blob: 1fdb1f09e0df9cfd808e19a203fdf04346150a66 [file] [log] [blame]
// Copyright (c) 2019 Linaro LTD
// Copyright (c) 2019-2020 JUUL Labs
// Copyright (c) 2019 Arm Limited
//
// SPDX-License-Identifier: Apache-2.0
use byteorder::{
LittleEndian, WriteBytesExt,
};
use log::{
Level::Info,
error,
info,
log_enabled,
warn,
};
use rand::{
Rng, RngCore, SeedableRng,
rngs::SmallRng,
};
use std::{
collections::HashSet,
io::{Cursor, Write},
mem,
slice,
};
use aes_ctr::{
Aes128Ctr,
stream_cipher::{
generic_array::GenericArray,
NewStreamCipher,
SyncStreamCipher,
},
};
use simflash::{Flash, SimFlash, SimMultiFlash};
use mcuboot_sys::{c, AreaDesc, FlashId};
use crate::{
ALL_DEVICES,
DeviceName,
};
use crate::caps::Caps;
use crate::depends::{
BoringDep,
Depender,
DepTest,
DepType,
NO_DEPS,
PairDep,
UpgradeInfo,
};
use crate::tlv::{ManifestGen, TlvGen, TlvFlags};
/// A builder for Images. This describes a single run of the simulator,
/// capturing the configuration of a particular set of devices, including
/// the flash simulator(s) and the information about the slots.
#[derive(Clone)]
pub struct ImagesBuilder {
flash: SimMultiFlash,
areadesc: AreaDesc,
slots: Vec<[SlotInfo; 2]>,
}
/// Images represents the state of a simulation for a given set of images.
/// The flash holds the state of the simulated flash, whereas primaries
/// and upgrades hold the expected contents of these images.
pub struct Images {
flash: SimMultiFlash,
areadesc: AreaDesc,
images: Vec<OneImage>,
total_count: Option<i32>,
}
/// When doing multi-image, there is an instance of this information for
/// each of the images. Single image there will be one of these.
struct OneImage {
slots: [SlotInfo; 2],
primaries: ImageData,
upgrades: ImageData,
}
/// The Rust-side representation of an image. For unencrypted images, this
/// is just the unencrypted payload. For encrypted images, we store both
/// the encrypted and the plaintext.
struct ImageData {
plain: Vec<u8>,
cipher: Option<Vec<u8>>,
}
impl ImagesBuilder {
/// Construct a new image builder for the given device. Returns
/// Some(builder) if is possible to test this configuration, or None if
/// not possible (for example, if there aren't enough image slots).
pub fn new(device: DeviceName, align: usize, erased_val: u8) -> Result<Self, String> {
let (flash, areadesc, unsupported_caps) = Self::make_device(device, align, erased_val);
for cap in unsupported_caps {
if cap.present() {
return Err(format!("unsupported {:?}", cap));
}
}
let num_images = Caps::get_num_images();
let mut slots = Vec::with_capacity(num_images);
for image in 0..num_images {
// This mapping must match that defined in
// `boot/zephyr/include/sysflash/sysflash.h`.
let id0 = match image {
0 => FlashId::Image0,
1 => FlashId::Image2,
_ => panic!("More than 2 images not supported"),
};
let (primary_base, primary_len, primary_dev_id) = match areadesc.find(id0) {
Some(info) => info,
None => return Err("insufficient partitions".to_string()),
};
let id1 = match image {
0 => FlashId::Image1,
1 => FlashId::Image3,
_ => panic!("More than 2 images not supported"),
};
let (secondary_base, secondary_len, secondary_dev_id) = match areadesc.find(id1) {
Some(info) => info,
None => return Err("insufficient partitions".to_string()),
};
let offset_from_end = c::boot_magic_sz() + c::boot_max_align() * 4;
// Construct a primary image.
let primary = SlotInfo {
base_off: primary_base as usize,
trailer_off: primary_base + primary_len - offset_from_end,
len: primary_len as usize,
dev_id: primary_dev_id,
index: 0,
};
// And an upgrade image.
let secondary = SlotInfo {
base_off: secondary_base as usize,
trailer_off: secondary_base + secondary_len - offset_from_end,
len: secondary_len as usize,
dev_id: secondary_dev_id,
index: 1,
};
slots.push([primary, secondary]);
}
Ok(ImagesBuilder {
flash,
areadesc,
slots,
})
}
pub fn each_device<F>(f: F)
where F: Fn(Self)
{
for &dev in ALL_DEVICES {
for &align in test_alignments() {
for &erased_val in &[0, 0xff] {
match Self::new(dev, align, erased_val) {
Ok(run) => f(run),
Err(msg) => warn!("Skipping {}: {}", dev, msg),
}
}
}
}
}
/// Construct an `Images` that doesn't expect an upgrade to happen.
pub fn make_no_upgrade_image(self, deps: &DepTest) -> Images {
let num_images = self.num_images();
let mut flash = self.flash;
let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
let dep: Box<dyn Depender> = if num_images > 1 {
Box::new(PairDep::new(num_images, image_num, deps))
} else {
Box::new(BoringDep::new(image_num, deps))
};
let primaries = install_image(&mut flash, &slots[0], 42784, &*dep, false);
let upgrades = match deps.depends[image_num] {
DepType::NoUpgrade => install_no_image(),
_ => install_image(&mut flash, &slots[1], 46928, &*dep, false)
};
OneImage {
slots,
primaries,
upgrades,
}}).collect();
install_ptable(&mut flash, &self.areadesc);
Images {
flash,
areadesc: self.areadesc,
images,
total_count: None,
}
}
pub fn make_image(self, deps: &DepTest, permanent: bool) -> Images {
let mut images = self.make_no_upgrade_image(deps);
for image in &images.images {
mark_upgrade(&mut images.flash, &image.slots[1]);
}
// upgrades without fails, counts number of flash operations
let total_count = match images.run_basic_upgrade(permanent) {
Some(v) => v,
None =>
if deps.upgrades.iter().any(|u| *u == UpgradeInfo::Held) {
0
} else {
panic!("Unable to perform basic upgrade");
}
};
images.total_count = Some(total_count);
images
}
pub fn make_bad_secondary_slot_image(self) -> Images {
let mut bad_flash = self.flash;
let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
let dep = BoringDep::new(image_num, &NO_DEPS);
let primaries = install_image(&mut bad_flash, &slots[0], 32784, &dep, false);
let upgrades = install_image(&mut bad_flash, &slots[1], 41928, &dep, true);
OneImage {
slots,
primaries,
upgrades,
}}).collect();
Images {
flash: bad_flash,
areadesc: self.areadesc,
images,
total_count: None,
}
}
pub fn make_erased_secondary_image(self) -> Images {
let mut flash = self.flash;
let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
let dep = BoringDep::new(image_num, &NO_DEPS);
let primaries = install_image(&mut flash, &slots[0], 32784, &dep, false);
let upgrades = install_no_image();
OneImage {
slots,
primaries,
upgrades,
}}).collect();
Images {
flash,
areadesc: self.areadesc,
images,
total_count: None,
}
}
pub fn make_bootstrap_image(self) -> Images {
let mut flash = self.flash;
let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
let dep = BoringDep::new(image_num, &NO_DEPS);
let primaries = install_no_image();
let upgrades = install_image(&mut flash, &slots[1], 32784, &dep, false);
OneImage {
slots,
primaries,
upgrades,
}}).collect();
Images {
flash,
areadesc: self.areadesc,
images,
total_count: None,
}
}
/// Build the Flash and area descriptor for a given device.
pub fn make_device(device: DeviceName, align: usize, erased_val: u8) -> (SimMultiFlash, AreaDesc, &'static [Caps]) {
match device {
DeviceName::Stm32f4 => {
// STM style flash. Large sectors, with a large scratch area.
let dev = SimFlash::new(vec![16 * 1024, 16 * 1024, 16 * 1024, 16 * 1024,
64 * 1024,
128 * 1024, 128 * 1024, 128 * 1024],
align as usize, erased_val);
let dev_id = 0;
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(dev_id, &dev);
areadesc.add_image(0x020000, 0x020000, FlashId::Image0, dev_id);
areadesc.add_image(0x040000, 0x020000, FlashId::Image1, dev_id);
areadesc.add_image(0x060000, 0x020000, FlashId::ImageScratch, dev_id);
let mut flash = SimMultiFlash::new();
flash.insert(dev_id, dev);
(flash, areadesc, &[Caps::SwapUsingMove])
}
DeviceName::K64f => {
// NXP style flash. Small sectors, one small sector for scratch.
let dev = SimFlash::new(vec![4096; 128], align as usize, erased_val);
let dev_id = 0;
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(dev_id, &dev);
areadesc.add_image(0x020000, 0x020000, FlashId::Image0, dev_id);
areadesc.add_image(0x040000, 0x020000, FlashId::Image1, dev_id);
areadesc.add_image(0x060000, 0x001000, FlashId::ImageScratch, dev_id);
let mut flash = SimMultiFlash::new();
flash.insert(dev_id, dev);
(flash, areadesc, &[])
}
DeviceName::K64fBig => {
// Simulating an STM style flash on top of an NXP style flash. Underlying flash device
// uses small sectors, but we tell the bootloader they are large.
let dev = SimFlash::new(vec![4096; 128], align as usize, erased_val);
let dev_id = 0;
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(dev_id, &dev);
areadesc.add_simple_image(0x020000, 0x020000, FlashId::Image0, dev_id);
areadesc.add_simple_image(0x040000, 0x020000, FlashId::Image1, dev_id);
areadesc.add_simple_image(0x060000, 0x020000, FlashId::ImageScratch, dev_id);
let mut flash = SimMultiFlash::new();
flash.insert(dev_id, dev);
(flash, areadesc, &[Caps::SwapUsingMove])
}
DeviceName::Nrf52840 => {
// Simulating the flash on the nrf52840 with partitions set up so that the scratch size
// does not divide into the image size.
let dev = SimFlash::new(vec![4096; 128], align as usize, erased_val);
let dev_id = 0;
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(dev_id, &dev);
areadesc.add_image(0x008000, 0x034000, FlashId::Image0, dev_id);
areadesc.add_image(0x03c000, 0x034000, FlashId::Image1, dev_id);
areadesc.add_image(0x070000, 0x00d000, FlashId::ImageScratch, dev_id);
let mut flash = SimMultiFlash::new();
flash.insert(dev_id, dev);
(flash, areadesc, &[])
}
DeviceName::Nrf52840UnequalSlots => {
let dev = SimFlash::new(vec![4096; 128], align as usize, erased_val);
let dev_id = 0;
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(dev_id, &dev);
areadesc.add_image(0x008000, 0x03c000, FlashId::Image0, dev_id);
areadesc.add_image(0x044000, 0x03b000, FlashId::Image1, dev_id);
let mut flash = SimMultiFlash::new();
flash.insert(dev_id, dev);
(flash, areadesc, &[Caps::SwapUsingScratch, Caps::OverwriteUpgrade])
}
DeviceName::Nrf52840SpiFlash => {
// Simulate nrf52840 with external SPI flash. The external SPI flash
// has a larger sector size so for now store scratch on that flash.
let dev0 = SimFlash::new(vec![4096; 128], align as usize, erased_val);
let dev1 = SimFlash::new(vec![8192; 64], align as usize, erased_val);
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(0, &dev0);
areadesc.add_flash_sectors(1, &dev1);
areadesc.add_image(0x008000, 0x068000, FlashId::Image0, 0);
areadesc.add_image(0x000000, 0x068000, FlashId::Image1, 1);
areadesc.add_image(0x068000, 0x018000, FlashId::ImageScratch, 1);
let mut flash = SimMultiFlash::new();
flash.insert(0, dev0);
flash.insert(1, dev1);
(flash, areadesc, &[Caps::SwapUsingMove])
}
DeviceName::K64fMulti => {
// NXP style flash, but larger, to support multiple images.
let dev = SimFlash::new(vec![4096; 256], align as usize, erased_val);
let dev_id = 0;
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(dev_id, &dev);
areadesc.add_image(0x020000, 0x020000, FlashId::Image0, dev_id);
areadesc.add_image(0x040000, 0x020000, FlashId::Image1, dev_id);
areadesc.add_image(0x060000, 0x001000, FlashId::ImageScratch, dev_id);
areadesc.add_image(0x080000, 0x020000, FlashId::Image2, dev_id);
areadesc.add_image(0x0a0000, 0x020000, FlashId::Image3, dev_id);
let mut flash = SimMultiFlash::new();
flash.insert(dev_id, dev);
(flash, areadesc, &[])
}
}
}
pub fn num_images(&self) -> usize {
self.slots.len()
}
}
impl Images {
/// A simple upgrade without forced failures.
///
/// Returns the number of flash operations which can later be used to
/// inject failures at chosen steps. Returns None if it was unable to
/// count the operations in a basic upgrade.
pub fn run_basic_upgrade(&self, permanent: bool) -> Option<i32> {
let (flash, total_count) = self.try_upgrade(None, permanent);
info!("Total flash operation count={}", total_count);
if !self.verify_images(&flash, 0, 1) {
warn!("Image mismatch after first boot");
None
} else {
Some(total_count)
}
}
pub fn run_bootstrap(&self) -> bool {
let mut flash = self.flash.clone();
let mut fails = 0;
if Caps::Bootstrap.present() {
info!("Try bootstraping image in the primary");
let (result, _) = c::boot_go(&mut flash, &self.areadesc, None, false);
if result != 0 {
warn!("Failed first boot");
fails += 1;
}
if !self.verify_images(&flash, 0, 1) {
warn!("Image in the first slot was not bootstrapped");
fails += 1;
}
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for the primary slot");
fails += 1;
}
}
if fails > 0 {
error!("Expected trailer on secondary slot to be erased");
}
fails > 0
}
/// Test a simple upgrade, with dependencies given, and verify that the
/// image does as is described in the test.
pub fn run_check_deps(&self, deps: &DepTest) -> bool {
let (flash, _) = self.try_upgrade(None, true);
self.verify_dep_images(&flash, deps)
}
fn is_swap_upgrade(&self) -> bool {
Caps::SwapUsingScratch.present() || Caps::SwapUsingMove.present()
}
pub fn run_basic_revert(&self) -> bool {
if Caps::OverwriteUpgrade.present() {
return false;
}
let mut fails = 0;
// FIXME: this test would also pass if no swap is ever performed???
if self.is_swap_upgrade() {
for count in 2 .. 5 {
info!("Try revert: {}", count);
let flash = self.try_revert(count);
if !self.verify_images(&flash, 0, 0) {
error!("Revert failure on count {}", count);
fails += 1;
}
}
}
fails > 0
}
pub fn run_perm_with_fails(&self) -> bool {
let mut fails = 0;
let total_flash_ops = self.total_count.unwrap();
// Let's try an image halfway through.
for i in 1 .. total_flash_ops {
info!("Try interruption at {}", i);
let (flash, count) = self.try_upgrade(Some(i), true);
info!("Second boot, count={}", count);
if !self.verify_images(&flash, 0, 1) {
warn!("FAIL at step {} of {}", i, total_flash_ops);
fails += 1;
}
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for the primary slot");
fails += 1;
}
if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for the secondary slot");
fails += 1;
}
if self.is_swap_upgrade() && !self.verify_images(&flash, 1, 0) {
warn!("Secondary slot FAIL at step {} of {}",
i, total_flash_ops);
fails += 1;
}
}
if fails > 0 {
error!("{} out of {} failed {:.2}%", fails, total_flash_ops,
fails as f32 * 100.0 / total_flash_ops as f32);
}
fails > 0
}
pub fn run_perm_with_random_fails(&self, total_fails: usize) -> bool {
let mut fails = 0;
let total_flash_ops = self.total_count.unwrap();
let (flash, total_counts) = self.try_random_fails(total_flash_ops, total_fails);
info!("Random interruptions at reset points={:?}", total_counts);
let primary_slot_ok = self.verify_images(&flash, 0, 1);
let secondary_slot_ok = if self.is_swap_upgrade() {
// TODO: This result is ignored.
self.verify_images(&flash, 1, 0)
} else {
true
};
if !primary_slot_ok || !secondary_slot_ok {
error!("Image mismatch after random interrupts: primary slot={} \
secondary slot={}",
if primary_slot_ok { "ok" } else { "fail" },
if secondary_slot_ok { "ok" } else { "fail" });
fails += 1;
}
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
error!("Mismatched trailer for the primary slot");
fails += 1;
}
if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
error!("Mismatched trailer for the secondary slot");
fails += 1;
}
if fails > 0 {
error!("Error testing perm upgrade with {} fails", total_fails);
}
fails > 0
}
pub fn run_revert_with_fails(&self) -> bool {
if Caps::OverwriteUpgrade.present() {
return false;
}
let mut fails = 0;
if self.is_swap_upgrade() {
for i in 1 .. self.total_count.unwrap() {
info!("Try interruption at {}", i);
if self.try_revert_with_fail_at(i) {
error!("Revert failed at interruption {}", i);
fails += 1;
}
}
}
fails > 0
}
pub fn run_norevert(&self) -> bool {
if Caps::OverwriteUpgrade.present() {
return false;
}
let mut flash = self.flash.clone();
let mut fails = 0;
info!("Try norevert");
// First do a normal upgrade...
let (result, _) = c::boot_go(&mut flash, &self.areadesc, None, false);
if result != 0 {
warn!("Failed first boot");
fails += 1;
}
//FIXME: copy_done is written by boot_go, is it ok if no copy
// was ever done?
if !self.verify_images(&flash, 0, 1) {
warn!("Primary slot image verification FAIL");
fails += 1;
}
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_UNSET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for the primary slot");
fails += 1;
}
if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for the secondary slot");
fails += 1;
}
// Marks image in the primary slot as permanent,
// no revert should happen...
self.mark_permanent_upgrades(&mut flash, 0);
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for the primary slot");
fails += 1;
}
let (result, _) = c::boot_go(&mut flash, &self.areadesc, None, false);
if result != 0 {
warn!("Failed second boot");
fails += 1;
}
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for the primary slot");
fails += 1;
}
if !self.verify_images(&flash, 0, 1) {
warn!("Failed image verification");
fails += 1;
}
if fails > 0 {
error!("Error running upgrade without revert");
}
fails > 0
}
// Test that an upgrade is rejected. Assumes that the image was build
// such that the upgrade is instead a downgrade.
pub fn run_nodowngrade(&self) -> bool {
if !Caps::DowngradePrevention.present() {
return false;
}
let mut flash = self.flash.clone();
let mut fails = 0;
info!("Try no downgrade");
// First, do a normal upgrade.
let (result, _) = c::boot_go(&mut flash, &self.areadesc, None, false);
if result != 0 {
warn!("Failed first boot");
fails += 1;
}
if !self.verify_images(&flash, 0, 0) {
warn!("Failed verification after downgrade rejection");
fails += 1;
}
if fails > 0 {
error!("Error testing downgrade rejection");
}
fails > 0
}
// Tests a new image written to the primary slot that already has magic and
// image_ok set while there is no image on the secondary slot, so no revert
// should ever happen...
pub fn run_norevert_newimage(&self) -> bool {
let mut flash = self.flash.clone();
let mut fails = 0;
info!("Try non-revert on imgtool generated image");
self.mark_upgrades(&mut flash, 0);
// This simulates writing an image created by imgtool to
// the primary slot
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for the primary slot");
fails += 1;
}
// Run the bootloader...
let (result, _) = c::boot_go(&mut flash, &self.areadesc, None, false);
if result != 0 {
warn!("Failed first boot");
fails += 1;
}
// State should not have changed
if !self.verify_images(&flash, 0, 0) {
warn!("Failed image verification");
fails += 1;
}
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for the primary slot");
fails += 1;
}
if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for the secondary slot");
fails += 1;
}
if fails > 0 {
error!("Expected a non revert with new image");
}
fails > 0
}
// Tests a new image written to the primary slot that already has magic and
// image_ok set while there is no image on the secondary slot, so no revert
// should ever happen...
pub fn run_signfail_upgrade(&self) -> bool {
let mut flash = self.flash.clone();
let mut fails = 0;
info!("Try upgrade image with bad signature");
self.mark_upgrades(&mut flash, 0);
self.mark_permanent_upgrades(&mut flash, 0);
self.mark_upgrades(&mut flash, 1);
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for the primary slot");
fails += 1;
}
// Run the bootloader...
let (result, _) = c::boot_go(&mut flash, &self.areadesc, None, false);
if result != 0 {
warn!("Failed first boot");
fails += 1;
}
// State should not have changed
if !self.verify_images(&flash, 0, 0) {
warn!("Failed image verification");
fails += 1;
}
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for the primary slot");
fails += 1;
}
if fails > 0 {
error!("Expected an upgrade failure when image has bad signature");
}
fails > 0
}
// Should detect there is a leftover trailer in an otherwise erased
// secondary slot and erase its trailer.
pub fn run_secondary_leftover_trailer(&self) -> bool {
let mut flash = self.flash.clone();
let mut fails = 0;
info!("Try with a leftover trailer in the secondary; must be erased");
// Add a trailer on the secondary slot
self.mark_permanent_upgrades(&mut flash, 1);
self.mark_upgrades(&mut flash, 1);
// Run the bootloader...
let (result, _) = c::boot_go(&mut flash, &self.areadesc, None, false);
if result != 0 {
warn!("Failed first boot");
fails += 1;
}
// State should not have changed
if !self.verify_images(&flash, 0, 0) {
warn!("Failed image verification");
fails += 1;
}
if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for the secondary slot");
fails += 1;
}
if fails > 0 {
error!("Expected trailer on secondary slot to be erased");
}
fails > 0
}
fn trailer_sz(&self, align: usize) -> usize {
c::boot_trailer_sz(align as u32) as usize
}
fn status_sz(&self, align: usize) -> usize {
c::boot_status_sz(align as u32) as usize
}
/// This test runs a simple upgrade with no fails in the images, but
/// allowing for fails in the status area. This should run to the end
/// and warn that write fails were detected...
pub fn run_with_status_fails_complete(&self) -> bool {
if !Caps::ValidatePrimarySlot.present() {
return false;
}
let mut flash = self.flash.clone();
let mut fails = 0;
info!("Try swap with status fails");
self.mark_permanent_upgrades(&mut flash, 1);
self.mark_bad_status_with_rate(&mut flash, 0, 1.0);
let (result, asserts) = c::boot_go(&mut flash, &self.areadesc, None, true);
if result != 0 {
warn!("Failed!");
fails += 1;
}
// Failed writes to the marked "bad" region don't assert anymore.
// Any detected assert() is happening in another part of the code.
if asserts != 0 {
warn!("At least one assert() was called");
fails += 1;
}
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for the primary slot");
fails += 1;
}
if !self.verify_images(&flash, 0, 1) {
warn!("Failed image verification");
fails += 1;
}
info!("validate primary slot enabled; \
re-run of boot_go should just work");
let (result, _) = c::boot_go(&mut flash, &self.areadesc, None, false);
if result != 0 {
warn!("Failed!");
fails += 1;
}
if fails > 0 {
error!("Error running upgrade with status write fails");
}
fails > 0
}
/// This test runs a simple upgrade with no fails in the images, but
/// allowing for fails in the status area. This should run to the end
/// and warn that write fails were detected...
pub fn run_with_status_fails_with_reset(&self) -> bool {
if Caps::OverwriteUpgrade.present() {
false
} else if Caps::ValidatePrimarySlot.present() {
let mut flash = self.flash.clone();
let mut fails = 0;
let mut count = self.total_count.unwrap() / 2;
//info!("count={}\n", count);
info!("Try interrupted swap with status fails");
self.mark_permanent_upgrades(&mut flash, 1);
self.mark_bad_status_with_rate(&mut flash, 0, 0.5);
// Should not fail, writing to bad regions does not assert
let (_, asserts) = c::boot_go(&mut flash, &self.areadesc, Some(&mut count), true);
if asserts != 0 {
warn!("At least one assert() was called");
fails += 1;
}
self.reset_bad_status(&mut flash, 0);
info!("Resuming an interrupted swap operation");
let (_, asserts) = c::boot_go(&mut flash, &self.areadesc, None, true);
// This might throw no asserts, for large sector devices, where
// a single failure writing is indistinguishable from no failure,
// or throw a single assert for small sector devices that fail
// multiple times...
if asserts > 1 {
warn!("Expected single assert validating the primary slot, \
more detected {}", asserts);
fails += 1;
}
if fails > 0 {
error!("Error running upgrade with status write fails");
}
fails > 0
} else {
let mut flash = self.flash.clone();
let mut fails = 0;
info!("Try interrupted swap with status fails");
self.mark_permanent_upgrades(&mut flash, 1);
self.mark_bad_status_with_rate(&mut flash, 0, 1.0);
// This is expected to fail while writing to bad regions...
let (_, asserts) = c::boot_go(&mut flash, &self.areadesc, None, true);
if asserts == 0 {
warn!("No assert() detected");
fails += 1;
}
fails > 0
}
}
/// Adds a new flash area that fails statistically
fn mark_bad_status_with_rate(&self, flash: &mut SimMultiFlash, slot: usize,
rate: f32) {
if Caps::OverwriteUpgrade.present() {
return;
}
// Set this for each image.
for image in &self.images {
let dev_id = &image.slots[slot].dev_id;
let dev = flash.get_mut(&dev_id).unwrap();
let align = dev.align();
let off = &image.slots[slot].base_off;
let len = &image.slots[slot].len;
let status_off = off + len - self.trailer_sz(align);
// Mark the status area as a bad area
let _ = dev.add_bad_region(status_off, self.status_sz(align), rate);
}
}
fn reset_bad_status(&self, flash: &mut SimMultiFlash, slot: usize) {
if !Caps::ValidatePrimarySlot.present() {
return;
}
for image in &self.images {
let dev_id = &image.slots[slot].dev_id;
let dev = flash.get_mut(&dev_id).unwrap();
dev.reset_bad_regions();
// Disabling write verification the only assert triggered by
// boot_go should be checking for integrity of status bytes.
dev.set_verify_writes(false);
}
}
/// Test a boot, optionally stopping after 'n' flash options. Returns a count
/// of the number of flash operations done total.
fn try_upgrade(&self, stop: Option<i32>, permanent: bool) -> (SimMultiFlash, i32) {
// Clone the flash to have a new copy.
let mut flash = self.flash.clone();
if permanent {
self.mark_permanent_upgrades(&mut flash, 1);
}
let mut counter = stop.unwrap_or(0);
let (first_interrupted, count) = match c::boot_go(&mut flash, &self.areadesc, Some(&mut counter), false) {
(-0x13579, _) => (true, stop.unwrap()),
(0, _) => (false, -counter),
(x, _) => panic!("Unknown return: {}", x),
};
counter = 0;
if first_interrupted {
// fl.dump();
match c::boot_go(&mut flash, &self.areadesc, Some(&mut counter), false) {
(-0x13579, _) => panic!("Shouldn't stop again"),
(0, _) => (),
(x, _) => panic!("Unknown return: {}", x),
}
}
(flash, count - counter)
}
fn try_revert(&self, count: usize) -> SimMultiFlash {
let mut flash = self.flash.clone();
// fl.write_file("image0.bin").unwrap();
for i in 0 .. count {
info!("Running boot pass {}", i + 1);
assert_eq!(c::boot_go(&mut flash, &self.areadesc, None, false), (0, 0));
}
flash
}
fn try_revert_with_fail_at(&self, stop: i32) -> bool {
let mut flash = self.flash.clone();
let mut fails = 0;
let mut counter = stop;
let (x, _) = c::boot_go(&mut flash, &self.areadesc, Some(&mut counter), false);
if x != -0x13579 {
warn!("Should have stopped test at interruption point");
fails += 1;
}
// In a multi-image setup, copy done might be set if any number of
// images was already successfully swapped.
if !self.verify_trailers_loose(&flash, 0, None, None, BOOT_FLAG_UNSET) {
warn!("copy_done should be unset");
fails += 1;
}
let (x, _) = c::boot_go(&mut flash, &self.areadesc, None, false);
if x != 0 {
warn!("Should have finished test upgrade");
fails += 1;
}
if !self.verify_images(&flash, 0, 1) {
warn!("Image in the primary slot before revert is invalid at stop={}",
stop);
fails += 1;
}
if !self.verify_images(&flash, 1, 0) {
warn!("Image in the secondary slot before revert is invalid at stop={}",
stop);
fails += 1;
}
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_UNSET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for the primary slot before revert");
fails += 1;
}
if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for the secondary slot before revert");
fails += 1;
}
// Do Revert
let mut counter = stop;
let (x, _) = c::boot_go(&mut flash, &self.areadesc, Some(&mut counter), false);
if x != -0x13579 {
warn!("Should have stopped revert at interruption point");
fails += 1;
}
let (x, _) = c::boot_go(&mut flash, &self.areadesc, None, false);
if x != 0 {
warn!("Should have finished revert upgrade");
fails += 1;
}
if !self.verify_images(&flash, 0, 0) {
warn!("Image in the primary slot after revert is invalid at stop={}",
stop);
fails += 1;
}
if !self.verify_images(&flash, 1, 1) {
warn!("Image in the secondary slot after revert is invalid at stop={}",
stop);
fails += 1;
}
if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for the primary slot after revert");
fails += 1;
}
if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for the secondary slot after revert");
fails += 1;
}
let (x, _) = c::boot_go(&mut flash, &self.areadesc, None, false);
if x != 0 {
warn!("Should have finished 3rd boot");
fails += 1;
}
if !self.verify_images(&flash, 0, 0) {
warn!("Image in the primary slot is invalid on 1st boot after revert");
fails += 1;
}
if !self.verify_images(&flash, 1, 1) {
warn!("Image in the secondary slot is invalid on 1st boot after revert");
fails += 1;
}
fails > 0
}
fn try_random_fails(&self, total_ops: i32, count: usize) -> (SimMultiFlash, Vec<i32>) {
let mut flash = self.flash.clone();
self.mark_permanent_upgrades(&mut flash, 1);
let mut rng = rand::thread_rng();
let mut resets = vec![0i32; count];
let mut remaining_ops = total_ops;
for reset in &mut resets {
let reset_counter = rng.gen_range(1, remaining_ops / 2);
let mut counter = reset_counter;
match c::boot_go(&mut flash, &self.areadesc, Some(&mut counter), false) {
(0, _) | (-0x13579, _) => (),
(x, _) => panic!("Unknown return: {}", x),
}
remaining_ops -= reset_counter;
*reset = reset_counter;
}
match c::boot_go(&mut flash, &self.areadesc, None, false) {
(-0x13579, _) => panic!("Should not be have been interrupted!"),
(0, _) => (),
(x, _) => panic!("Unknown return: {}", x),
}
(flash, resets)
}
/// Verify the image in the given flash device, the specified slot
/// against the expected image.
fn verify_images(&self, flash: &SimMultiFlash, slot: usize, against: usize) -> bool {
self.images.iter().all(|image| {
verify_image(flash, &image.slots[slot],
match against {
0 => &image.primaries,
1 => &image.upgrades,
_ => panic!("Invalid 'against'")
})
})
}
/// Verify the images, according to the dependency test.
fn verify_dep_images(&self, flash: &SimMultiFlash, deps: &DepTest) -> bool {
for (image_num, (image, upgrade)) in self.images.iter().zip(deps.upgrades.iter()).enumerate() {
info!("Upgrade: slot:{}, {:?}", image_num, upgrade);
if !verify_image(flash, &image.slots[0],
match upgrade {
UpgradeInfo::Upgraded => &image.upgrades,
UpgradeInfo::Held => &image.primaries,
}) {
error!("Failed to upgrade properly: image: {}, upgrade: {:?}", image_num, upgrade);
return true;
}
}
false
}
/// Verify that at least one of the trailers of the images have the
/// specified values.
fn verify_trailers_loose(&self, flash: &SimMultiFlash, slot: usize,
magic: Option<u8>, image_ok: Option<u8>,
copy_done: Option<u8>) -> bool {
self.images.iter().any(|image| {
verify_trailer(flash, &image.slots[slot],
magic, image_ok, copy_done)
})
}
/// Verify that the trailers of the images have the specified
/// values.
fn verify_trailers(&self, flash: &SimMultiFlash, slot: usize,
magic: Option<u8>, image_ok: Option<u8>,
copy_done: Option<u8>) -> bool {
self.images.iter().all(|image| {
verify_trailer(flash, &image.slots[slot],
magic, image_ok, copy_done)
})
}
/// Mark each of the images for permanent upgrade.
fn mark_permanent_upgrades(&self, flash: &mut SimMultiFlash, slot: usize) {
for image in &self.images {
mark_permanent_upgrade(flash, &image.slots[slot]);
}
}
/// Mark each of the images for permanent upgrade.
fn mark_upgrades(&self, flash: &mut SimMultiFlash, slot: usize) {
for image in &self.images {
mark_upgrade(flash, &image.slots[slot]);
}
}
/// Dump out the flash image(s) to one or more files for debugging
/// purposes. The names will be written as either "{prefix}.mcubin" or
/// "{prefix}-001.mcubin" depending on how many images there are.
pub fn debug_dump(&self, prefix: &str) {
for (id, fdev) in &self.flash {
let name = if self.flash.len() == 1 {
format!("{}.mcubin", prefix)
} else {
format!("{}-{:>0}.mcubin", prefix, id)
};
fdev.write_file(&name).unwrap();
}
}
}
/// Show the flash layout.
#[allow(dead_code)]
fn show_flash(flash: &dyn Flash) {
println!("---- Flash configuration ----");
for sector in flash.sector_iter() {
println!(" {:3}: 0x{:08x}, 0x{:08x}",
sector.num, sector.base, sector.size);
}
println!();
}
/// Install a "program" into the given image. This fakes the image header, or at least all of the
/// fields used by the given code. Returns a copy of the image that was written.
fn install_image(flash: &mut SimMultiFlash, slot: &SlotInfo, len: usize,
deps: &dyn Depender, bad_sig: bool) -> ImageData {
let offset = slot.base_off;
let slot_len = slot.len;
let dev_id = slot.dev_id;
let mut tlv: Box<dyn ManifestGen> = Box::new(make_tlv());
// Add the dependencies early to the tlv.
for dep in deps.my_deps(offset, slot.index) {
tlv.add_dependency(deps.other_id(), &dep);
}
const HDR_SIZE: usize = 32;
// Generate a boot header. Note that the size doesn't include the header.
let header = ImageHeader {
magic: tlv.get_magic(),
load_addr: 0,
hdr_size: HDR_SIZE as u16,
protect_tlv_size: tlv.protect_size(),
img_size: len as u32,
flags: tlv.get_flags(),
ver: deps.my_version(offset, slot.index),
_pad2: 0,
};
let mut b_header = [0; HDR_SIZE];
b_header[..32].clone_from_slice(header.as_raw());
assert_eq!(b_header.len(), HDR_SIZE);
tlv.add_bytes(&b_header);
// The core of the image itself is just pseudorandom data.
let mut b_img = vec![0; len];
splat(&mut b_img, offset);
// Add some information at the start of the payload to make it easier
// to see what it is. This will fail if the image itself is too small.
{
let mut wr = Cursor::new(&mut b_img);
writeln!(&mut wr, "offset: {:#x}, dev_id: {:#x}, slot_info: {:?}",
offset, dev_id, slot).unwrap();
writeln!(&mut wr, "version: {:?}", deps.my_version(offset, slot.index)).unwrap();
}
// TLV signatures work over plain image
tlv.add_bytes(&b_img);
// Generate encrypted images
let flag = TlvFlags::ENCRYPTED as u32;
let is_encrypted = (tlv.get_flags() & flag) == flag;
let mut b_encimg = vec![];
if is_encrypted {
tlv.generate_enc_key();
let enc_key = tlv.get_enc_key();
let key = GenericArray::from_slice(enc_key.as_slice());
let nonce = GenericArray::from_slice(&[0; 16]);
let mut cipher = Aes128Ctr::new(&key, &nonce);
b_encimg = b_img.clone();
cipher.apply_keystream(&mut b_encimg);
}
// Build the TLV itself.
if bad_sig {
tlv.corrupt_sig();
}
let mut b_tlv = tlv.make_tlv();
let dev = flash.get_mut(&dev_id).unwrap();
let mut buf = vec![];
buf.append(&mut b_header.to_vec());
buf.append(&mut b_img);
buf.append(&mut b_tlv.clone());
// Pad the buffer to a multiple of the flash alignment.
let align = dev.align();
while buf.len() % align != 0 {
buf.push(dev.erased_val());
}
let mut encbuf = vec![];
if is_encrypted {
encbuf.append(&mut b_header.to_vec());
encbuf.append(&mut b_encimg);
encbuf.append(&mut b_tlv);
while encbuf.len() % align != 0 {
encbuf.push(dev.erased_val());
}
}
// Since images are always non-encrypted in the primary slot, we first write
// an encrypted image, re-read to use for verification, erase + flash
// un-encrypted. In the secondary slot the image is written un-encrypted,
// and if encryption is requested, it follows an erase + flash encrypted.
if slot.index == 0 {
let enc_copy: Option<Vec<u8>>;
if is_encrypted {
dev.write(offset, &encbuf).unwrap();
let mut enc = vec![0u8; encbuf.len()];
dev.read(offset, &mut enc).unwrap();
enc_copy = Some(enc);
dev.erase(offset, slot_len).unwrap();
} else {
enc_copy = None;
}
dev.write(offset, &buf).unwrap();
let mut copy = vec![0u8; buf.len()];
dev.read(offset, &mut copy).unwrap();
ImageData {
plain: copy,
cipher: enc_copy,
}
} else {
dev.write(offset, &buf).unwrap();
let mut copy = vec![0u8; buf.len()];
dev.read(offset, &mut copy).unwrap();
let enc_copy: Option<Vec<u8>>;
if is_encrypted {
dev.erase(offset, slot_len).unwrap();
dev.write(offset, &encbuf).unwrap();
let mut enc = vec![0u8; encbuf.len()];
dev.read(offset, &mut enc).unwrap();
enc_copy = Some(enc);
} else {
enc_copy = None;
}
ImageData {
plain: copy,
cipher: enc_copy,
}
}
}
/// Install no image. This is used when no upgrade happens.
fn install_no_image() -> ImageData {
ImageData {
plain: vec![],
cipher: None,
}
}
fn make_tlv() -> TlvGen {
if Caps::EcdsaP224.present() {
panic!("Ecdsa P224 not supported in Simulator");
}
if Caps::EncKw.present() {
if Caps::RSA2048.present() {
TlvGen::new_rsa_kw()
} else if Caps::EcdsaP256.present() {
TlvGen::new_ecdsa_kw()
} else {
TlvGen::new_enc_kw()
}
} else if Caps::EncRsa.present() {
if Caps::RSA2048.present() {
TlvGen::new_sig_enc_rsa()
} else {
TlvGen::new_enc_rsa()
}
} else if Caps::EncEc256.present() {
if Caps::EcdsaP256.present() {
TlvGen::new_ecdsa_ecies_p256()
} else {
TlvGen::new_ecies_p256()
}
} else if Caps::EncX25519.present() {
if Caps::Ed25519.present() {
TlvGen::new_ed25519_ecies_x25519()
} else {
TlvGen::new_ecies_x25519()
}
} else {
// The non-encrypted configuration.
if Caps::RSA2048.present() {
TlvGen::new_rsa_pss()
} else if Caps::RSA3072.present() {
TlvGen::new_rsa3072_pss()
} else if Caps::EcdsaP256.present() {
TlvGen::new_ecdsa()
} else if Caps::Ed25519.present() {
TlvGen::new_ed25519()
} else {
TlvGen::new_hash_only()
}
}
}
impl ImageData {
/// Find the image contents for the given slot. This assumes that slot 0
/// is unencrypted, and slot 1 is encrypted.
fn find(&self, slot: usize) -> &Vec<u8> {
let encrypted = Caps::EncRsa.present() || Caps::EncKw.present() ||
Caps::EncEc256.present() || Caps::EncX25519.present();
match (encrypted, slot) {
(false, _) => &self.plain,
(true, 0) => &self.plain,
(true, 1) => self.cipher.as_ref().expect("Invalid image"),
_ => panic!("Invalid slot requested"),
}
}
}
/// Verify that given image is present in the flash at the given offset.
fn verify_image(flash: &SimMultiFlash, slot: &SlotInfo, images: &ImageData) -> bool {
let image = images.find(slot.index);
let buf = image.as_slice();
let dev_id = slot.dev_id;
let mut copy = vec![0u8; buf.len()];
let offset = slot.base_off;
let dev = flash.get(&dev_id).unwrap();
dev.read(offset, &mut copy).unwrap();
if buf != &copy[..] {
for i in 0 .. buf.len() {
if buf[i] != copy[i] {
info!("First failure for slot{} at {:#x} ({:#x} within) {:#x}!={:#x}",
slot.index, offset + i, i, buf[i], copy[i]);
break;
}
}
false
} else {
true
}
}
fn verify_trailer(flash: &SimMultiFlash, slot: &SlotInfo,
magic: Option<u8>, image_ok: Option<u8>,
copy_done: Option<u8>) -> bool {
if Caps::OverwriteUpgrade.present() {
return true;
}
let offset = slot.trailer_off + c::boot_max_align();
let dev_id = slot.dev_id;
let mut copy = vec![0u8; c::boot_magic_sz() + c::boot_max_align() * 3];
let mut failed = false;
let dev = flash.get(&dev_id).unwrap();
let erased_val = dev.erased_val();
dev.read(offset, &mut copy).unwrap();
failed |= match magic {
Some(v) => {
if v == 1 && &copy[24..] != MAGIC {
warn!("\"magic\" mismatch at {:#x}", offset);
true
} else if v == 3 {
let expected = [erased_val; 16];
if copy[24..] != expected {
warn!("\"magic\" mismatch at {:#x}", offset);
true
} else {
false
}
} else {
false
}
},
None => false,
};
failed |= match image_ok {
Some(v) => {
if (v == 1 && copy[16] != v) || (v == 3 && copy[16] != erased_val) {
warn!("\"image_ok\" mismatch at {:#x} v={} val={:#x}", offset, v, copy[8]);
true
} else {
false
}
},
None => false,
};
failed |= match copy_done {
Some(v) => {
if (v == 1 && copy[8] != v) || (v == 3 && copy[8] != erased_val) {
warn!("\"copy_done\" mismatch at {:#x} v={} val={:#x}", offset, v, copy[0]);
true
} else {
false
}
},
None => false,
};
!failed
}
/// Install a partition table. This is a simplified partition table that
/// we write at the beginning of flash so make it easier for external tools
/// to analyze these images.
fn install_ptable(flash: &mut SimMultiFlash, areadesc: &AreaDesc) {
let ids: HashSet<u8> = areadesc.iter_areas().map(|area| area.device_id).collect();
for &id in &ids {
// If there are any partitions in this device that start at 0, and
// aren't marked as the BootLoader partition, avoid adding the
// partition table. This makes it harder to view the image, but
// avoids messing up images already written.
let skip_ptable = areadesc
.iter_areas()
.any(|area| {
area.device_id == id &&
area.off == 0 &&
area.flash_id != FlashId::BootLoader
});
if skip_ptable {
if log_enabled!(Info) {
let special: Vec<FlashId> = areadesc.iter_areas()
.filter(|area| area.device_id == id && area.off == 0)
.map(|area| area.flash_id)
.collect();
info!("Skipping partition table: {:?}", special);
}
break;
}
let mut buf: Vec<u8> = vec![];
write!(&mut buf, "mcuboot\0").unwrap();
// Iterate through all of the partitions in that device, and encode
// into the table.
let count = areadesc.iter_areas().filter(|area| area.device_id == id).count();
buf.write_u32::<LittleEndian>(count as u32).unwrap();
for area in areadesc.iter_areas().filter(|area| area.device_id == id) {
buf.write_u32::<LittleEndian>(area.flash_id as u32).unwrap();
buf.write_u32::<LittleEndian>(area.off).unwrap();
buf.write_u32::<LittleEndian>(area.size).unwrap();
buf.write_u32::<LittleEndian>(0).unwrap();
}
let dev = flash.get_mut(&id).unwrap();
// Pad to alignment.
while buf.len() % dev.align() != 0 {
buf.push(0);
}
dev.write(0, &buf).unwrap();
}
}
/// The image header
#[repr(C)]
#[derive(Debug)]
pub struct ImageHeader {
magic: u32,
load_addr: u32,
hdr_size: u16,
protect_tlv_size: u16,
img_size: u32,
flags: u32,
ver: ImageVersion,
_pad2: u32,
}
impl AsRaw for ImageHeader {}
#[repr(C)]
#[derive(Clone, Debug)]
pub struct ImageVersion {
pub major: u8,
pub minor: u8,
pub revision: u16,
pub build_num: u32,
}
#[derive(Clone, Debug)]
pub struct SlotInfo {
pub base_off: usize,
pub trailer_off: usize,
pub len: usize,
// Which slot within this device.
pub index: usize,
pub dev_id: u8,
}
const MAGIC: &[u8] = &[0x77, 0xc2, 0x95, 0xf3,
0x60, 0xd2, 0xef, 0x7f,
0x35, 0x52, 0x50, 0x0f,
0x2c, 0xb6, 0x79, 0x80];
// Replicates defines found in bootutil.h
const BOOT_MAGIC_GOOD: Option<u8> = Some(1);
const BOOT_MAGIC_UNSET: Option<u8> = Some(3);
const BOOT_FLAG_SET: Option<u8> = Some(1);
const BOOT_FLAG_UNSET: Option<u8> = Some(3);
/// Write out the magic so that the loader tries doing an upgrade.
pub fn mark_upgrade(flash: &mut SimMultiFlash, slot: &SlotInfo) {
let dev = flash.get_mut(&slot.dev_id).unwrap();
let align = dev.align();
let offset = slot.trailer_off + c::boot_max_align() * 4;
if offset % align != 0 || MAGIC.len() % align != 0 {
// The write size is larger than the magic value. Fill a buffer
// with the erased value, put the MAGIC in it, and write it in its
// entirety.
let mut buf = vec![dev.erased_val(); align];
buf[(offset % align)..].copy_from_slice(MAGIC);
dev.write(offset - (offset % align), &buf).unwrap();
} else {
dev.write(offset, MAGIC).unwrap();
}
}
/// Writes the image_ok flag which, guess what, tells the bootloader
/// the this image is ok (not a test, and no revert is to be performed).
fn mark_permanent_upgrade(flash: &mut SimMultiFlash, slot: &SlotInfo) {
// Overwrite mode always is permanent, and only the magic is used in
// the trailer. To avoid problems with large write sizes, don't try to
// set anything in this case.
if Caps::OverwriteUpgrade.present() {
return;
}
let dev = flash.get_mut(&slot.dev_id).unwrap();
let mut ok = [dev.erased_val(); 8];
ok[0] = 1u8;
let off = slot.trailer_off + c::boot_max_align() * 3;
let align = dev.align();
dev.write(off, &ok[..align]).unwrap();
}
// Drop some pseudo-random gibberish onto the data.
fn splat(data: &mut [u8], seed: usize) {
let mut seed_block = [0u8; 16];
let mut buf = Cursor::new(&mut seed_block[..]);
buf.write_u32::<LittleEndian>(0x135782ea).unwrap();
buf.write_u32::<LittleEndian>(0x92184728).unwrap();
buf.write_u32::<LittleEndian>(data.len() as u32).unwrap();
buf.write_u32::<LittleEndian>(seed as u32).unwrap();
let mut rng: SmallRng = SeedableRng::from_seed(seed_block);
rng.fill_bytes(data);
}
/// Return a read-only view into the raw bytes of this object
trait AsRaw : Sized {
fn as_raw(&self) -> &[u8] {
unsafe { slice::from_raw_parts(self as *const _ as *const u8,
mem::size_of::<Self>()) }
}
}
pub fn show_sizes() {
// This isn't panic safe.
for min in &[1, 2, 4, 8] {
let msize = c::boot_trailer_sz(*min);
println!("{:2}: {} (0x{:x})", min, msize, msize);
}
}
#[cfg(not(feature = "large-write"))]
fn test_alignments() -> &'static [usize] {
&[1, 2, 4, 8]
}
#[cfg(feature = "large-write")]
fn test_alignments() -> &'static [usize] {
&[1, 2, 4, 8, 128, 512]
}