blob: 37c35e05e425f7ac065555600eb94597ea48e490 [file] [log] [blame]
/*
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2017-2018 Linaro LTD
* Copyright (c) 2017-2019 JUUL Labs
* Copyright (c) 2020-2023 Arm Limited
*
* Original license:
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#include <string.h>
#include "mcuboot_config/mcuboot_config.h"
#ifdef MCUBOOT_SIGN_RSA
#include "bootutil_priv.h"
#include "bootutil/sign_key.h"
#include "bootutil/fault_injection_hardening.h"
#define BOOTUTIL_CRYPTO_RSA_SIGN_ENABLED
#include "bootutil/crypto/rsa.h"
/* PSA Crypto APIs provide an integrated API to perform the verification
* while for other crypto backends we need to implement each step at this
* abstraction level
*/
#if !defined(MCUBOOT_USE_PSA_CRYPTO)
#include "bootutil/crypto/sha.h"
/*
* Constants for this particular constrained implementation of
* RSA-PSS. In particular, we support RSA 2048, with a SHA256 hash,
* and a 32-byte salt. A signature with different parameters will be
* rejected as invalid.
*/
/* The size, in octets, of the message. */
#define PSS_EMLEN (MCUBOOT_SIGN_RSA_LEN / 8)
/* The size of the hash function. For SHA256, this is 32 bytes. */
#define PSS_HLEN 32
/* Size of the salt, should be fixed. */
#define PSS_SLEN 32
/* The length of the mask: emLen - hLen - 1. */
#define PSS_MASK_LEN (PSS_EMLEN - PSS_HLEN - 1)
#define PSS_HASH_OFFSET PSS_MASK_LEN
/* For the mask itself, how many bytes should be all zeros. */
#define PSS_MASK_ZERO_COUNT (PSS_MASK_LEN - PSS_SLEN - 1)
#define PSS_MASK_ONE_POS PSS_MASK_ZERO_COUNT
/* Where the salt starts. */
#define PSS_MASK_SALT_POS (PSS_MASK_ONE_POS + 1)
static const uint8_t pss_zeros[8] = {0};
/*
* Compute the RSA-PSS mask-generation function, MGF1. Assumptions
* are that the mask length will be less than 256 * PSS_HLEN, and
* therefore we never need to increment anything other than the low
* byte of the counter.
*
* This is described in PKCS#1, B.2.1.
*/
static void
pss_mgf1(uint8_t *mask, const uint8_t *hash)
{
bootutil_sha_context ctx;
uint8_t counter[4] = { 0, 0, 0, 0 };
uint8_t htmp[PSS_HLEN];
int count = PSS_MASK_LEN;
int bytes;
while (count > 0) {
bootutil_sha_init(&ctx);
bootutil_sha_update(&ctx, hash, PSS_HLEN);
bootutil_sha_update(&ctx, counter, 4);
bootutil_sha_finish(&ctx, htmp);
counter[3]++;
bytes = PSS_HLEN;
if (bytes > count)
bytes = count;
memcpy(mask, htmp, bytes);
mask += bytes;
count -= bytes;
}
bootutil_sha_drop(&ctx);
}
/*
* Validate an RSA signature, using RSA-PSS, as described in PKCS #1
* v2.2, section 9.1.2, with many parameters required to have fixed
* values. RSASSA-PSS-VERIFY RFC8017 section 8.1.2
*/
static fih_ret
bootutil_cmp_rsasig(bootutil_rsa_context *ctx, uint8_t *hash, uint32_t hlen,
uint8_t *sig, size_t slen)
{
bootutil_sha_context shactx;
uint8_t em[MBEDTLS_MPI_MAX_SIZE];
uint8_t db_mask[PSS_MASK_LEN];
uint8_t h2[PSS_HLEN];
int i;
FIH_DECLARE(fih_rc, FIH_FAILURE);
/* The caller has already verified that slen == bootutil_rsa_get_len(ctx) */
if (slen != PSS_EMLEN ||
PSS_EMLEN > MBEDTLS_MPI_MAX_SIZE) {
goto out;
}
if (hlen != PSS_HLEN) {
goto out;
}
/* Apply RSAVP1 to produce em = sig^E mod N using the public key */
if (bootutil_rsa_public(ctx, sig, em)) {
goto out;
}
/*
* PKCS #1 v2.2, 9.1.2 EMSA-PSS-Verify
*
* emBits is 2048
* emLen = ceil(emBits/8) = 256
*
* The salt length is not known at the beginning.
*/
/* Step 1. The message is constrained by the address space of a
* 32-bit processor, which is far less than the 2^61-1 limit of
* SHA-256.
*/
/* Step 2. mHash is passed in as 'hash', with hLen the hlen
* argument. */
/* Step 3. if emLen < hLen + sLen + 2, inconsistent and stop.
* The salt length is not known at this point.
*/
/* Step 4. If the rightmost octet of EM does have the value
* 0xbc, output inconsistent and stop.
*/
if (em[PSS_EMLEN - 1] != 0xbc) {
goto out;
}
/* Step 5. Let maskedDB be the leftmost emLen - hLen - 1 octets
* of EM, and H be the next hLen octets.
*
* maskedDB is then the first 256 - 32 - 1 = 0-222
* H is 32 bytes 223-254
*/
/* Step 6. If the leftmost 8emLen - emBits bits of the leftmost
* octet in maskedDB are not all equal to zero, output
* inconsistent and stop.
*
* 8emLen - emBits is zero, so there is nothing to test here.
*/
/* Step 7. let dbMask = MGF(H, emLen - hLen - 1). */
pss_mgf1(db_mask, &em[PSS_HASH_OFFSET]);
/* Step 8. let DB = maskedDB xor dbMask.
* To avoid needing an additional buffer, store the 'db' in the
* same buffer as db_mask. From now, to the end of this function,
* db_mask refers to the unmasked 'db'. */
for (i = 0; i < PSS_MASK_LEN; i++) {
db_mask[i] ^= em[i];
}
/* Step 9. Set the leftmost 8emLen - emBits bits of the leftmost
* octet in DB to zero.
* pycrypto seems to always make the emBits 2047, so we need to
* clear the top bit. */
db_mask[0] &= 0x7F;
/* Step 10. If the emLen - hLen - sLen - 2 leftmost octets of DB
* are not zero or if the octet at position emLen - hLen - sLen -
* 1 (the leftmost position is "position 1") does not have
* hexadecimal value 0x01, output "inconsistent" and stop. */
for (i = 0; i < PSS_MASK_ZERO_COUNT; i++) {
if (db_mask[i] != 0) {
goto out;
}
}
if (db_mask[PSS_MASK_ONE_POS] != 1) {
goto out;
}
/* Step 11. Let salt be the last sLen octets of DB */
/* Step 12. Let M' = 0x00 00 00 00 00 00 00 00 || mHash || salt; */
/* Step 13. Let H' = Hash(M') */
bootutil_sha_init(&shactx);
bootutil_sha_update(&shactx, pss_zeros, 8);
bootutil_sha_update(&shactx, hash, PSS_HLEN);
bootutil_sha_update(&shactx, &db_mask[PSS_MASK_SALT_POS], PSS_SLEN);
bootutil_sha_finish(&shactx, h2);
bootutil_sha_drop(&shactx);
/* Step 14. If H = H', output "consistent". Otherwise, output
* "inconsistent". */
FIH_CALL(boot_fih_memequal, fih_rc, h2, &em[PSS_HASH_OFFSET], PSS_HLEN);
out:
FIH_RET(fih_rc);
}
#else /* MCUBOOT_USE_PSA_CRYPTO */
static fih_ret
bootutil_cmp_rsasig(bootutil_rsa_context *ctx, uint8_t *hash, uint32_t hlen,
uint8_t *sig, size_t slen)
{
int rc = -1;
FIH_DECLARE(fih_rc, FIH_FAILURE);
/* PSA Crypto APIs allow the verification in a single call */
rc = bootutil_rsassa_pss_verify(ctx, hash, hlen, sig, slen);
fih_rc = fih_ret_encode_zero_equality(rc);
if (FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
FIH_SET(fih_rc, FIH_FAILURE);
}
FIH_RET(fih_rc);
}
#endif /* MCUBOOT_USE_PSA_CRYPTO */
fih_ret
bootutil_verify_sig(uint8_t *hash, uint32_t hlen, uint8_t *sig, size_t slen,
uint8_t key_id)
{
bootutil_rsa_context ctx;
int rc;
FIH_DECLARE(fih_rc, FIH_FAILURE);
uint8_t *cp;
uint8_t *end;
bootutil_rsa_init(&ctx);
cp = (uint8_t *)bootutil_keys[key_id].key;
end = cp + *bootutil_keys[key_id].len;
/* The key used for signature verification is a public RSA key */
rc = bootutil_rsa_parse_public_key(&ctx, &cp, end);
if (rc || slen != bootutil_rsa_get_len(&ctx)) {
goto out;
}
FIH_CALL(bootutil_cmp_rsasig, fih_rc, &ctx, hash, hlen, sig, slen);
out:
bootutil_rsa_drop(&ctx);
FIH_RET(fih_rc);
}
#endif /* MCUBOOT_SIGN_RSA */