blob: 90dc722d8b6be91b781d0ae885912ec1a04e02c4 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Modifications are Copyright (c) 2019 Arm Limited.
*/
#include <assert.h>
#include <string.h>
#include <inttypes.h>
#include <stddef.h>
#include "sysflash/sysflash.h"
#include "flash_map_backend/flash_map_backend.h"
#include "bootutil/image.h"
#include "bootutil/bootutil.h"
#include "bootutil_priv.h"
#include "bootutil/bootutil_log.h"
#ifdef MCUBOOT_ENC_IMAGES
#include "bootutil/enc_key.h"
#endif
MCUBOOT_LOG_MODULE_DECLARE(mcuboot);
/* Currently only used by imgmgr */
int boot_current_slot;
const uint32_t boot_img_magic[] = {
0xf395c277,
0x7fefd260,
0x0f505235,
0x8079b62c,
};
#define BOOT_MAGIC_ARR_SZ \
(sizeof boot_img_magic / sizeof boot_img_magic[0])
struct boot_swap_table {
uint8_t magic_primary_slot;
uint8_t magic_secondary_slot;
uint8_t image_ok_primary_slot;
uint8_t image_ok_secondary_slot;
uint8_t copy_done_primary_slot;
uint8_t swap_type;
};
/**
* This set of tables maps image trailer contents to swap operation type.
* When searching for a match, these tables must be iterated sequentially.
*
* NOTE: the table order is very important. The settings in the secondary
* slot always are priority to the primary slot and should be located
* earlier in the table.
*
* The table lists only states where there is action needs to be taken by
* the bootloader, as in starting/finishing a swap operation.
*/
static const struct boot_swap_table boot_swap_tables[] = {
{
.magic_primary_slot = BOOT_MAGIC_ANY,
.magic_secondary_slot = BOOT_MAGIC_GOOD,
.image_ok_primary_slot = BOOT_FLAG_ANY,
.image_ok_secondary_slot = BOOT_FLAG_UNSET,
.copy_done_primary_slot = BOOT_FLAG_ANY,
.swap_type = BOOT_SWAP_TYPE_TEST,
},
{
.magic_primary_slot = BOOT_MAGIC_ANY,
.magic_secondary_slot = BOOT_MAGIC_GOOD,
.image_ok_primary_slot = BOOT_FLAG_ANY,
.image_ok_secondary_slot = BOOT_FLAG_SET,
.copy_done_primary_slot = BOOT_FLAG_ANY,
.swap_type = BOOT_SWAP_TYPE_PERM,
},
{
.magic_primary_slot = BOOT_MAGIC_GOOD,
.magic_secondary_slot = BOOT_MAGIC_UNSET,
.image_ok_primary_slot = BOOT_FLAG_UNSET,
.image_ok_secondary_slot = BOOT_FLAG_ANY,
.copy_done_primary_slot = BOOT_FLAG_SET,
.swap_type = BOOT_SWAP_TYPE_REVERT,
},
};
#define BOOT_SWAP_TABLES_COUNT \
(sizeof boot_swap_tables / sizeof boot_swap_tables[0])
static int
boot_magic_decode(const uint32_t *magic)
{
if (memcmp(magic, boot_img_magic, BOOT_MAGIC_SZ) == 0) {
return BOOT_MAGIC_GOOD;
}
return BOOT_MAGIC_BAD;
}
static int
boot_flag_decode(uint8_t flag)
{
if (flag != BOOT_FLAG_SET) {
return BOOT_FLAG_BAD;
}
return BOOT_FLAG_SET;
}
/**
* Determines if a status source table is satisfied by the specified magic
* code.
*
* @param tbl_val A magic field from a status source table.
* @param val The magic value in a trailer, encoded as a
* BOOT_MAGIC_[...].
*
* @return 1 if the two values are compatible;
* 0 otherwise.
*/
int
boot_magic_compatible_check(uint8_t tbl_val, uint8_t val)
{
switch (tbl_val) {
case BOOT_MAGIC_ANY:
return 1;
case BOOT_MAGIC_NOTGOOD:
return val != BOOT_MAGIC_GOOD;
default:
return tbl_val == val;
}
}
uint32_t
boot_trailer_sz(uint32_t min_write_sz)
{
return /* state for all sectors */
BOOT_STATUS_MAX_ENTRIES * BOOT_STATUS_STATE_COUNT * min_write_sz +
#ifdef MCUBOOT_ENC_IMAGES
/* encryption keys */
BOOT_ENC_KEY_SIZE * 2 +
#endif
/* swap_type + copy_done + image_ok + swap_size */
BOOT_MAX_ALIGN * 4 +
BOOT_MAGIC_SZ;
}
int
boot_status_entries(int image_index, const struct flash_area *fap)
{
if (fap->fa_id == FLASH_AREA_IMAGE_SCRATCH) {
return BOOT_STATUS_STATE_COUNT;
} else if (fap->fa_id == FLASH_AREA_IMAGE_PRIMARY(image_index) ||
fap->fa_id == FLASH_AREA_IMAGE_SECONDARY(image_index)) {
return BOOT_STATUS_STATE_COUNT * BOOT_STATUS_MAX_ENTRIES;
}
return -1;
}
uint32_t
boot_status_off(const struct flash_area *fap)
{
uint32_t off_from_end;
uint8_t elem_sz;
elem_sz = flash_area_align(fap);
off_from_end = boot_trailer_sz(elem_sz);
assert(off_from_end <= fap->fa_size);
return fap->fa_size - off_from_end;
}
static inline uint32_t
boot_magic_off(const struct flash_area *fap)
{
return fap->fa_size - BOOT_MAGIC_SZ;
}
static inline uint32_t
boot_image_ok_off(const struct flash_area *fap)
{
return boot_magic_off(fap) - BOOT_MAX_ALIGN;
}
static inline uint32_t
boot_copy_done_off(const struct flash_area *fap)
{
return boot_image_ok_off(fap) - BOOT_MAX_ALIGN;
}
uint32_t
boot_swap_info_off(const struct flash_area *fap)
{
return boot_copy_done_off(fap) - BOOT_MAX_ALIGN;
}
static inline uint32_t
boot_swap_size_off(const struct flash_area *fap)
{
return boot_swap_info_off(fap) - BOOT_MAX_ALIGN;
}
#ifdef MCUBOOT_ENC_IMAGES
static inline uint32_t
boot_enc_key_off(const struct flash_area *fap, uint8_t slot)
{
return boot_swap_size_off(fap) - ((slot + 1) * BOOT_ENC_KEY_SIZE);
}
#endif
int
boot_read_swap_state(const struct flash_area *fap,
struct boot_swap_state *state)
{
uint32_t magic[BOOT_MAGIC_ARR_SZ];
uint32_t off;
uint8_t swap_info;
int rc;
off = boot_magic_off(fap);
rc = flash_area_read_is_empty(fap, off, magic, BOOT_MAGIC_SZ);
if (rc < 0) {
return BOOT_EFLASH;
}
if (rc == 1) {
state->magic = BOOT_MAGIC_UNSET;
} else {
state->magic = boot_magic_decode(magic);
}
off = boot_swap_info_off(fap);
rc = flash_area_read_is_empty(fap, off, &swap_info, sizeof swap_info);
if (rc < 0) {
return BOOT_EFLASH;
}
/* Extract the swap type and image number */
state->swap_type = BOOT_GET_SWAP_TYPE(swap_info);
state->image_num = BOOT_GET_IMAGE_NUM(swap_info);
if (rc == 1 || state->swap_type > BOOT_SWAP_TYPE_REVERT) {
state->swap_type = BOOT_SWAP_TYPE_NONE;
state->image_num = 0;
}
off = boot_copy_done_off(fap);
rc = flash_area_read_is_empty(fap, off, &state->copy_done,
sizeof state->copy_done);
if (rc < 0) {
return BOOT_EFLASH;
}
if (rc == 1) {
state->copy_done = BOOT_FLAG_UNSET;
} else {
state->copy_done = boot_flag_decode(state->copy_done);
}
off = boot_image_ok_off(fap);
rc = flash_area_read_is_empty(fap, off, &state->image_ok,
sizeof state->image_ok);
if (rc < 0) {
return BOOT_EFLASH;
}
if (rc == 1) {
state->image_ok = BOOT_FLAG_UNSET;
} else {
state->image_ok = boot_flag_decode(state->image_ok);
}
return 0;
}
/**
* Reads the image trailer from the scratch area.
*/
int
boot_read_swap_state_by_id(int flash_area_id, struct boot_swap_state *state)
{
const struct flash_area *fap;
int rc;
rc = flash_area_open(flash_area_id, &fap);
if (rc != 0) {
return BOOT_EFLASH;
}
rc = boot_read_swap_state(fap, state);
flash_area_close(fap);
return rc;
}
/**
* This functions tries to locate the status area after an aborted swap,
* by looking for the magic in the possible locations.
*
* If the magic is successfully found, a flash_area * is returned and it
* is the responsibility of the called to close it.
*
* @returns 0 on success, -1 on errors
*/
static int
boot_find_status(int image_index, const struct flash_area **fap)
{
uint32_t magic[BOOT_MAGIC_ARR_SZ];
uint32_t off;
uint8_t areas[2] = {
FLASH_AREA_IMAGE_PRIMARY(image_index),
FLASH_AREA_IMAGE_SCRATCH,
};
unsigned int i;
int rc;
/*
* In the middle a swap, tries to locate the area that is currently
* storing a valid magic, first on the primary slot, then on scratch.
* Both "slots" can end up being temporary storage for a swap and it
* is assumed that if magic is valid then other metadata is too,
* because magic is always written in the last step.
*/
for (i = 0; i < sizeof(areas) / sizeof(areas[0]); i++) {
rc = flash_area_open(areas[i], fap);
if (rc != 0) {
return rc;
}
off = boot_magic_off(*fap);
rc = flash_area_read(*fap, off, magic, BOOT_MAGIC_SZ);
if (rc != 0) {
flash_area_close(*fap);
return rc;
}
if (memcmp(magic, boot_img_magic, BOOT_MAGIC_SZ) == 0) {
return 0;
}
flash_area_close(*fap);
}
/* If we got here, no magic was found */
return -1;
}
int
boot_read_swap_size(int image_index, uint32_t *swap_size)
{
uint32_t off;
const struct flash_area *fap;
int rc;
rc = boot_find_status(image_index, &fap);
if (rc == 0) {
off = boot_swap_size_off(fap);
rc = flash_area_read(fap, off, swap_size, sizeof *swap_size);
flash_area_close(fap);
}
return rc;
}
#ifdef MCUBOOT_ENC_IMAGES
int
boot_read_enc_key(int image_index, uint8_t slot, uint8_t *enckey)
{
uint32_t off;
const struct flash_area *fap;
int rc;
rc = boot_find_status(image_index, &fap);
if (rc == 0) {
off = boot_enc_key_off(fap, slot);
rc = flash_area_read(fap, off, enckey, BOOT_ENC_KEY_SIZE);
flash_area_close(fap);
}
return rc;
}
#endif
int
boot_write_magic(const struct flash_area *fap)
{
uint32_t off;
int rc;
off = boot_magic_off(fap);
BOOT_LOG_DBG("writing magic; fa_id=%d off=0x%lx (0x%lx)",
fap->fa_id, (unsigned long)off,
(unsigned long)(fap->fa_off + off));
rc = flash_area_write(fap, off, boot_img_magic, BOOT_MAGIC_SZ);
if (rc != 0) {
return BOOT_EFLASH;
}
return 0;
}
/**
* Write trailer data; status bytes, swap_size, etc
*
* @returns 0 on success, != 0 on error.
*/
static int
boot_write_trailer(const struct flash_area *fap, uint32_t off,
const uint8_t *inbuf, uint8_t inlen)
{
uint8_t buf[BOOT_MAX_ALIGN];
uint8_t align;
uint8_t erased_val;
int rc;
align = flash_area_align(fap);
if (inlen > BOOT_MAX_ALIGN || align > BOOT_MAX_ALIGN) {
return -1;
}
erased_val = flash_area_erased_val(fap);
if (align < inlen) {
align = inlen;
}
memcpy(buf, inbuf, inlen);
memset(&buf[inlen], erased_val, align - inlen);
rc = flash_area_write(fap, off, buf, align);
if (rc != 0) {
return BOOT_EFLASH;
}
return 0;
}
static int
boot_write_trailer_flag(const struct flash_area *fap, uint32_t off,
uint8_t flag_val)
{
const uint8_t buf[1] = { flag_val };
return boot_write_trailer(fap, off, buf, 1);
}
int
boot_write_copy_done(const struct flash_area *fap)
{
uint32_t off;
off = boot_copy_done_off(fap);
BOOT_LOG_DBG("writing copy_done; fa_id=%d off=0x%lx (0x%lx)",
fap->fa_id, (unsigned long)off,
(unsigned long)(fap->fa_off + off));
return boot_write_trailer_flag(fap, off, BOOT_FLAG_SET);
}
int
boot_write_image_ok(const struct flash_area *fap)
{
uint32_t off;
off = boot_image_ok_off(fap);
BOOT_LOG_DBG("writing image_ok; fa_id=%d off=0x%lx (0x%lx)",
fap->fa_id, (unsigned long)off,
(unsigned long)(fap->fa_off + off));
return boot_write_trailer_flag(fap, off, BOOT_FLAG_SET);
}
/**
* Writes the specified value to the `swap-type` field of an image trailer.
* This value is persisted so that the boot loader knows what swap operation to
* resume in case of an unexpected reset.
*/
int
boot_write_swap_info(const struct flash_area *fap, uint8_t swap_type,
uint8_t image_num)
{
uint32_t off;
uint8_t swap_info;
BOOT_SET_SWAP_INFO(swap_info, image_num, swap_type);
off = boot_swap_info_off(fap);
BOOT_LOG_DBG("writing swap_info; fa_id=%d off=0x%lx (0x%lx), swap_type=0x%x"
" image_num=0x%x",
fap->fa_id, (unsigned long)off,
(unsigned long)(fap->fa_off + off), swap_type, image_num);
return boot_write_trailer(fap, off, (const uint8_t *) &swap_info, 1);
}
int
boot_write_swap_size(const struct flash_area *fap, uint32_t swap_size)
{
uint32_t off;
off = boot_swap_size_off(fap);
BOOT_LOG_DBG("writing swap_size; fa_id=%d off=0x%lx (0x%lx)",
fap->fa_id, (unsigned long)off,
(unsigned long)fap->fa_off + off);
return boot_write_trailer(fap, off, (const uint8_t *) &swap_size, 4);
}
#ifdef MCUBOOT_ENC_IMAGES
int
boot_write_enc_key(const struct flash_area *fap, uint8_t slot, const uint8_t *enckey)
{
uint32_t off;
int rc;
off = boot_enc_key_off(fap, slot);
rc = flash_area_write(fap, off, enckey, BOOT_ENC_KEY_SIZE);
if (rc != 0) {
return BOOT_EFLASH;
}
return 0;
}
#endif
int
boot_swap_type_multi(int image_index)
{
const struct boot_swap_table *table;
struct boot_swap_state primary_slot;
struct boot_swap_state secondary_slot;
int rc;
size_t i;
rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_PRIMARY(image_index),
&primary_slot);
if (rc) {
return BOOT_SWAP_TYPE_PANIC;
}
rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_SECONDARY(image_index),
&secondary_slot);
if (rc) {
return BOOT_SWAP_TYPE_PANIC;
}
for (i = 0; i < BOOT_SWAP_TABLES_COUNT; i++) {
table = boot_swap_tables + i;
if (boot_magic_compatible_check(table->magic_primary_slot,
primary_slot.magic) &&
boot_magic_compatible_check(table->magic_secondary_slot,
secondary_slot.magic) &&
(table->image_ok_primary_slot == BOOT_FLAG_ANY ||
table->image_ok_primary_slot == primary_slot.image_ok) &&
(table->image_ok_secondary_slot == BOOT_FLAG_ANY ||
table->image_ok_secondary_slot == secondary_slot.image_ok) &&
(table->copy_done_primary_slot == BOOT_FLAG_ANY ||
table->copy_done_primary_slot == primary_slot.copy_done)) {
BOOT_LOG_INF("Swap type: %s",
table->swap_type == BOOT_SWAP_TYPE_TEST ? "test" :
table->swap_type == BOOT_SWAP_TYPE_PERM ? "perm" :
table->swap_type == BOOT_SWAP_TYPE_REVERT ? "revert" :
"BUG; can't happen");
if (table->swap_type != BOOT_SWAP_TYPE_TEST &&
table->swap_type != BOOT_SWAP_TYPE_PERM &&
table->swap_type != BOOT_SWAP_TYPE_REVERT) {
return BOOT_SWAP_TYPE_PANIC;
}
return table->swap_type;
}
}
BOOT_LOG_INF("Swap type: none");
return BOOT_SWAP_TYPE_NONE;
}
/*
* This function is not used by the bootloader itself, but its required API
* by external tooling like mcumgr.
*/
int
boot_swap_type(void)
{
return boot_swap_type_multi(0);
}
/**
* Marks the image in the secondary slot as pending. On the next reboot,
* the system will perform a one-time boot of the the secondary slot image.
*
* @param permanent Whether the image should be used permanently or
* only tested once:
* 0=run image once, then confirm or revert.
* 1=run image forever.
*
* @return 0 on success; nonzero on failure.
*/
int
boot_set_pending(int permanent)
{
const struct flash_area *fap;
struct boot_swap_state state_secondary_slot;
uint8_t swap_type;
int rc;
rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_SECONDARY(0),
&state_secondary_slot);
if (rc != 0) {
return rc;
}
switch (state_secondary_slot.magic) {
case BOOT_MAGIC_GOOD:
/* Swap already scheduled. */
return 0;
case BOOT_MAGIC_UNSET:
rc = flash_area_open(FLASH_AREA_IMAGE_SECONDARY(0), &fap);
if (rc != 0) {
rc = BOOT_EFLASH;
} else {
rc = boot_write_magic(fap);
}
if (rc == 0 && permanent) {
rc = boot_write_image_ok(fap);
}
if (rc == 0) {
if (permanent) {
swap_type = BOOT_SWAP_TYPE_PERM;
} else {
swap_type = BOOT_SWAP_TYPE_TEST;
}
rc = boot_write_swap_info(fap, swap_type, 0);
}
flash_area_close(fap);
return rc;
case BOOT_MAGIC_BAD:
/* The image slot is corrupt. There is no way to recover, so erase the
* slot to allow future upgrades.
*/
rc = flash_area_open(FLASH_AREA_IMAGE_SECONDARY(0), &fap);
if (rc != 0) {
return BOOT_EFLASH;
}
flash_area_erase(fap, 0, fap->fa_size);
flash_area_close(fap);
return BOOT_EBADIMAGE;
default:
assert(0);
return BOOT_EBADIMAGE;
}
}
/**
* Marks the image in the primary slot as confirmed. The system will continue
* booting into the image in the primary slot until told to boot from a
* different slot.
*
* @return 0 on success; nonzero on failure.
*/
int
boot_set_confirmed(void)
{
const struct flash_area *fap;
struct boot_swap_state state_primary_slot;
int rc;
rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_PRIMARY(0),
&state_primary_slot);
if (rc != 0) {
return rc;
}
switch (state_primary_slot.magic) {
case BOOT_MAGIC_GOOD:
/* Confirm needed; proceed. */
break;
case BOOT_MAGIC_UNSET:
/* Already confirmed. */
return 0;
case BOOT_MAGIC_BAD:
/* Unexpected state. */
return BOOT_EBADVECT;
}
rc = flash_area_open(FLASH_AREA_IMAGE_PRIMARY(0), &fap);
if (rc) {
rc = BOOT_EFLASH;
goto done;
}
if (state_primary_slot.copy_done == BOOT_FLAG_UNSET) {
/* Swap never completed. This is unexpected. */
rc = BOOT_EBADVECT;
goto done;
}
if (state_primary_slot.image_ok != BOOT_FLAG_UNSET) {
/* Already confirmed. */
goto done;
}
rc = boot_write_image_ok(fap);
done:
flash_area_close(fap);
return rc;
}