLS_CIPHER_ID_AES, kek, key_len, 1); |
| if (rc) { |
| goto done; |
| } |
| |
| rc = mbedtls_nist_kw_wrap(&kw, MBEDTLS_KW_MODE_KW, seckey, in_len, encbuf, |
| &olen, out_size); |
| |
| done: |
| mbedtls_nist_kw_free(&kw); |
| return rc; |
| |
| #else |
| (void)kek; |
| (void)seckey; |
| (void)encbuf; |
| return 0; |
| #endif |
| } |
| |
| uint32_t flash_area_align(const struct flash_area *area) |
| { |
| return (size_t)sim_flash_align(area->fa_device_id); |
| } |
| |
| uint8_t flash_area_erased_val(const struct flash_area *area) |
| { |
| return sim_flash_erased_val(area->fa_device_id); |
| } |
| |
| struct area { |
| struct flash_area whole; |
| struct flash_area *areas; |
| uint32_t num_areas; |
| uint8_t id; |
| }; |
| |
| struct area_desc { |
| struct area slots[16]; |
| uint32_t num_slots; |
| }; |
| |
| int invoke_boot_go(struct sim_context *ctx, struct area_desc *adesc, |
| struct boot_rsp *rsp, int image_id) |
| { |
| int res; |
| struct boot_loader_state *state; |
| |
| #if defined(MCUBOOT_SIGN_RSA) || \ |
| (defined(MCUBOOT_SIGN_EC256) && defined(MCUBOOT_USE_MBED_TLS)) ||\ |
| (defined(MCUBOOT_ENCRYPT_EC256) && defined(MCUBOOT_USE_MBED_TLS)) ||\ |
| (defined(MCUBOOT_ENCRYPT_X25519) && defined(MCUBOOT_USE_MBED_TLS)) |
| mbedtls_platform_set_calloc_free(calloc, free); |
| #endif |
| |
| state = malloc(sizeof(struct boot_loader_state)); |
| |
| sim_set_flash_areas(adesc); |
| sim_set_context(ctx); |
| |
| if (setjmp(ctx->boot_jmpbuf) == 0) { |
| boot_state_clear(state); |
| |
| #if BOOT_IMAGE_NUMBER > 1 |
| if (image_id >= 0) { |
| memset(state->img_mask, 1, sizeof(state->img_mask)); |
| state->img_mask[image_id] = 0; |
| } |
| #else |
| (void) image_id; |
| #endif /* BOOT_IMAGE_NUMBER > 1 */ |
| |
| #if defined(MCUBOOT_RAM_LOAD) |
| res = context_boot_go_ram(state, rsp); |
| #else |
| res = context_boot_go_flash(state, rsp); |
| #endif |
| sim_reset_flash_areas(); |
| sim_reset_context(); |
| free(state); |
| /* printf("boot_go off: %d (0x%08x)\n", res, rsp.br_image_off); */ |
| return res; |
| } else { |
| sim_reset_flash_areas(); |
| sim_reset_context(); |
| free(state); |
| return -0x13579; |
| } |
| } |
| |
| void *os_malloc(size_t size) |
| { |
| // printf("os_malloc 0x%x bytes\n", size); |
| return malloc(size); |
| } |
| |
| int flash_area_id_from_multi_image_slot(int image_index, int slot) |
| { |
| switch (slot) { |
| case 0: return FLASH_AREA_IMAGE_PRIMARY(image_index); |
| case 1: return FLASH_AREA_IMAGE_SECONDARY(image_index); |
| case 2: return FLASH_AREA_IMAGE_SCRATCH; |
| } |
| |
| printf("Image flash area ID not found\n"); |
| return -1; /* flash_area_open will fail on that */ |
| } |
| |
| int flash_area_open(uint8_t id, const struct flash_area **area) |
| { |
| uint32_t i; |
| struct area_desc *flash_areas; |
| |
| flash_areas = sim_get_flash_areas(); |
| for (i = 0; i < flash_areas->num_slots; i++) { |
| if (flash_areas->slots[i].id == id) |
| break; |
| } |
| if (i == flash_areas->num_slots) { |
| printf("Unsupported area\n"); |
| abort(); |
| } |
| |
| /* Unsure if this is right, just returning the first area. */ |
| *area = &flash_areas->slots[i].whole; |
| return 0; |
| } |
| |
| void flash_area_close(const struct flash_area *area) |
| { |
| (void)area; |
| } |
| |
| /* |
| * Read/write/erase. Offset is relative from beginning of flash area. |
| */ |
| int flash_area_read(const struct flash_area *area, uint32_t off, void *dst, |
| uint32_t len) |
| { |
| BOOT_LOG_SIM("%s: area=%d, off=%x, len=%x", |
| __func__, area->fa_id, off, len); |
| return sim_flash_read(area->fa_device_id, area->fa_off + off, dst, len); |
| } |
| |
| int flash_area_write(const struct flash_area *area, uint32_t off, const void *src, |
| uint32_t len) |
| { |
| BOOT_LOG_SIM("%s: area=%d, off=%x, len=%x", __func__, |
| area->fa_id, off, len); |
| struct sim_context *ctx = sim_get_context(); |
| if (--(ctx->flash_counter) == 0) { |
| ctx->jumped++; |
| longjmp(ctx->boot_jmpbuf, 1); |
| } |
| return sim_flash_write(area->fa_device_id, area->fa_off + off, src, len); |
| } |
| |
| int flash_area_erase(const struct flash_area *area, uint32_t off, uint32_t len) |
| { |
| BOOT_LOG_SIM("%s: area=%d, off=%x, len=%x", __func__, |
| area->fa_id, off, len); |
| struct sim_context *ctx = sim_get_context(); |
| if (--(ctx->flash_counter) == 0) { |
| ctx->jumped++; |
| longjmp(ctx->boot_jmpbuf, 1); |
| } |
| |
| // Align offset and length to sector size |
| #ifdef MCUBOOT_SWAP_USING_STATUS |
| uint32_t sect_off = off / MEMORY_ALIGN * MEMORY_ALIGN; |
| len = ((off + len - 1) / MEMORY_ALIGN + 1) * MEMORY_ALIGN - sect_off; |
| off = sect_off; |
| BOOT_LOG_SIM("%s: erase with aligment at area=%d, off=%x, len=%x", __func__, area->fa_id, off, len); |
| #endif |
| |
| return sim_flash_erase(area->fa_device_id, area->fa_off + off, len); |
| } |
| |
| int flash_area_to_sectors(int idx, int *cnt, struct flash_area *ret) |
| { |
| uint32_t i; |
| struct area *slot; |
| struct area_desc *flash_areas; |
| |
| flash_areas = sim_get_flash_areas(); |
| for (i = 0; i < flash_areas->num_slots; i++) { |
| if (flash_areas->slots[i].id == idx) |
| break; |
| } |
| if (i == flash_areas->num_slots) { |
| printf("Unsupported area\n"); |
| abort(); |
| } |
| |
| slot = &flash_areas->slots[i]; |
| |
| if (slot->num_areas > (uint32_t)*cnt) { |
| printf("Too many areas in slot\n"); |
| abort(); |
| } |
| |
| *cnt = slot->num_areas; |
| memcpy(ret, slot->areas, slot->num_areas * sizeof(struct flash_area)); |
| |
| return 0; |
| } |
| |
| int flash_area_get_sectors(int fa_id, uint32_t *count, |
| struct flash_sector *sectors) |
| { |
| uint32_t i; |
| struct area *slot; |
| struct area_desc *flash_areas; |
| |
| flash_areas = sim_get_flash_areas(); |
| for (i = 0; i < flash_areas->num_slots; i++) { |
| if (flash_areas->slots[i].id == fa_id) |
| break; |
| } |
| if (i == flash_areas->num_slots) { |
| printf("Unsupported area\n"); |
| abort(); |
| } |
| |
| slot = &flash_areas->slots[i]; |
| |
| if (slot->num_areas > *count) { |
| printf("Too many areas in slot\n"); |
| abort(); |
| } |
| |
| for (i = 0; i < slot->num_areas; i++) { |
| sectors[i].fs_off = slot->areas[i].fa_off - |
| slot->whole.fa_off; |
| sectors[i].fs_size = slot->areas[i].fa_size; |
| } |
| *count = slot->num_areas; |
| |
| return 0; |
| } |
| |
| int flash_area_id_to_multi_image_slot(int image_index, int area_id) |
| { |
| if (area_id == FLASH_AREA_IMAGE_PRIMARY(image_index)) { |
| return 0; |
| } |
| if (area_id == FLASH_AREA_IMAGE_SECONDARY(image_index)) { |
| return 1; |
| } |
| |
| printf("Unsupported image area ID\n"); |
| abort(); |
| } |
| |
| uint8_t flash_area_get_device_id(const struct flash_area *fa) |
| { |
| return fa->fa_device_id; |
| } |
| |
| int flash_area_id_from_image_slot(int slot) { |
| /* For single image cases, just use the first image. */ |
| return flash_area_id_from_multi_image_slot(0, slot); |
| } |
| |
| void sim_assert(int x, const char *assertion, const char *file, unsigned int line, const char *function) |
| { |
| if (!(x)) { |
| struct sim_context *ctx = sim_get_context(); |
| if (ctx->c_catch_asserts) { |
| ctx->c_asserts++; |
| } else { |
| BOOT_LOG_ERR("%s:%d: %s: Assertion `%s' failed.", file, line, function, assertion); |
| |
| /* NOTE: if the assert below is triggered, the place where it was originally |
| * asserted is printed by the message above... |
| */ |
| assert(x); |
| } |
| } |
| } |
| |
| uint32_t boot_max_align(void) |
| { |
| return BOOT_MAX_ALIGN; |
| } |
| |
| uint32_t boot_magic_sz(void) |
| { |
| return BOOT_MAGIC_ALIGN_SIZE; |
| } |