blob: 9ee317f3063cd503523d850b83701ed0a94c8f66 [file] [log] [blame]
/*
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2017-2019 Linaro LTD
* Copyright (c) 2016-2019 JUUL Labs
* Copyright (c) 2019-2020 Arm Limited
*
* Original license:
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#include <string.h>
#include <inttypes.h>
#include <stddef.h>
#include "sysflash/sysflash.h"
#include "flash_map_backend/flash_map_backend.h"
#include "bootutil/image.h"
#include "bootutil/bootutil.h"
#include "bootutil_priv.h"
#include "bootutil/bootutil_log.h"
#include "bootutil/fault_injection_hardening.h"
#ifdef MCUBOOT_ENC_IMAGES
#include "bootutil/enc_key.h"
#endif
MCUBOOT_LOG_MODULE_DECLARE(mcuboot);
/* Currently only used by imgmgr */
int boot_current_slot;
extern const uint32_t boot_img_magic[];
#define BOOT_MAGIC_ARR_SZ \
(sizeof boot_img_magic / sizeof boot_img_magic[0])
/**
* @brief Determine if the data at two memory addresses is equal
*
* @param s1 The first memory region to compare.
* @param s2 The second memory region to compare.
* @param n The amount of bytes to compare.
*
* @note This function does not comply with the specification of memcmp,
* so should not be considered a drop-in replacement. It has no
* constant time execution. The point is to make sure that all the
* bytes are compared and detect if loop was abused and some cycles
* was skipped due to fault injection.
*
* @return FIH_SUCCESS if memory regions are equal, otherwise FIH_FAILURE
*/
#ifdef MCUBOOT_FIH_PROFILE_OFF
inline
fih_int boot_fih_memequal(const void *s1, const void *s2, size_t n)
{
return memcmp(s1, s2, n);
}
#else
fih_int boot_fih_memequal(const void *s1, const void *s2, size_t n)
{
size_t i;
uint8_t *s1_p = (uint8_t*) s1;
uint8_t *s2_p = (uint8_t*) s2;
fih_int ret = FIH_FAILURE;
for (i = 0; i < n; i++) {
if (s1_p[i] != s2_p[i]) {
goto out;
}
}
if (i == n) {
ret = FIH_SUCCESS;
}
out:
FIH_RET(ret);
}
#endif
uint32_t
boot_status_sz(uint32_t min_write_sz)
{
return /* state for all sectors */
BOOT_STATUS_MAX_ENTRIES * BOOT_STATUS_STATE_COUNT * min_write_sz;
}
uint32_t
boot_trailer_sz(uint32_t min_write_sz)
{
return /* state for all sectors */
boot_status_sz(min_write_sz) +
#ifdef MCUBOOT_ENC_IMAGES
/* encryption keys */
# if MCUBOOT_SWAP_SAVE_ENCTLV
BOOT_ENC_TLV_ALIGN_SIZE * 2 +
# else
BOOT_ENC_KEY_SIZE * 2 +
# endif
#endif
/* swap_type + copy_done + image_ok + swap_size */
BOOT_MAX_ALIGN * 4 +
BOOT_MAGIC_SZ;
}
int
boot_status_entries(int image_index, const struct flash_area *fap)
{
#if MCUBOOT_SWAP_USING_SCRATCH
if (fap->fa_id == FLASH_AREA_IMAGE_SCRATCH) {
return BOOT_STATUS_STATE_COUNT;
} else
#endif
if (fap->fa_id == FLASH_AREA_IMAGE_PRIMARY(image_index) ||
fap->fa_id == FLASH_AREA_IMAGE_SECONDARY(image_index)) {
return BOOT_STATUS_STATE_COUNT * BOOT_STATUS_MAX_ENTRIES;
}
return -1;
}
uint32_t
boot_status_off(const struct flash_area *fap)
{
uint32_t off_from_end;
uint8_t elem_sz;
elem_sz = flash_area_align(fap);
off_from_end = boot_trailer_sz(elem_sz);
assert(off_from_end <= fap->fa_size);
return fap->fa_size - off_from_end;
}
static inline uint32_t
boot_magic_off(const struct flash_area *fap)
{
return fap->fa_size - BOOT_MAGIC_SZ;
}
static inline uint32_t
boot_image_ok_off(const struct flash_area *fap)
{
return boot_magic_off(fap) - BOOT_MAX_ALIGN;
}
static inline uint32_t
boot_copy_done_off(const struct flash_area *fap)
{
return boot_image_ok_off(fap) - BOOT_MAX_ALIGN;
}
static inline uint32_t
boot_swap_size_off(const struct flash_area *fap)
{
return boot_swap_info_off(fap) - BOOT_MAX_ALIGN;
}
#ifdef MCUBOOT_ENC_IMAGES
static inline uint32_t
boot_enc_key_off(const struct flash_area *fap, uint8_t slot)
{
#if MCUBOOT_SWAP_SAVE_ENCTLV
return boot_swap_size_off(fap) - ((slot + 1) *
((((BOOT_ENC_TLV_SIZE - 1) / BOOT_MAX_ALIGN) + 1) * BOOT_MAX_ALIGN));
#else
return boot_swap_size_off(fap) - ((slot + 1) * BOOT_ENC_KEY_SIZE);
#endif
}
#endif
/**
* This functions tries to locate the status area after an aborted swap,
* by looking for the magic in the possible locations.
*
* If the magic is successfully found, a flash_area * is returned and it
* is the responsibility of the called to close it.
*
* @returns 0 on success, -1 on errors
*/
static int
boot_find_status(int image_index, const struct flash_area **fap)
{
uint32_t magic[BOOT_MAGIC_ARR_SZ];
uint32_t off;
uint8_t areas[2] = {
#if MCUBOOT_SWAP_USING_SCRATCH
FLASH_AREA_IMAGE_SCRATCH,
#endif
FLASH_AREA_IMAGE_PRIMARY(image_index),
};
unsigned int i;
int rc;
/*
* In the middle a swap, tries to locate the area that is currently
* storing a valid magic, first on the primary slot, then on scratch.
* Both "slots" can end up being temporary storage for a swap and it
* is assumed that if magic is valid then other metadata is too,
* because magic is always written in the last step.
*/
for (i = 0; i < sizeof(areas) / sizeof(areas[0]); i++) {
rc = flash_area_open(areas[i], fap);
if (rc != 0) {
return rc;
}
off = boot_magic_off(*fap);
rc = flash_area_read(*fap, off, magic, BOOT_MAGIC_SZ);
if (rc != 0) {
flash_area_close(*fap);
return rc;
}
if (memcmp(magic, boot_img_magic, BOOT_MAGIC_SZ) == 0) {
return 0;
}
flash_area_close(*fap);
}
/* If we got here, no magic was found */
return -1;
}
int
boot_read_swap_size(int image_index, uint32_t *swap_size)
{
uint32_t off;
const struct flash_area *fap;
int rc;
rc = boot_find_status(image_index, &fap);
if (rc == 0) {
off = boot_swap_size_off(fap);
rc = flash_area_read(fap, off, swap_size, sizeof *swap_size);
flash_area_close(fap);
}
return rc;
}
#ifdef MCUBOOT_ENC_IMAGES
int
boot_read_enc_key(int image_index, uint8_t slot, struct boot_status *bs)
{
uint32_t off;
const struct flash_area *fap;
#if MCUBOOT_SWAP_SAVE_ENCTLV
int i;
#endif
int rc;
rc = boot_find_status(image_index, &fap);
if (rc == 0) {
off = boot_enc_key_off(fap, slot);
#if MCUBOOT_SWAP_SAVE_ENCTLV
rc = flash_area_read(fap, off, bs->enctlv[slot], BOOT_ENC_TLV_ALIGN_SIZE);
if (rc == 0) {
for (i = 0; i < BOOT_ENC_TLV_ALIGN_SIZE; i++) {
if (bs->enctlv[slot][i] != 0xff) {
break;
}
}
/* Only try to decrypt non-erased TLV metadata */
if (i != BOOT_ENC_TLV_ALIGN_SIZE) {
rc = boot_enc_decrypt(bs->enctlv[slot], bs->enckey[slot]);
}
}
#else
rc = flash_area_read(fap, off, bs->enckey[slot], BOOT_ENC_KEY_SIZE);
#endif
flash_area_close(fap);
}
return rc;
}
#endif
int
boot_write_copy_done(const struct flash_area *fap)
{
uint32_t off;
off = boot_copy_done_off(fap);
BOOT_LOG_DBG("writing copy_done; fa_id=%d off=0x%lx (0x%lx)",
fap->fa_id, (unsigned long)off,
(unsigned long)(fap->fa_off + off));
return boot_write_trailer_flag(fap, off, BOOT_FLAG_SET);
}
int
boot_write_swap_size(const struct flash_area *fap, uint32_t swap_size)
{
uint32_t off;
off = boot_swap_size_off(fap);
BOOT_LOG_DBG("writing swap_size; fa_id=%d off=0x%lx (0x%lx)",
fap->fa_id, (unsigned long)off,
(unsigned long)fap->fa_off + off);
return boot_write_trailer(fap, off, (const uint8_t *) &swap_size, 4);
}
#ifdef MCUBOOT_ENC_IMAGES
int
boot_write_enc_key(const struct flash_area *fap, uint8_t slot,
const struct boot_status *bs)
{
uint32_t off;
int rc;
off = boot_enc_key_off(fap, slot);
BOOT_LOG_DBG("writing enc_key; fa_id=%d off=0x%lx (0x%lx)",
fap->fa_id, (unsigned long)off,
(unsigned long)fap->fa_off + off);
#if MCUBOOT_SWAP_SAVE_ENCTLV
rc = flash_area_write(fap, off, bs->enctlv[slot], BOOT_ENC_TLV_ALIGN_SIZE);
#else
rc = flash_area_write(fap, off, bs->enckey[slot], BOOT_ENC_KEY_SIZE);
#endif
if (rc != 0) {
return BOOT_EFLASH;
}
return 0;
}
#endif