blob: 086cc21a32e536bd36b4b0ee90d677e916a296d9 [file] [log] [blame]
#[macro_use] extern crate log;
extern crate env_logger;
extern crate docopt;
extern crate libc;
extern crate rand;
extern crate rustc_serialize;
#[macro_use]
extern crate error_chain;
use docopt::Docopt;
use rand::{Rng, SeedableRng, XorShiftRng};
use rand::distributions::{IndependentSample, Range};
use rustc_serialize::{Decodable, Decoder};
use std::fmt;
use std::mem;
use std::process;
use std::slice;
mod area;
mod c;
mod flash;
pub mod api;
mod pdump;
mod caps;
use flash::Flash;
use area::{AreaDesc, FlashId};
use caps::Caps;
const USAGE: &'static str = "
Mcuboot simulator
Usage:
bootsim sizes
bootsim run --device TYPE [--align SIZE]
bootsim runall
bootsim (--help | --version)
Options:
-h, --help Show this message
--version Version
--device TYPE MCU to simulate
Valid values: stm32f4, k64f
--align SIZE Flash write alignment
";
#[derive(Debug, RustcDecodable)]
struct Args {
flag_help: bool,
flag_version: bool,
flag_device: Option<DeviceName>,
flag_align: Option<AlignArg>,
cmd_sizes: bool,
cmd_run: bool,
cmd_runall: bool,
}
#[derive(Copy, Clone, Debug, RustcDecodable)]
enum DeviceName { Stm32f4, K64f, K64fBig, Nrf52840 }
static ALL_DEVICES: &'static [DeviceName] = &[
DeviceName::Stm32f4,
DeviceName::K64f,
DeviceName::K64fBig,
DeviceName::Nrf52840,
];
impl fmt::Display for DeviceName {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let name = match *self {
DeviceName::Stm32f4 => "stm32f4",
DeviceName::K64f => "k64f",
DeviceName::K64fBig => "k64fbig",
DeviceName::Nrf52840 => "nrf52840",
};
f.write_str(name)
}
}
#[derive(Debug)]
struct AlignArg(u8);
impl Decodable for AlignArg {
// Decode the alignment ourselves, to restrict it to the valid possible alignments.
fn decode<D: Decoder>(d: &mut D) -> Result<AlignArg, D::Error> {
let m = d.read_u8()?;
match m {
1 | 2 | 4 | 8 => Ok(AlignArg(m)),
_ => Err(d.error("Invalid alignment")),
}
}
}
fn main() {
env_logger::init().unwrap();
let args: Args = Docopt::new(USAGE)
.and_then(|d| d.decode())
.unwrap_or_else(|e| e.exit());
// println!("args: {:#?}", args);
if args.cmd_sizes {
show_sizes();
return;
}
let mut status = RunStatus::new();
if args.cmd_run {
let align = args.flag_align.map(|x| x.0).unwrap_or(1);
let device = match args.flag_device {
None => panic!("Missing mandatory device argument"),
Some(dev) => dev,
};
status.run_single(device, align);
}
if args.cmd_runall {
for &dev in ALL_DEVICES {
for &align in &[1, 2, 4, 8] {
status.run_single(dev, align);
}
}
}
if status.failures > 0 {
warn!("{} Tests ran with {} failures", status.failures + status.passes, status.failures);
process::exit(1);
} else {
warn!("{} Tests ran successfully", status.passes);
process::exit(0);
}
}
struct RunStatus {
failures: usize,
passes: usize,
}
impl RunStatus {
fn new() -> RunStatus {
RunStatus {
failures: 0,
passes: 0,
}
}
fn run_single(&mut self, device: DeviceName, align: u8) {
let mut failed = false;
warn!("Running on device {} with alignment {}", device, align);
let (mut flash, areadesc) = match device {
DeviceName::Stm32f4 => {
// STM style flash. Large sectors, with a large scratch area.
let flash = Flash::new(vec![16 * 1024, 16 * 1024, 16 * 1024, 16 * 1024,
64 * 1024,
128 * 1024, 128 * 1024, 128 * 1024],
align as usize);
let mut areadesc = AreaDesc::new(&flash);
areadesc.add_image(0x020000, 0x020000, FlashId::Image0);
areadesc.add_image(0x040000, 0x020000, FlashId::Image1);
areadesc.add_image(0x060000, 0x020000, FlashId::ImageScratch);
(flash, areadesc)
}
DeviceName::K64f => {
// NXP style flash. Small sectors, one small sector for scratch.
let flash = Flash::new(vec![4096; 128], align as usize);
let mut areadesc = AreaDesc::new(&flash);
areadesc.add_image(0x020000, 0x020000, FlashId::Image0);
areadesc.add_image(0x040000, 0x020000, FlashId::Image1);
areadesc.add_image(0x060000, 0x001000, FlashId::ImageScratch);
(flash, areadesc)
}
DeviceName::K64fBig => {
// Simulating an STM style flash on top of an NXP style flash. Underlying flash device
// uses small sectors, but we tell the bootloader they are large.
let flash = Flash::new(vec![4096; 128], align as usize);
let mut areadesc = AreaDesc::new(&flash);
areadesc.add_simple_image(0x020000, 0x020000, FlashId::Image0);
areadesc.add_simple_image(0x040000, 0x020000, FlashId::Image1);
areadesc.add_simple_image(0x060000, 0x020000, FlashId::ImageScratch);
(flash, areadesc)
}
DeviceName::Nrf52840 => {
// Simulating the flash on the nrf52840 with partitions set up so that the scratch size
// does not divide into the image size.
let flash = Flash::new(vec![4096; 128], align as usize);
let mut areadesc = AreaDesc::new(&flash);
areadesc.add_image(0x008000, 0x034000, FlashId::Image0);
areadesc.add_image(0x03c000, 0x034000, FlashId::Image1);
areadesc.add_image(0x070000, 0x00d000, FlashId::ImageScratch);
(flash, areadesc)
}
};
let (slot0_base, slot0_len) = areadesc.find(FlashId::Image0);
let (slot1_base, slot1_len) = areadesc.find(FlashId::Image1);
let (scratch_base, _) = areadesc.find(FlashId::ImageScratch);
// Code below assumes that the slots are consecutive.
assert_eq!(slot1_base, slot0_base + slot0_len);
assert_eq!(scratch_base, slot1_base + slot1_len);
// println!("Areas: {:#?}", areadesc.get_c());
// Install the boot trailer signature, so that the code will start an upgrade.
// TODO: This must be a multiple of flash alignment, add support for an image that is smaller,
// and just gets padded.
let primary = install_image(&mut flash, slot0_base, 32784);
// Install an upgrade image.
let upgrade = install_image(&mut flash, slot1_base, 41928);
// Set an alignment, and position the magic value.
c::set_sim_flash_align(align);
// Mark the upgrade as ready to install. (This looks like it might be a bug in the code,
// however.)
mark_upgrade(&mut flash, scratch_base - c::boot_magic_sz() as usize);
let (fl2, total_count) = try_upgrade(&flash, &areadesc, None);
info!("First boot, count={}", total_count);
if !verify_image(&fl2, slot0_base, &upgrade) {
error!("Image mismatch after first boot");
// This isn't really recoverable, and more tests aren't likely to reveal much.
self.failures += 1;
return;
}
let mut bad = 0;
// Let's try an image halfway through.
for i in 1 .. total_count {
info!("Try interruption at {}", i);
let (fl3, count) = try_upgrade(&flash, &areadesc, Some(i));
info!("Second boot, count={}", count);
if !verify_image(&fl3, slot0_base, &upgrade) {
warn!("FAIL at step {} of {}", i, total_count);
bad += 1;
}
if Caps::SwapUpgrade.present() {
if !verify_image(&fl3, slot1_base, &primary) {
warn!("Slot 1 FAIL at step {} of {}", i, total_count);
bad += 1;
}
}
}
error!("{} out of {} failed {:.2}%",
bad, total_count,
bad as f32 * 100.0 / total_count as f32);
if bad > 0 {
failed = true;
}
let (fl4, total_counts) = try_random_fails(&flash, &areadesc, total_count, 5);
info!("Random interruptions at reset points={:?}", total_counts);
let slot0_ok = verify_image(&fl4, slot0_base, &upgrade);
let slot1_ok = if Caps::SwapUpgrade.present() {
verify_image(&fl4, slot1_base, &primary)
} else {
true
};
if !slot0_ok /* || !slot1_ok */ {
error!("Image mismatch after random interrupts: slot0={} slot1={}",
if slot0_ok { "ok" } else { "fail" },
if slot1_ok { "ok" } else { "fail" });
self.failures += 1;
return;
}
if Caps::SwapUpgrade.present() {
for count in 2 .. 5 {
info!("Try revert: {}", count);
let fl2 = try_revert(&flash, &areadesc, count);
if !verify_image(&fl2, slot0_base, &primary) {
warn!("Revert failure on count {}", count);
failed = true;
}
}
}
info!("Try norevert");
let fl2 = try_norevert(&flash, &areadesc);
if !verify_image(&fl2, slot0_base, &upgrade) {
warn!("No revert failed");
failed = true;
}
/*
// show_flash(&flash);
println!("First boot for upgrade");
// c::set_flash_counter(570);
c::boot_go(&mut flash, &areadesc);
// println!("{} flash ops", c::get_flash_counter());
verify_image(&flash, slot0_base, &upgrade);
println!("\n------------------\nSecond boot");
c::boot_go(&mut flash, &areadesc);
*/
if failed {
self.failures += 1;
} else {
self.passes += 1;
}
}
}
/// Test a boot, optionally stopping after 'n' flash options. Returns a count of the number of
/// flash operations done total.
fn try_upgrade(flash: &Flash, areadesc: &AreaDesc, stop: Option<i32>) -> (Flash, i32) {
// Clone the flash to have a new copy.
let mut fl = flash.clone();
// mark permanent upgrade
let ok = [1u8, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff];
let (base, _) = areadesc.find(FlashId::ImageScratch);
let align = c::get_sim_flash_align() as usize;
fl.write(base - c::boot_magic_sz() - c::boot_max_align(), &ok[..align]).unwrap();
c::set_flash_counter(stop.unwrap_or(0));
let (first_interrupted, cnt1) = match c::boot_go(&mut fl, &areadesc) {
-0x13579 => (true, stop.unwrap()),
0 => (false, -c::get_flash_counter()),
x => panic!("Unknown return: {}", x),
};
c::set_flash_counter(0);
if first_interrupted {
// fl.dump();
match c::boot_go(&mut fl, &areadesc) {
-0x13579 => panic!("Shouldn't stop again"),
0 => (),
x => panic!("Unknown return: {}", x),
}
}
let cnt2 = cnt1 - c::get_flash_counter();
(fl, cnt2)
}
fn try_revert(flash: &Flash, areadesc: &AreaDesc, count: usize) -> Flash {
let mut fl = flash.clone();
c::set_flash_counter(0);
// fl.write_file("image0.bin").unwrap();
for i in 0 .. count {
info!("Running boot pass {}", i + 1);
assert_eq!(c::boot_go(&mut fl, &areadesc), 0);
}
fl
}
fn try_norevert(flash: &Flash, areadesc: &AreaDesc) -> Flash {
let mut fl = flash.clone();
c::set_flash_counter(0);
let align = c::get_sim_flash_align() as usize;
assert_eq!(c::boot_go(&mut fl, &areadesc), 0);
// Write boot_ok
let ok = [1u8, 0, 0, 0, 0, 0, 0, 0];
let (slot0_base, slot0_len) = areadesc.find(FlashId::Image0);
fl.write(slot0_base + slot0_len - c::boot_magic_sz() - c::boot_max_align(),
&ok[..align]).unwrap();
assert_eq!(c::boot_go(&mut fl, &areadesc), 0);
fl
}
fn try_random_fails(flash: &Flash, areadesc: &AreaDesc, total_ops: i32,
count: usize) -> (Flash, Vec<i32>) {
let mut fl = flash.clone();
// mark permanent upgrade
let ok = [1u8, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff];
let (base, _) = areadesc.find(FlashId::ImageScratch);
let align = c::get_sim_flash_align() as usize;
fl.write(base - c::boot_magic_sz() - c::boot_max_align(), &ok[..align]).unwrap();
let mut rng = rand::thread_rng();
let mut resets = vec![0i32; count];
let mut remaining_ops = total_ops;
for i in 0 .. count {
let ops = Range::new(1, remaining_ops / 2);
let reset_counter = ops.ind_sample(&mut rng);
c::set_flash_counter(reset_counter);
match c::boot_go(&mut fl, &areadesc) {
0 | -0x13579 => (),
x => panic!("Unknown return: {}", x),
}
remaining_ops -= reset_counter;
resets[i] = reset_counter;
}
c::set_flash_counter(0);
match c::boot_go(&mut fl, &areadesc) {
-0x13579 => panic!("Should not be have been interrupted!"),
0 => (),
x => panic!("Unknown return: {}", x),
}
(fl, resets)
}
/// Show the flash layout.
#[allow(dead_code)]
fn show_flash(flash: &Flash) {
println!("---- Flash configuration ----");
for sector in flash.sector_iter() {
println!(" {:2}: 0x{:08x}, 0x{:08x}",
sector.num, sector.base, sector.size);
}
println!("");
}
/// Install a "program" into the given image. This fakes the image header, or at least all of the
/// fields used by the given code. Returns a copy of the image that was written.
fn install_image(flash: &mut Flash, offset: usize, len: usize) -> Vec<u8> {
let offset0 = offset;
// Generate a boot header. Note that the size doesn't include the header.
let header = ImageHeader {
magic: 0x96f3b83c,
tlv_size: 0,
_pad1: 0,
hdr_size: 32,
key_id: 0,
_pad2: 0,
img_size: len as u32,
flags: 0,
ver: ImageVersion {
major: (offset / (128 * 1024)) as u8,
minor: 0,
revision: 1,
build_num: offset as u32,
},
_pad3: 0,
};
let b_header = header.as_raw();
/*
let b_header = unsafe { slice::from_raw_parts(&header as *const _ as *const u8,
mem::size_of::<ImageHeader>()) };
*/
assert_eq!(b_header.len(), 32);
flash.write(offset, &b_header).unwrap();
let offset = offset + b_header.len();
// The core of the image itself is just pseudorandom data.
let mut buf = vec![0; len];
splat(&mut buf, offset);
flash.write(offset, &buf).unwrap();
let offset = offset + buf.len();
// Copy out the image so that we can verify that the image was installed correctly later.
let mut copy = vec![0u8; offset - offset0];
flash.read(offset0, &mut copy).unwrap();
copy
}
/// Verify that given image is present in the flash at the given offset.
fn verify_image(flash: &Flash, offset: usize, buf: &[u8]) -> bool {
let mut copy = vec![0u8; buf.len()];
flash.read(offset, &mut copy).unwrap();
if buf != &copy[..] {
for i in 0 .. buf.len() {
if buf[i] != copy[i] {
info!("First failure at {:#x}", offset + i);
break;
}
}
false
} else {
true
}
}
/// The image header
#[repr(C)]
pub struct ImageHeader {
magic: u32,
tlv_size: u16,
key_id: u8,
_pad1: u8,
hdr_size: u16,
_pad2: u16,
img_size: u32,
flags: u32,
ver: ImageVersion,
_pad3: u32,
}
impl AsRaw for ImageHeader {}
#[repr(C)]
pub struct ImageVersion {
major: u8,
minor: u8,
revision: u16,
build_num: u32,
}
/// Write out the magic so that the loader tries doing an upgrade.
fn mark_upgrade(flash: &mut Flash, offset: usize) {
let magic = vec![0x77, 0xc2, 0x95, 0xf3,
0x60, 0xd2, 0xef, 0x7f,
0x35, 0x52, 0x50, 0x0f,
0x2c, 0xb6, 0x79, 0x80];
flash.write(offset, &magic).unwrap();
}
// Drop some pseudo-random gibberish onto the data.
fn splat(data: &mut [u8], seed: usize) {
let seed_block = [0x135782ea, 0x92184728, data.len() as u32, seed as u32];
let mut rng: XorShiftRng = SeedableRng::from_seed(seed_block);
rng.fill_bytes(data);
}
/// Return a read-only view into the raw bytes of this object
trait AsRaw : Sized {
fn as_raw<'a>(&'a self) -> &'a [u8] {
unsafe { slice::from_raw_parts(self as *const _ as *const u8,
mem::size_of::<Self>()) }
}
}
fn show_sizes() {
// This isn't panic safe.
let old_align = c::get_sim_flash_align();
for min in &[1, 2, 4, 8] {
c::set_sim_flash_align(*min);
let msize = c::boot_trailer_sz();
println!("{:2}: {} (0x{:x})", min, msize, msize);
}
c::set_sim_flash_align(old_align);
}