blob: 79e89fd9e30e11780295d884f6358a42798a22f2 [file] [log] [blame]
//! TLV Support
//!
//! mcuboot images are followed immediately by a list of TLV items that contain integrity
//! information about the image. Their generation is made a little complicated because the size of
//! the TLV block is in the image header, which is included in the hash. Since some signatures can
//! vary in size, we just make them the largest size possible.
//!
//! Because of this header, we have to make two passes. The first pass will compute the size of
//! the TLV, and the second pass will build the data for the TLV.
use std::sync::Arc;
use pem;
use ring::{digest, rand, signature};
use untrusted;
use mcuboot_sys::c;
#[repr(u8)]
#[derive(Copy, Clone, PartialEq, Eq)]
#[allow(dead_code)] // TODO: For now
pub enum TlvKinds {
KEYHASH = 0x01,
SHA256 = 0x10,
RSA2048 = 0x20,
ECDSA224 = 0x21,
ECDSA256 = 0x22,
}
pub struct TlvGen {
flags: u32,
kinds: Vec<TlvKinds>,
size: u16,
payload: Vec<u8>,
}
impl TlvGen {
/// Construct a new tlv generator that will only contain a hash of the data.
#[allow(dead_code)]
pub fn new_hash_only() -> TlvGen {
TlvGen {
flags: 0,
kinds: vec![TlvKinds::SHA256],
size: 4 + 32,
payload: vec![],
}
}
#[allow(dead_code)]
pub fn new_rsa_pss() -> TlvGen {
TlvGen {
flags: 0,
kinds: vec![TlvKinds::SHA256, TlvKinds::KEYHASH, TlvKinds::RSA2048],
size: 4 + 32 + 4 + 256,
payload: vec![],
}
}
#[allow(dead_code)]
pub fn new_ecdsa() -> TlvGen {
TlvGen {
flags: 0,
kinds: vec![TlvKinds::SHA256, TlvKinds::KEYHASH, TlvKinds::ECDSA256],
size: 4 + 32 + 4 + 72,
payload: vec![],
}
}
/// Retrieve the header flags for this configuration. This can be called at any time.
pub fn get_flags(&self) -> u32 {
self.flags
}
/// Retrieve the size that the TLV will occupy. This can be called at any time.
pub fn get_size(&self) -> u16 {
4 + self.size
}
/// Add bytes to the covered hash.
pub fn add_bytes(&mut self, bytes: &[u8]) {
self.payload.extend_from_slice(bytes);
}
/// Create a DER representation of one ec curve point
fn _make_der_int(&self, x: &[u8]) -> Vec<u8> {
assert!(x.len() == 32);
let mut i: Vec<u8> = vec![0x02];
if x[0] >= 0x7f {
i.push(33);
i.push(0);
} else {
i.push(32);
}
i.extend(x);
i
}
/// Create an ecdsa256 TLV
fn _make_der_sequence(&self, r: Vec<u8>, s: Vec<u8>) -> Vec<u8> {
let mut der: Vec<u8> = vec![0x30];
der.push(r.len() as u8 + s.len() as u8);
der.extend(r);
der.extend(s);
let mut size = der.len();
// must pad up to 72 bytes...
while size <= 72 {
der.push(0);
der[1] += 1;
size += 1;
}
der
}
/// Compute the TLV given the specified block of data.
pub fn make_tlv(self) -> Vec<u8> {
let mut result: Vec<u8> = vec![];
let size = self.get_size();
result.push(0x07);
result.push(0x69);
result.push((size & 0xFF) as u8);
result.push(((size >> 8) & 0xFF) as u8);
if self.kinds.contains(&TlvKinds::SHA256) {
let hash = digest::digest(&digest::SHA256, &self.payload);
let hash = hash.as_ref();
assert!(hash.len() == 32);
result.push(TlvKinds::SHA256 as u8);
result.push(0);
result.push(32);
result.push(0);
result.extend_from_slice(hash);
}
if self.kinds.contains(&TlvKinds::RSA2048) {
// Output the hash of the public key.
let hash = digest::digest(&digest::SHA256, RSA_PUB_KEY);
let hash = hash.as_ref();
assert!(hash.len() == 32);
result.push(TlvKinds::KEYHASH as u8);
result.push(0);
result.push(32);
result.push(0);
result.extend_from_slice(hash);
// For now assume PSS.
let key_bytes = pem::parse(include_bytes!("../../root-rsa-2048.pem").as_ref()).unwrap();
assert_eq!(key_bytes.tag, "RSA PRIVATE KEY");
let key_bytes = untrusted::Input::from(&key_bytes.contents);
let key = signature::RSAKeyPair::from_der(key_bytes).unwrap();
let mut signer = signature::RSASigningState::new(Arc::new(key)).unwrap();
let rng = rand::SystemRandom::new();
let mut signature = vec![0; signer.key_pair().public_modulus_len()];
assert_eq!(signature.len(), 256);
signer.sign(&signature::RSA_PSS_SHA256, &rng, &self.payload, &mut signature).unwrap();
result.push(TlvKinds::RSA2048 as u8);
result.push(0);
result.push((signature.len() & 0xFF) as u8);
result.push(((signature.len() >> 8) & 0xFF) as u8);
result.extend_from_slice(&signature);
}
if self.kinds.contains(&TlvKinds::ECDSA256) {
let keyhash = digest::digest(&digest::SHA256, ECDSA256_PUB_KEY);
let keyhash = keyhash.as_ref();
assert!(keyhash.len() == 32);
result.push(TlvKinds::KEYHASH as u8);
result.push(0);
result.push(32);
result.push(0);
result.extend_from_slice(keyhash);
let key_bytes = pem::parse(include_bytes!("../../root-ec-p256.pem").as_ref()).unwrap();
assert_eq!(key_bytes.tag, "EC PRIVATE KEY");
let hash = digest::digest(&digest::SHA256, &self.payload);
let hash = hash.as_ref();
assert!(hash.len() == 32);
/* FIXME
*
* Although `ring` has an ASN1 parser, it hides access
* to its low-level data, which was designed to be used
* by its internal signing/verifying functions. Since it does
* not yet support ecdsa signing, for the time being I am
* manually loading the key from its index in the PEM and
* building the TLV DER manually.
*
* Once ring gets ecdsa signing (hopefully soon!) this code
* should be updated to leverage its functionality...
*/
/* Load key directly from PEM */
let key = &key_bytes.contents[7..39];
let signature = match c::ecdsa256_sign(&key, &hash) {
Ok(sign) => sign,
Err(_) => panic!("Failed signature generation"),
};
let r = self._make_der_int(&signature.to_vec()[..32]);
let s = self._make_der_int(&signature.to_vec()[32..64]);
let der = self._make_der_sequence(r, s);
result.push(TlvKinds::ECDSA256 as u8);
result.push(0);
result.push(der.len() as u8);
result.push(0);
result.extend(der);
}
result
}
}
include!("rsa_pub_key-rs.txt");
include!("ecdsa_pub_key-rs.txt");